-
광대역 광학 활성을 갖는 카이랄 세라믹 물질 최초 개발
우리 대학 신소재공학과 염지현 교수 연구팀이 광대역 광학 활성을 갖는 *카이랄 세라믹 물질을 최초로 개발했다고 30일 밝혔다. 신소재공학과 박기현 석사과정이 제1 저자로 참여한 이번 연구는 미국화학회가 발행하는 국제 학술지 ‘ACS 나노(ACS Nano)’에 개재됐다. (논문명 : Broad Chiroptical Activity from Ultraviolet to Short-Wave Infrared by Chirality Transfer from Molecular to Micrometer Scale)
☞ 카이랄(Chiral): 수학, 화학, 물리학, 생물학 등 다양한 과학 분야에서 비대칭성을 가르키는 용어중 하나다. 이는 어떤 대상의 모양이 거울에 비춘 모양과 일치되지 않을 때 카이랄 성이 존재한다고 일컫는다.
카이랄 나노물질은 입사하는 원형 편광의 오른쪽 또는 왼쪽 방향성에 따라 다른 광학적 성질을 보이는 광학 활성도(chiroptical activity)의 특징을 가지고 있다. 같은 물질이어도 구조에 따라 서로 다른 광학 성질을 보이는 특이성을 활용해 많은 응용이 가능할 것이라는 기대로 최근 주목을 받는 물질이다. 하지만, 기존에 보고된 대부분의 카이랄 나노물질은 자외선(ultraviolet) 및 가시광선(visible) 영역에서만 제한적으로 광학 활성을 갖고 있어 바이오 및 통신 등을 포함한 다양한 분야에서의 응용에 한계가 있었다.
염지현 교수 연구팀은 이러한 문제를 해결하고자 자외선에서부터 근적외선 영역을 넘어 단적외선 영역에서까지 광범위한 광학 활성을 갖는 카이랄 소재를 최초로 개발했다. 연구팀은 황화구리(copper sulfide) 세라믹 물질에 원자 수준에서부터 마이크로 수준에까지 체계적으로 카이랄 특성을 부여하는 기술을 선보였다. 그와 동시에 황화구리 나노입자의 화학적 상태를 긴 파장의 빛을 효과적으로 흡수할 수 있는 상으로 변화되도록 유도하여 적외선 영역 광학 활성 효율을 극대화하였다.
연구팀은 먼저 아미노산이 가지고 있는 원자 수준 카이랄 특성을 무기 나노입자에 전이시켜 나노 수준 카이랄 특성을 구현한 후, 나노입자 사이의 인력 및 척력을 조절해 1~2 마이크로미터(㎛) 길이의 카이랄 나노꽃(nanoflower, NF)이 자가조립으로 만들어지도록 유도했다. 연구팀은 이렇게 디자인된 나노꽃이 자외선에서부터 수 마이크로미터의 파장을 갖는 적외선에서까지 빛의 원형 편광 방향 따라 특이적으로 상호작용하는 것을 확인했다. 또한, 이 광대역 광학 활성은 연구팀이 유도한 대로 적외선을 흡수할 수 있는 황화구리 상으로 화학적 변화가 잘 변이됐기 때문이고, 나노꽃의 구조적 카이랄 특성이 원형 편광의 방향성에 따른 비대칭적 상호작용을 유도하기 때문인 것을 컴퓨팅 시뮬레이션으로도 밝혔다.
이렇게 개발된 광대역 광학 활성 나노 플랫폼 기술은 바이오센서, 바이오이미징, 적외선 신경 자극, 나노온열치료, 텔레커뮤니케이션 등 다양한 분야에 응용될 것으로 기대된다. 제1 저자로 이 연구에 참여한 박기현 석사과정은 “이 연구를 통해 카이랄 물질군 라이브러리를 만들고 그들의 자가조립 제어 기술을 이용해 새로운 패러다임의 나노소재를 개발하는데 기여할 수 있으며, 무엇보다 세계 최초로 단적외선 영역에서도 광학 활성을 갖는 소재를 개발함으로써 카이랄 나노소재의 응용과 발전을 위한 토대를 마련한 것 같다”며 이 연구의 의의를 설명했다.
한편, 이번 연구는 과학기술정보통신부의 재원으로 범부처전주기의료기기연구개발사업단, 삼성 반도체연구기금, 연구재단 우수신진사업, KAIST 창의도전사업 (C2 프로젝트) 등의 지원을 받아 수행됐다.
2021.10.01
조회수 9060
-
집속 이온빔을 이용해 양자점 양자 광원의 순도 향상 기술개발
우리 대학 물리학과 조용훈 교수 연구팀이 집속 이온빔을 이용해 반도체 피라미드 구조의 꼭짓점에 형성된 단일 양자점(퀀텀닷)의 단광자 순도를 높이는 기술을 개발하는 데 성공했다고 29일 밝혔다.
이번 연구를 통해 개발된 기술은 향후 피라미드 꼭짓점 같이 위치를 정확히 제어하여 형성된 양자 광원뿐만 아니라 고밀도 양자점 기반 양자 광원, 전기 구동 양자점 기반 양자 광원 등 다양한 양자 광소자에 활용될 수 있을 것으로 기대된다.
양자 광원은 동시에 두 개 이상의 광자를 방출하지 않고 한 개의 광자씩만 방출하는 광원으로, 양자역학의 비복제 원리(no-cloning theorem)에 의해 단일 양자 정보를 복사할 수 없다는 점에서 해킹에 대해 안전한 양자 통신에 쓰일 수 있다. 특히 반도체 기반 양자점은 칩 상에 집적할 수 있고 전기 구동 또한 가능하다는 점에서 실용성이 높은 양자 광원으로써 널리 연구되고 있다.
하지만 반도체 양자점 기반 양자 광원에는 양자점 주변 구조에서 발생하는 배경 잡음(background signal)이 공존하게 되는데, 이러한 배경 잡음은 양자광으로서의 성질을 약하게 만들어 양자광이 해킹당할 가능성이 생기게 된다. 따라서 반도체 양자점을 실질적인 양자 광원으로 사용하기 위해서는 배경 잡음을 줄여 양자광의 신호 대 잡음비를 크게 만드는 것이 중요한 요소라 할 수 있다.
기존의 연구들에서는 양자 광원 주변의 배경 잡음을 줄여 신호 대 잡음비를 개선하기 위해 배경 잡음 신호가 나오는 부분을 에칭으로 제거하거나, 금속으로 막아버리는 등의 방법을 사용했다. 하지만, 이러한 방법들은 양자점의 양자광 신호를 감소시키거나, 양자점 주변의 구조를 파괴한다는 약점이 있었다.
조용훈 교수 연구팀은 집속 이온빔을 이용해 양자점 주변의 구조를 물리적으로 파괴하지 않고, 양자광 신호도 약화시키지 않은 채 배경 잡음 신호만을 효과적으로 제거할 수 있는 기술을 개발했고, 이를 반도체 피라미드 구조의 꼭짓점에 정교하게 형성된 양자점에 적용했다.
집속 이온빔 기술은 반도체 기술이나 생물학 등의 분야에서 에칭을 통한 나노 구조 제작이나 이미징 테스트를 위한 시료 제작 등에 널리 쓰여 왔다. 하지만 집속 이온빔을 빛을 내는 반도체 광소자나 광 집적회로를 제작하는 데 이용하게 되면, 이온 빔을 맞은 곳보다 훨씬 넓은 주변 영역에 이르기까지 결함 구조를 생성해 원하는 발광 신호를 크게 약화하는 문제가 있었다. 하지만 조용훈 교수 연구팀은 집속 이온빔의 종류와 조건을 정밀하게 조절하면 반도체 구조를 파괴하지 않으면서 배경 잡음 신호 만을 나노스케일의 공간해상도로 선택적으로 소광(luminescence quenching) 할 수 있다는 점에 착안했다.
이를 이용해 반도체 피라미드 구조의 꼭짓점에 있는 양자점 주변의 배경 잡음 신호를 나노스케일로 소광하는 데 성공했고, 이에 따라 나오는 발광 신호가 얼마나 양자광에 가까운지를 나타내는 지표인 단광자 순도를 크게 개선시켰다.
이는 양자점의 발광 신호와 구조체를 파괴하지 않고 배경 잡음만을 나노스케일로 소광할 수 있는 기술을 최초로 개발해, 피라미드 꼭짓점과 같이 위치가 제어된 양자점 뿐만 아니라 다양한 반도체 양자점 기반의 양자 광소자나 광 집적회로에서 원하지 않는 신호를 선택적으로 제거하여 소자의 성능을 높이는데 활용될 수 있는 결과라는 점에서 의미가 있다.
연구를 주도한 조용훈 교수는 "집속 이온빔을 이용해 원하지 않는 주변 배경 잡음 신호를 선택적으로 소광할 수 있는 고분해능 기법을 개발했고, 이는 다양한 양자 광소자와 광 집적회로, 그리고 디스플레이 분야에도 응용될 수 있는 기반 기술이 될 것ˮ이라고 말했다.
우리 대학 물리학과 최민호 박사과정과 전성문 박사과정이 공동 제 1저자로 참여한 이번 연구 결과는 삼성미래기술육성사업과 한국연구재단의 중견연구자지원사업의 지원을 받아 수행됐으며, 나노 과학 분야의 세계적 학술지인 `ACS 나노 (ACS Nano)' 7월 27일 字에 정식 출간됐다. (논문명: Nanoscale focus pinspot for high purity quantum emitters via focused-ion-beam induced luminescence quenching)
2021.07.30
조회수 10633
-
날숨 속 황화수소 가스 검출을 통한 구취 센서 개발
우리 대학 신소재공학과 김일두 교수 연구팀이 삼성전자 종합기술원과 공동연구를 통해 극소량의 나트륨과 백금 촉매를 금속산화물에 기능화하여 호흡으로 질병을 진단할 수 있는 가스 센서 플랫폼을 개발했다고 28일 밝혔다.
이 가스 센서 플랫폼은 사람의 날숨에 포함된 다양한 질병과 관련된 미량의 생체지표(biomarker) 가스를 선택적으로 감지해 관련된 특정 질병을 실시간 모니터링할 수 있는 기술이다.
혈액 채취나 영상 촬영 없이 내뱉는 숨(호기)만으로 각종 질병 여부를 파악하는 비침습적 호흡 지문 센서 기술은 핵심 미래 기술이다. 호기 속 특정 가스들의 농도변화를 검사해 건강 이상 여부를 판단할 수 있다.
이번 기술은 구취의 생체지표 가스인 황화수소 가스와 높은 반응성을 갖는 나트륨 촉매를 금속산화물 나노섬유 감지 소재 층에 도입해 가스 선택성을 극도로 향상하고, 활성도가 좋은 백금 촉매를 추가로 기능화해 세계 최고 수준의 황화수소 감지 성능을 구현한 기술이다.
호기 가스의 성분에는 수분 외에도 아세톤, 톨루엔, 암모니아, 수소뿐만 아니라 구취의 생체지표 가스인 황화수소(hydrogen sulfide), 메틸머캅탄(methyl mercaptan), 디메틸설파이드(dimethyl sulfide)의 3종 황 화합물이 포함된다. 그중에서 황화수소 가스는 구취 환자에게서 높은 농도로 배출되는 생체지표 가스로서 상기 3종 황화합물 가스 중에서 선택적으로 감지하는 것이 매우 중요하다.
호흡을 이용한 질병 진단은 테들라(Tedlar) 백에 포집된 날숨 가스를 소형 센서 장치로 주입한 후 수분 이내의 빠른 속도로 분석할 수 있는 비침습 진단 방법으로 최근 조명을 받고 있다. 또한, 질병 대사가 일어나는 시점에서 검출할 수 있어 조기 진단이 용이하다.
하지만 생체지표 가스들은 매우 미량의 농도인 10억분의 1(ppb)에서 100만분의 1(ppm) 수준으로 호흡 속에서 배출되기 때문에 정확한 분석을 위해서는 기술의 진보가 필요하다. 호기 속 수백 종 이상의 방해 가스들 속에서 목표 가스만을 선택적으로 분석하는 것은 저항 변화식 센서의 취약점으로 남아있다.
기존 가스 센서는 산화물 감지 소재 표면에 백금, 팔라듐 등 특정 촉매를 결합하거나 n-형 반도체식 금속산화물과 p-형 반도체식 금속산화물의 헤테로 접합 구조를 도입해 감지 특성을 높이려는 등의 시도가 있었으나 여전히 ppb 농도에서 생체지표 가스 감지 특성이 높지 않다는 한계가 있다.
연구팀은 미량의 염화 나트륨(NaCl)과 백금 촉매를 전기방사를 통해 넓은 비표면적과 다공성 구조를 갖는 금속산화물 나노섬유에 결착시켜 특정 생체지표 가스에 선택적으로 반응하는 감지 소재를 개발했다. 나트륨과 백금의 복합촉매가 결착된 나노섬유 센서는 백금 촉매만 결착되거나 촉매가 결착되지 않은 센서 대비 각각 10배 및 200배 이상 감지 특성이 향상됨을 확인했다.
특히 1 ppm의 황화수소 가스에 대해 감도가 780배 수준으로 바뀌는 세계 최고 수준의 감도 특성을 확인했고, 호기 속 방해 가스 중 반응성이 좋다고 알려진 에탄올 가스 대비 약 277배 수준의 선택도가 관찰됐다.
연구팀은 기존에도 호흡으로 질병을 진단하는 센서를 개발했으나 이번 기술은 가스 감지 성능 및 정확도와 신뢰도가 큰 폭으로 향상됐다는 특징이 있다. 또한, 연구팀은 이번에 개발한 초고성능의 가스 센서를 상용화된 압력센서, 온도센서, 습도센서와 결합해 간단하게 날숨을 불어넣는 것(호기 가스 직접 측정)만으로도 개개인의 호흡을 분석해 일반인도 쉽게 건강 이상을 판별할 수 있는 휴대용 복합센서 디바이스 플랫폼을 개발했다.
연구팀은 가스 크로마토그래피-질량분석법 기반 상용 구취 진단기를 활용한 호기 가스의 정성적 정량적 비교분석을 바탕으로 80건의 날숨 분석을 진행한 결과, 이번 복합센서 플랫폼이 86.3%의 정확도로 구취 유무를 판별할 수 있음을 확인했다. 이번 기술은 구취 유무를 지속적으로 모니터링하는 헬스케어 기기에 손쉽게 적용할 수 있다.
김일두 교수는 "기존 센서에 사용되지 않은 알칼리 금속 기반 촉매를 잘 알려진 백금 촉매와 함께 도입함으로써, 질병과 연관된 생체지표 가스에 초고감도 및 고 선택성으로 반응하는 센서 소재를 구현할 수 있었다ˮ며 "감지 소재 개발에 머물지 않고 실제 센서 디바이스 구현 및 호기 가스 임상시험을 통해 높은 정확도로 구취 유무를 판별할 수 있다는 측면에서 매우 의미가 있는 연구 결과다. 누구나 손쉽게 스스로 진단할 수 있는 자가 진단 기기의 진보는 의료비 지출 상승을 막고 지속적인 건강관리에 큰 도움이 될 것이다ˮ고 밝혔다.
이번 연구는 공동 제1 저자인 신하민, 김동하 박사과정(KAIST 신소재)과 정원종 전문연구원(삼성전자 종합기술원)의 주도하에 진행됐으며, 남궁각 전문연구원(삼성전자 종합기술원)과 김일두 교수(KAIST 신소재)가 교신저자로 참여했다.
연구 결과는 나노과학 분야의 권위적인 학술지 `에이씨에스 나노(ACS Nano)' 8월호 표지 논문으로 발행될 예정이며, `미국화학학회(ACS) 위클리 프레스팩(Weekly PressPac)'에 7월 21일 자로 소개되어 전 세계 수천 명의 기자단에게 홍보됐다. 또한, 관련 기술은 국내를 포함해 유럽, 미국, 중국에 특허로 출원됐다.
2021.07.29
조회수 11288
-
현장 진단형 초고속 실시간 유전자 분석기술 개발
우리 대학 바이오및뇌공학과 정기훈 교수 연구팀이 *나노 플라즈모닉 구조를 통해 빠른 열 순환 및 실시간 정량 분석이 가능한 초고속 실시간 중합효소연쇄반응(PCR) 기술을 개발했다고 7일 밝혔다.
☞ 나노 플라즈모닉 구조(Nanostructures for Plasmonic): 빛의 파장보다 작은 크기의 금속나노구조이며, 빛이 표면에 조사될 때 금속 표면과 유전체의 경계에서 빛과 전자가 상호작용을 한다. 주로 바이오 물질의 검출이나 분자진단에 많이 응용된다.
최근 코로나19를 포함한 전염성이 높은 바이러스의 확산을 방지하기 위해 신속하고 정확하게 바이러스를 검출하는 기술이 절실하게 필요하다. 역전사 중합효소연쇄반응(RT-PCR)은 가장 표준화된 코로나19 진단법으로 바이러스 내부의 유전물질인 RNA를 상보적 DNA로 역전사한 후 타겟 DNA를 증폭해 형광 프로브로 검출하는 방법이다. 그러나 기존 RT-PCR은 높은 민감도와 정확도를 갖추지만, 검출 시간이 길고 고가의 대형장비를 갖춘 장소로 검체를 운송한 후 진단하는 등 실시간 현장 대응의 한계가 존재한다.
연구팀이 개발한 `실시간 나노 플라즈모닉 PCR'은 백색 발광다이오드(LED)의 높은 광 흡수율을 갖는 나노 플라즈모닉 기판에 진공 설계된 미세 유체칩을 결합해 소량의 검체를 신속하게 증폭하고 정량적으로 분석해 바이러스를 단시간 내에 정확하게 검출할 수 있다. 이러한 특징을 이용해 공공장소 등 환자 발생 장소에서 병원성 바이러스의 확산 및 해외유입을 차단할 수 있을 것으로 기대된다.
나노 플라즈모닉 기판은 유리 나노기둥 위 금 나노섬 구조로 가시광선 전 영역에서 높은 광 흡수율을 가지므로 백색 LED의 빛을 열에너지로 치환해 빠르게 열을 발생시키고 내보낼 수 있다. 또한 광열 발생장치의 수직적인 온도 구배로 인한 증폭 효율 저하를 해결하기 위해 연구팀은 진공 설계된 미세 유체칩을 결합했다.
이는 샘플 한 방울을 칩에 넣으면 진공이 액체를 마이크로 챔버로 잡아당겨 자동으로 3분 이내에 주입되고, PCR 과정 동안에 발생하는 미세 기포는 공기 투과성 벽을 통해 제거돼 PCR 효율을 높이는 원리다.
연구팀은 SARS-CoV-2 플라스미드 DNA를 사용해 해당 기술을 검증했고, 40싸이클(95도-60도)을 5분 이내에 수행해 타겟 바이러스를 91%의 증폭 효율과 함께 정량적으로 검출했다. 이는 기존 실시간 PCR 시스템의 긴 소요 시간(약 1시간)에 비해 매우 빠르고, 높은 증폭 효율을 보이므로 신속한 현장 진단에 적용되기 적합할 것으로 보인다.
정기훈 교수는 "실질적으로 현장에서 사용 가능한 초고속 분자진단법을 개발했다ˮ며 "이 실시간 나노 플라즈모닉 PCR 기술은 현장에서 분자진단을 위한 차세대 유전자 증폭 플랫폼을 제공할 것이며 바이러스 확산 방지에 기여할 수 있을 것으로 예상한다ˮ라고 말했다.
우리 대학 바이오및뇌공학과 강병훈 박사과정이 주도한 이번 연구 결과는 국제 학술지 `에이씨에스 나노 (ACS Nano)'에 지난 5월 19일 字로 게재됐다. (논문명: Ultrafast and Real-time Nanoplasmonic On-Chip Polymerase Chain Reaction for Rapid and Quantitative Molecular Diagnostics)
한편 이번 연구는 KAIST 코로나19대응 과학기술뉴딜사업단과 한국연구재단 개인연구지원사업, 바이오기술개발사업으로 수행됐다.
2021.06.07
조회수 44581
-
신소재 영상화 및 머신러닝을 활용한 미래 개척
우리 대학 신소재공학과 홍승범 교수 연구팀이 KAIST 10대 플래그쉽 분야이자, 글로벌 특이점 과제인 `KAIST 신소재 혁명: M3I3 이니셔티브' 과제의 배경, 역사, 진행 상황 그리고 미래 방향을 제시했다고 31일 밝혔다.
홍 교수 연구팀은 다중스케일 다중모드 영상화 기술과 머신러닝(기계학습) 기법을 융합해서 고차원의 구조-물성 및 공정-구조 상관관계를 도출했다. 그리고 이를 인공지능과 3차원 다중 스케일 프린팅 기술을 활용해서 신소재 디자인부터 시장 진입까지의 기간을 획기적으로 단축할 수 있는 비전과 실행 플랫폼을 제안했다. M3I3 플랫폼은 고용량 에너지 소재 디자인에서 시작해서, 고밀도 메모리 소재, 고성능 자동차/항공 소재에도 응용 가능할 것으로 기대된다.
우리 대학 신소재공학과 홍승범 교수가 제1 저자로, 리오치하오 박사가 제2 저자로 참여하고, 육종민 교수, 변혜령 교수, 양용수 교수, 조은애 교수, 최벽파 교수, 이혁모 교수가 공동 저자로 참여한 이번 연구는 국제 학술지 `에이씨에스 나노(ACS Nano)' 2월 12일 字 온라인 출판됐다. (논문명 : Reducing Time to Discovery: Materials and Molecular Modeling, Imaging, Informatics, and Integration)
역사의 큰 흐름을 결정한 신소재는 시행착오와 도제식의 비결 전수를 통해서 발견 및 개발돼왔다. 각종 무기와 그릇, 그리고 장신구들이 좋은 예다. 광학현미경이 발명되면서 검의 미세구조와 검의 강도 혹은 경도 간의 상관관계를 이해하기 시작했고, 투과전자현미경과 원자간력 현미경의 발명으로 원자 수준의 분해능으로 신소재를 영상화하기 시작했다.
고려청자를 현재 재현하지 못하는 것은 고려 시대의 장인들이 그 비결을 남기지 않았기 때문이라고 우리는 가르치고 있다. 그러나, 미래에는 고려청자의 다중 스케일 구조를 영상화해서 데이터화 하고, 구조를 구현할 수 있는 공정 과정을 머신러닝의 힘을 빌려 역설계한다면, 고려청자를 재현하는 일은 가능할 것으로 보인다.
우리 대학 M3I3 플랫폼은 이처럼 다중 스케일 및 다중 모드 영상화 기술, 데이터 마이닝과 머신러닝, 그리고 다중 스케일 제조 기술을 접목해 미래에 필요한 신소재를 역설계해서 빠르게 공정 레시피를 확보할 수 있게 만들어준다.
이번 논문에서는 M3I3 플랫폼의 유효성을 확인하기 위해 배터리 소재에 적용하는 연구를 진행했다. 고용량 배터리 소재의 개발 기간을 단축할 수 있다는 것을 검증하기 위해서 20년간의 논문 자료를 50여 명의 학생이 읽고 데이터를 추출해 양극재의 에너지 밀도와 소재 조성 간의 상관관계를 도출했다. 그리고 논문에 나와 있는 공정, 측정 및 구조 변수들을 머신러닝 기법을 활용해 모델을 수립한 후, 무작위 조건에서 합성해 모델의 정확도를 측정함으로써 데이터 마이닝과 머신러닝의 우수성을 입증했다.
또한 투과전자현미경(TEM), 주사투과전자현미경(STEM), 원자간력현미경(AFM), 광학현미경 등의 다양한 현미경과 엑스레이(X-ray), 라만(Raman), UV/Visible/IR 등 다양한 분광 장비들을 통해 얻은 영상과 스펙트럼 데이터를 기반으로 다중 스케일 구조↔물성 상관관계를 도출하고, 여러 가지 공정변수 데이터를 수집해, 공정↔구조 상관관계를 수립하는 것이 M3I3 플랫폼의 중요한 핵심이다. 특히, 실험데이터와 시뮬레이션 데이터를 융합하고, 머신러닝으로 생성한 가상의 데이터를 과학적인 기준에 맞춰 유의미한 빅데이터로 만들면, 머신러닝을 활용해 물성→구조→공정으로 연결되는 역설계 알고리즘을 개발하는 것이 가능해지며, 이를 통해 미래에 필요한 물성을 갖는 신소재 공정 레시피를 신속하게 확보할 수 있게 된다.
제1 저자인 홍승범 교수는 "과학은 날카로운 관찰과 정량적 측정에서 시작한 학문이며, 기술의 발전으로 현재는 눈에 보이는 소재의 모양과 구조뿐만 아니라 눈에 보이지 않는 소재의 구조를 볼 수 있는 시대가 왔고, 물성마저 공간과 시간의 함수로 영상화할 수 있는 시대가 도래했다ˮ라며 "신소재 영상화 기술과 머신러닝 기술을 융합하고 3D 프린팅 기술을 다중 스케일 자동 합성 기술로 승화시키게 되면 20년 걸리던 신소재 개발 기간을 5년 이내로 단축할 수 있을 것이다ˮ 라고 말했다.
한편, 이번 연구는 글로벌 특이점 사업의 지원을 받아 수행됐다.
2021.04.01
조회수 89560
-
개교 50주년 국제학술지 ACS Nano 특집호 발간
우리 대학은 나노과학분야 권위학술지 ‘에이시에스 나노 (ACS Nano)’가 KAIST의 혁신적인 연구 성과와 코로나 대응을 위한 연구개발 노력을 집중 조명하는 개원 50주년 기념특집호를 발간했다고 22일 밝혔다.
에이시에스 나노 부편집장인 신소재공학과 김일두 교수가 주도한 이번 ‘ACS Nano’ 특집호는 혁신과 도전 정신을 바탕으로 ‘글로벌 가치창출 선도대학’의 비전을 이룩해온 KAIST의 50년 역사를 소개하며, 4만6천여 명의 석·박사 졸업생이 사회 각 분야의 핵심 인력이 되어 대한민국의 경제발전 및 성장을 이끌어나가는 점을 조명했다.
또한, 코로나 시대에 국제적인 연구 협력 및 교류가 더욱 필요한 점을 역설하면서, 작년 9월 KAIST가 주최하여 국제적으로 약 1만여명이 참여한 ‘제1회 KAIST 이머징 소재 심포지엄’을 코로나 및 4차 산업 혁명 시대에 걸맞는 성공적인 비대면 학술 교류 사례로 소개했다.
이번 특집호는 KAIST 교수진이 주도적으로 진행한 나노과학 분야 우수한 성과 내용 및 미래 발전 방향을 깊이 있게 요약한 14개의 리뷰논문을 △신소재 물성 연구 △소재 가공 및 처리 기술 △고급 물질분석 기술 △첨단 기술의 실용화의 네 가지 주제로 나누어 수록했다.
신소재 물성 연구
신소재공학과 박찬범 교수의 리뷰(Photonic Carbon Dots as an Emerging Nanoagent for Biomedical and Healthcare Applications)는 10나노미터 이하의 크기를 가지는 탄소 나노입자인 카본 닷의 주목할만한 광학적 특성과 그 기전에 관해 설명하고, 기존 광학 물질보다 높은 성능·가공의 용이성·안전성·낮은 가격을 가진 차세대 광학 재료로의 가능성을 소개했다.
생명화학공학과 이현주 교수의 리뷰(Heterogeneous Atomic Catalysts Overcoming the Limitations of Single-Atom Catalysts)는 이론상 최대 성능을 낼 것으로 여겨지는 단원자 촉매의 개발 현황 및 단원자 촉매의 고활성도에 대한 원리를 설명하고, 단원자 촉매의 한계점과 이를 돌파할 수 있는 해법으로 앙상블 촉매의 개념을 소개했다.
에이시에스 나노 11월호 표지 논문으로도 선정된 신소재공학과 정성윤 교수의 리뷰(Atomic-Level Manipulations in Oxides and Alloys for Electrocatalysis of Oxygen Evolution and Reduction)는 산업적으로 매우 중요한 산소 발생 및 환원 반응 (OER/ORR) 에 있어 최적의 금속 및 금속 산화물 기반의 전기촉매를 합성하기 위한 디자인 원칙을 소개하며, 특히 OER/ORR 특성을 극대화하는 방법을 물성-구조의 관점에서 명쾌하게 요약하였다.
소재 가공 및 처리 기술
신소재공학과 강기범 교수의 리뷰(Growth and Interlayer Engineering of 2D Layered Semiconductors for Future Electronics)는 차세대 반도체 후보로 뛰어난 물성을 가진 2차원 다중층 물질의 특성 및 그 합성법을 소개하고, 최근 그 구조를 제어하기 위해 개발된 합성 후처리 기술인 ‘중간층 공정 (interlayer engineering)’에 대해 자세하게 설명하였다.
생명화학공학과 김범준 교수의 리뷰(Eco-Friendly Polymer Solar Cells: Advances in Green-Solvent Processing and Material Design)는 값비싼 실리콘 기반 태양전지를 대체할 수 있는 소재로 최근에도 많은 연구가 진행 중인 고분자 기반 태양전지를 소개하며, 환경 및 건강에 해로운 기존 고분자 합성 공정의 문제점을 해결하는데 필요한 친환경 공정 개발 전략 및 현황을 소개했다.
신소재공학과 정우철 교수의 리뷰(Nanoparticle Ex-solution for Supported Catalysts: Materials Design, Mechanism and Future Perspectives)는 금속 나노입자 촉매를 금속산화물 지지체에 강력하고 균일하게 결착시켜 우수한 열적 안정성을 지닌 촉매 물질을 합성할 수 있는 엑솔루션 기술의 기초 원리 및 수많은 응용법에 대해 자세하게 설명하였다.
신소재공학과 전석우 교수 및 원자력양자공학과 장동찬 교수의 리뷰(Scalable Fabrication of High-Performance Thin Shell Oxide Nano-Architected Materials via Proximity Field Nanopatterning)는 정렬된 나노구조체의 대면적 생산을 가능하게 하는 3차원 광패턴 기술을 소개하고, 기존의 물성-구조 관계상의 한계를 초월하여 우수한 기계적 특성을 지닌 물질의 합성에 대해 소개했다.
고급 물질분석 기술
화학과 박정영 교수의 리뷰(Operando Surface Characterization on Catalytic and Energy Materials from Single Crystals to Nanoparticles)는 X선 광전자 분광법 및 원자간력 현미경 등 기존 물질분석법이 고진공 환경 등 실제와 차이가 있는 조건에서 진행되는 만큼 현실적인 물성 분석에 한계가 있는 점을 들어 비진공 및 실제 응용 조건에서 분석이 가능한 신기술의 원리 및 적용에 관해 설명하였다.
신소재공학과 육종민 교수의 리뷰(Graphene Liquid Cell Electron Microscopy: Progress, Applications, and Perspectives)는 생물 조직 등 소프트 재료의 특성 및 콜로이드 물질의 나노스케일 역학을 실시간으로 직접 관찰하는 방법으로 그래핀 기반 실시간 액상투과전자현미경 기술을 소개하고, 각 발전 단계의 사례들을 중심으로 기술의 핵심 원리를 소개했다.
신소재공학과 홍승범 교수의 리뷰(Reducing Time to Discovery: Materials and Molecular Modeling, Imaging, Informatics and Integration)는 물질의 구조와 물성을 한꺼번에 분석할 수 있는 신기술들을 소개하고, 확보한 데이터를 기반으로 다중 스케일 모델링 및 영상화를 통해 물질계의 물성-구조 및 물성-가공 관계에 대한 데이터베이스를 구축하는 방법, 그리고 이에 머신러닝을 접합하여 자동화된 신소재 개발이 가능한 시스템을 디자인하는 접근법을 소개했다.
첨단 기술의 실용화
신소재공학과 김일두 교수의 리뷰(Chemiresistive Hydrogen Sensors: Fundamentals, Recent Advances, and Challenges)는 높은 가연성으로 매우 위험하나 산업적으로 중요한 수소 기체의 누출 여부를 조기에 감지할 수 있는 저항변화식 센서 개발에 관해 설명하며, 수소와 반응해 전기적 저항이 변화하는 원리 및 성능 개선 전략을 각 물질군에 대해 정리하여 요약하였다.
신소재공학과 스티브박 교수의 리뷰(From Diagnosis to Treatment: Recent Advances in Patient-Friendly Biosensors and Implantable Devices)는 비침습적 방법으로 바이오마커를 감지해 환자의 병리적인 상태를 빠르고 간단하게 파악할 수 있는 장치와 더불어 인체 친화적인 치료용 이식 장치의 개발에 대한 전반적인 현황과 인체 친화성을 갖추는 데 있어 필수적인 요소들을 소개하였다.
전기및전자공학부 최양규 교수의 리뷰(Triboelectric Nanogenerator: Structure, Mechanism, and Applications)는 혁신적인 에너지 하베스팅 기술인 마찰전기 기반의 나노 발전기를 소개하고, 나노 발전기의 구동 원리 및 에너지 변환 효율 증대를 위한 기본 요소들에 관해 자세히 설명하였다.
화학과 변혜령 교수 및 신소재공학과 김일두 교수의 리뷰(Lithium-Air Batteries: Air-Breathing Challenges and Perspective)는 기존의 리튬 이온 기반 이차전지보다 이론적인 성능이 더욱 뛰어나며 풍부한 자원인 공기를 이용하는 리튬-공기 기반 이차전지를 소개하고, 이를 구성하는 필수 요소들의 역할 및 개선 방안에 대해 소개했다.
코로나에 맞선 KAIST의 선도적 역할
에이시에스 나노는 이와 더불어 과학기술정보통신부 지원하에 KAIST가 주도한 “코로나대응 과학기술 뉴딜 사업”을 팬데믹 위기극복을 위한 기술 혁신 및 집단지성의 예시이자 국제적인 모범 사례로 조명하였으며, 감염병 대응의 각 단계인 예방보호·응급대응·치료복구에 사용될 △재사용 항바이러스 필터 △이송-입원 연계형 음악 앰뷸런스 △이동 확장형 음압 병동 등의 신기술 개발 성과를 소개했다.
안재완 신소재공학과 박사, 배충식 KAIST 공과대학장, Paul S. Weiss 에이시에스 나노 편집장, 김일두 신소재공학과 교수가 저자로 참여한 이번 온라인 특집호는 2021년 2월호 ACS Nano에 소개됐다.
2021.02.22
조회수 88566
-
수소 가스 민감성 광투과도 변화 필름을 활용한 무전원 가스센서 기술 개발
우리 대학 기계공학과 박인규 교수 연구팀과 전기및전자공학부 윤준보 교수, POSTECH 노준석 교수 공동 연구팀이 외부 전력 공급 없이도 장기간 안정적으로 동작할 수 있는 무전원 수소 감지 센서를 개발했다고 18일 밝혔다.
연구팀은 유연한 폴리머 나노 창살(nanograting)의 한쪽 측벽에 팔라듐(Pd)을 비대칭적으로 코팅하면, 팔라듐(Pd)이 수소 분자를 흡수함에 따라 부피가 팽창하면서 폴리머 나노 창살이 기계적으로 굽혀 일종의 ‘커튼’과 같이 광투과도 변화를 일으킨다는 것을 발견했다. 이러한 현상을 활용하여 태양전지 표면에 감지막을 부착하면 수소 가스에 노출되었을 때 태양전지에 도달하는 빛을 가리고, 이는 태양전지 출력 변화로 이어져 외부의 전력 공급 없이도 수소 가스의 농도를 정밀하게 포착하게 된다.
수소 가스는 석유화학, 반도체, 제약 등 다양한 산업에서 널리 활용되고 있으며 차세대 친환경 에너지원으로도 주목받고 있지만, 누출 발생 시 폭발의 위험이 큰 만큼 안전한 사용을 위해 지속적인 모니터링이 필수적이다. 그러나 기존의 수소 감지 장치들은 지속적인 전원 공급이 필요해 다양한 무선환경에서 장시간 사용하는데 큰 제약이 있었다. 연구팀에서 개발한 무전원 수소 감지 센서는 외부 전원 없이도 수소 가스의 농도를 정밀하게 예측할 수 있어 수소를 활용하는 다양한 무선 원격 환경에서 널리 활용될 것으로 기대된다.
연구팀은 센서의 성능을 극대화하기 위해 수치 시뮬레이션을 통해 팔라듐 코팅 조건(입사각)을 최적화해 0.1%의 저농도 수소 가스에 대해서도 높은 센서 민감도를 달성할 수 있었고, 또한 반복적인 수소 가스 노출 및 습도 변화에도 안정적인 신호를 유지하는 것을 검증했다.
특히 연구팀은 개발한 무전원 수소 센서를 모바일 장치에 탑재해 감지된 수소 농도를 스마트폰에서 원격으로 확인할 수 있는 시제품을 함께 선보여 실제 무선환경에서의 활용성을 높였다. 본 시제품은 수소 감지에 활용되는 태양전지뿐만 아니라 주변 광 세기 변화를 보상하기 위한 추가적인 태양전지를 탑재해 실시간 보상이 이뤄지며, 블루투스를 통해 스마트폰으로 신호를 전송한다. 스마트폰 앱에서는 수소 가스의 폭발 하한 농도인 4%를 초과했을 때 알람을 울려 사용자에게 알려준다.
박인규 교수는 “이번 연구는 첨단 나노기술을 통해 수소 가스를 정밀하게 감지할 수 있는 새로운 감지 메커니즘을 규명했을 뿐만 아니라 개발된 시제품은 센서 전원 공급이 원활하지 않은 원격지에서의 활용성을 크게 높여, 차세대 에너지원으로 주목받고 있는 수소의 안전한 사용에 기여할 것으로 기대된다”라고 말했다.
한국연구재단의 선도연구센터지원사업, 나노·소재기술개발사업의 지원을 받아 진행된 이 연구의 성과는 국제학술지 ‘ACS Nano’2020년 12월자에 게재됐다. (논문명: Chemo-Mechanically Operating Palladium-Polymer Nanograting Film for a Self-Powered H2 Gas Sensor)
2021.01.18
조회수 69692
-
압력과 인장을 구분하는 무선통신 전자 소자 개발
우리 대학 신소재공학과 스티브 박, 김상욱 교수 공동 연구팀이 신물질을 이용해 압력과 인장(늘이기)을 구분할 수 있는 무선통신 소자를 개발했다고 22일 밝혔다.
공동 연구팀은 무선통신에 활용되고 있는 전기 공진기(electrical resonator)가 여러 정보를 전달할 수 있다는 사실에 주목했다. 원거리에서 여러 자극을 측정할 수 있는 효과적인 정보처리시스템의 경우 최근 주목받고 있는 웨어러블과 임플란터블(체내이식형) 소자 등 다양한 분야에서 폭넓게 활용되고 있다.
특히 수동형 소자들로 만들어지는 전기 공진기는 원거리 통신이 가능할 뿐만 아니라 다양한 기능성 재료(생분해성 물질, 자가치유 물질)로 구현이 가능해 웨어러블·임플란터블 소자 분야에서 연구가 활발히 진행되고 있다.
전기 공진기의 무선통신 신호는 2개의 요소, 즉 공진기의 정전용량에 의해 결정되는 '공진주파수'와 공진기에 저장된 전자기파 에너지에 의해 결정되는 '품질 인자(quality factor)'에 의해 결정된다. 따라서 최소 두 가지 정보를 포함할 수 있다.
기존에는 공진기의 신호를 변화시킬 수 있는 메커니즘과 관련된 물질의 특성 및 소자의 구조에 대한 전반적인 이해가 부족했기 때문에 효과적인 신호처리를 위한 시스템 구축에는 많은 제약이 따랐다. 특히, 공진주파수와 품질 인자의 변화를 분화하기 위해서는 공진기의 저장된 전자기파를 차폐할 수 있는 신물질이 필요한데 공동 연구팀은 2차원 신물질인 '맥신(MXene)'을 사용했다.
연구팀은 '맥신(MXene)'이 사용할 수 있는 합성 재료 중 가장 우수한 전자기장 차폐능력을 갖췄다고 판단했기 때문이다. 연구팀은 우선 압력에 따라서 기공이 닫히는 다공성 탄성체에 Ti3C2Tx 조성의 맥신을 코팅해 외부 자극에 따라 공진기의 저장된 에너지를 변형시킬 수 있는 센서로 활용했다. 이때 탄성체와 맥신 사이에 나노 접착제 역할을 하는 *폴리도파민을 도입해 2,000번 이상의 반복적인 수축과 이완에도 신뢰성 있게 작동할 수 있도록 소자를 만들었다.
☞ 폴리도파민(poly-dopamine): 바다생물 홍합이 물속에서 바위에 몸을 붙일 때 내는 접착 물질을 도파민이라고 하고, 이를 고분자화하여 중합체 형태로 만든 물질.
나아가, 연구팀은 딥러닝 기법을 적용해 미리 학습됐던 압력과 인장 자극을 구분해 정확하게 맞추고, 학습되지 않은 새로운 압력과 인장 자극도 약 9%의 오차 이내로 맞출 수 있는 시스템을 구현하는 데 성공했다.
연구팀이 개발한 소자는 무선으로 기계적 자극을 구분해 측정할 수 있고, 생체친화적이며 가볍기 때문에 웨어러블 소자로 활용이 가능한 게 장점이다. 공동 연구팀은 이 밖에 새로 개발한 소자를 기반으로 정형외과 수술 이후 재활 치료를 하는 과정에서 부상을 방지할 수 있는 모니터링 시스템을 개발, 구축했다.
스티브 박 교수는 "최근 주목받고 있는 무선통신 소자의 신호처리에 대해 새로운 방향을 제시하고 신물질인 맥신의 다양한 적용 가능성을 보여준 의미있는 연구성과"라면서 "헬스케어를 위한 웨어러블, 임플란터블 모니터링 전자소자에 활용될 것으로 기대된다" 라고 말했다.
우리 대학 신소재공학과 이건희, 이강산 박사과정 학생이 공동 제1 저자로 참여한 연구논문은 국제 학술지 'ACS Nano' 8월 19일 字 온라인 버전에 게재됐다. (논문명 : Deep-Learning-Based Deconvolution of Mechanical Stimuli with Ti3C2Tx MXene Electromagnetic Shield Architecture via Dual-Mode Wireless Signal Variation Mechanism)
한편 이번 연구는 KAIST 석박사모험 연구사업, KAIST 글로벌 특이점 연구사업, 과학기술정보통신부 리더연구자 지원사업인 다차원 나노조립제어 창의연구단의 지원을 받아 수행됐다.
2020.09.22
조회수 30208
-
이산화탄소 처리로 산화 티타늄 신소재 판형 맥신 합성 성공
우리 대학 생명화학공학과 이재우 교수 연구팀은 나노 신소재 *맥신(MXene)과 이산화탄소와의 반응을 통해 산화 티타늄 나노입자가 고르게 분포된 판형 구조의 맥신을 합성하는데 성공했다고 25일 밝혔다.
☞ 맥신(MXene): 전자파를 흡수하고 차단하는 신개념 초경량 나노 신소재. 전자 부품간 전자파 간섭을 고성능으로 차단할 수 있어 전자통신 제품에 활용할 수 있다.
이 교수 연구팀은 수용액 상태에서 표면을 벗겨낸(박리된) 맥신과 이산화탄소와의 반응을 통해 산화 티타늄 나노입자가 맥신 표면에 고르게 분포된 판형 맥신을 합성했다. 연구팀이 개발한 산화 금속이 고르게 분포된 판형 맥신은 단일공정으로 매우 경제적일 뿐만 아니라 다양한 분야에 폭넓게 적용될 수 있을 것으로 기대된다.
생명화학공학과 이동규 박사과정생이 제1 저자로 참여한 이번 연구결과는 국제 학술지 `ACS 나노 (ACS Nano)' 7월 30일 字 온라인판에 게재됐다. (논문명 : CO2-Oxidized Ti3C2Tx-MXenes Components for Lithium-Sulfur Batteries: Suppressing the Shuttle Phenomenon through Physical and Chemical Adsorption).
맥신은 전기전도도가 높고 유연성이 뛰어나기 때문에 센서·에너지 저장/전환장치·전자기차 폐수처리 재료 등 다양한 분야에서 활용될 수 있는 신물질이면서 특히 그래핀이나 탄소나노튜브를 대체할 수 있는 차세대 물질로 주목받고 있다.
맥신을 리튬-황 전지의 양극 물질로 활용하기 위해서는 활물질인 황을 수용할 수 있는 공간을 제공해줘야 하고 또한 충‧방전 과정에서 생성된 리튬 폴리설파이드가 전해질에 녹아 음극 쪽으로 이동하여 발생하는 *셔틀 현상을 막을 수 있어야 한다.
☞ 셔틀 현상(Shuttle phenomenon): 방전 과정 중 리튬을 말단으로 가지는 황 체인인 중간물질(polysulfides)이 전해질에 녹아 양극과 음극 사이를 확산하면서 전지 내에서 소비되는 것으로서 결과적으로 양극 활물질 손실 및 사이클링 성능 저하를 초래한다.
맥신은 금속 *카바이드 형태로 *다공성이 거의 존재하지 않고 또 리튬 폴리설파이드와 상호작용이 적은 물질이기에 리튬-황 전지의 소재로 이용하기엔 적합하지 않다. 연구팀은 맥신이 포함된 수용액에 초음파를 주입하고, 맥신을 박리시켜 각 단일 맥신 층을 다량으로 제조한 후 충분한 공간을 확보하고 동시에 이산화탄소와 맥신 층을 반응시켜 표면에 리튬 폴리설파이드를 흡착할 수 있는 다량의 산화 티타늄 나노입자를 고르게 합성시켜 문제를 해결했다.
☞ 카바이드(carbide): 탄소와 그 밖의 하나의 원소로 이루어진 화합물.
☞ 다공성(porosity): 고체가 내부 또는 표면에 작은 빈틈을 많이 가지는 성질.
연구팀이 개발한 산화 금속이 고르게 분포된 판형 맥신 제작 기술은 맥신 전구체 종류에 상관없이 적용할 수 있다. 연구팀은 이와 함께 이 기술을 사용하면 길이 50~100 나노미터(nm), 지름 20 나노미터(nm)의 땅콩 모양의 나노입자들이 형성된 판형 맥신을 제조 가능함을 이번 연구를 통해 확인했다.
연구팀 관계자는 "산화 금속 판형 맥신 제조공정은 수용액처리 및 이산화탄소와의 반응으로 이뤄진 단순화된 공정이기 때문에 온도, 반응시간 조절로 다양한 판형 소자 제조 및 비용 절감이 가능하고 리튬-황 전지 성능을 강화하는데 기여할 것ˮ이라고 설명했다.
제1 저자인 이동규 박사과정 학생도 "이산화탄소와의 반응을 통해 제조된 산화 금속 판형 맥신은 리튬-황 전지의 양극뿐 아니라 분리막에 필름 형태로 성형해 셔틀 현상을 이중으로 방지할 수 있는 막을 제조할 수 있다ˮ면서 "균일한 금속산화물 나노입자가 형성된 판형 맥신은 전극 및 다양한 에너지 저장장치 소자에 사용될 것ˮ 이라고 소개했다.
한편 이번 연구는 한국연구재단의 Global Research Development Center Program과 Korea CCS R&D Center 기술개발사업의 지원을 받아 수행됐다.
2020.08.25
조회수 29829
-
섬유 위에 기능성 나노구조체 구현
기계공학과 박인규 교수와 한국기계연구원 정준호 박사 공동 연구팀이 섬유 위에 다양한 기능성 나노 구조체를 구현하는 생체적합성 공정을 개발했다.
연구팀은 개발한 공정을 통해 다양한 재료의 나노 구조체를 섬유 위에 자유롭게 구현하는 데 성공했다. 섬유 위에 직접 나노 구조체를 전사할 수 있어 추가적인 기판이나 접착층 없이도 기능성 기기를 손쉽게 제작할 수 있다. 연구팀은 전기적·광학적 특성을 이용해 환경 및 신체 움직임 모니터링, 나노 구조색을 이용한 보안패턴, 광촉매를 이용한 자가 세정 기능 등을 섬유에 부여할 수 있으며, 스마트 섬유로 활용 가능할 것으로 전망했다.
고지우 박사과정이 1 저자로 참여한 이번 연구는 나노분야의 권위 있는 국제 학술지인 ‘에이씨에스 나노(ACS Nano, IF: 13.903)’2월 25일 자 14권 2호 논문에 게재됐다. (논문명: Nanotransfer Printing on Textile Substrate with Water-Soluble Polymer Nanotemplate, 수용성 폴리머 나노템플릿을 이용한 섬유에의 나노패턴전사)
최근 웨어러블 디바이스에 대한 관심이 커짐에 따라 섬유를 기판으로 하는 스마트 섬유 연구가 활발히 진행되고 있다. 섬유에 초미세 패턴을 구현하기 위해 다양한 방법이 시도되지만, 섬유의 거친 표면 특성으로 인해 기존의 공정은 기기 소형화 및 성능 향상에 필수적인 정교한 패턴을 구현할 수 없다는 한계가 있다. 이번 연구에서는 이를 해결하기 위해 물에 잘 젖는 섬유의 특성을 이용해 수용성 고분자이며 생체적합성이 우수한 히알루론산의 나노 패턴을 사용했다.
연구팀은 히알루론산 기판에 나노 패턴의 템플릿을 제작한 후 다양한 기능성 소재의 박막을 진공증착을 통해 형성했다. 그 후 섬유에 흡수된 물을 이용해 히알루론산 템플릿을 녹여냄으로써 최소 선폭 50 나노미터인 나노 구조체를 섬유 위에 전사했다. 이 방법을 통해 금, 은, 팔라듐, 알루미늄, 이산화규소와 같은 금속과 비금속 소재의 나노 패턴 형성이 모두 가능하며 동시에 다양한 나노 구조체의 조합을 자유롭게 섬유 위에 제작할 수 있다.
연구팀은 개발한 공정을 통해 팔라듐 나노 구조체를 전사해 수소 감지 센서를 제작했고, 나노 구조체가 없는 센서와 비교해 센서의 감도가 향상됐음을 확인했다. 또한, 나노 구조체가 갖는 광학적 특성인 국소 표면 플라즈몬 공명 현상으로 인한 나노 구조색을 이용해 같은 금속 및 구조이지만 두께 및 형상 파라미터에 따라 서로 다른 고유한 색을 나타냄으로써 보안패턴에 적용할 수 있음을 입증했다.
박인규 교수는 “스마트 섬유를 구현할 수 있는 간편하면서도 범용성 있는 나노 패터닝 공정을 개발했다. 다양한 섬유에 센서, 배터리, 보안패턴, 자가 세정 등의 첨단 기능을 쉽게 구현할 수 있는 데 큰 의의가 있다”라고 말했다.
이번 연구는 한국연구재단의 중견 연구 과제 (올인원 스마트 스킨을 위한 웨어러블 멀티센서 시스템 핵심기술 연구)와 글로벌 프론티어 사업 (극한물성시스템 제조 플랫폼기술)의 지원을 통해 수행됐다.
2020.03.18
조회수 16600
-
적외선 세기·위상 제어 가능한 메타표면 개발
우리 대학 전기및전자공학부 장민석 교수와 미국 위스콘신 대학 브라(Victor Brar) 교수 연구팀이 적외선의 세기와 위상을 독립적으로 제어하는 동시에 전기 신호로 광학적 특성을 조절할 수 있는 그래핀 기반 메타 표면을 이론적으로 제안했다.
이번 연구를 통해 기존 능동 메타 표면 분야의 난제였던 빛의 세기와 위상의 독립적 제어 문제를 해결해 중적외선 파면을 더 정확히 고해상도로 변조할 수 있을 것으로 기대된다.
한상준 석사과정과 위스콘신 대학교 김세윤 박사가 공동 1 저자로 참여한 이번 연구는 국제 학술지 ‘ACS 나노(ACS Nano)’ 1월 28일 자 전면 표지논문으로 게재됐다. (논문명 : Complete complex amplitude modulation with electronically tunable graphene plasmonic metamolecules)
광변조기술은 홀로그래피, 고해상도 이미징, 광통신 등 차세대 광학 소자 개발에 필수적인 기반 기술이다. 기존 광변조기술에는 액정을 이용한 방식과 미세전자기계시스템(MEMS)을 이용한 방식이 있다. 그러나 두 방식 모두 단위 픽셀의 크기가 회절 한계보다 크고, 구동 속도에 제한이 있다는 문제가 있었다.
메타표면은 이러한 문제들을 해결할 수 있기에 차세대 광변조기술의 강력한 후보이다. 메타표면은 자연계의 물질이 가질 수 없는 광학적 특성을 가지며, 회절 한계를 극복한 고해상도의 상을 맺는 등 전통적인 광학 시스템의 한계를 극복할 수 있다는 장점이 있다. 특히, 능동 메타표면은 전기 신호로 그 광학적 특성을 실시간 제어할 수 있어 적용 범위가 넓은 기술로 평가받고 있다.
그러나 기존에 연구되던 능동 메타표면은 빛의 세기 조절과 위상 조절 간의 불가피한 상관관계 문제가 있다. 기존 메타표면들은 개별 메타 원자가 하나의 공진 조건만을 가지도록 설계됐으나, 단일 공진 설계는 빛의 진폭과 위상을 독립적으로 제어하기에는 자유도가 부족하다는 한계점이 있다.
연구팀은 두 개의 독립적으로 제어 가능한 메타 원자를 조합해 단위체를 구성함으로써 기존 능동 메타표면의 제한적 변조 범위를 획기적으로 개선했다.
연구팀이 제안한 메타표면은 중적외선의 세기와 위상을 독립적으로 회절 한계 이하의 해상도로 조절할 수 있어 광 파면의 완전한 제어가 가능하다.
연구팀은 제안된 능동 메타표면의 성능과 이러한 설계 방식을 응용한 파면 제어의 가능성을 이론적으로 확인했다. 특히, 복잡한 전자기 시뮬레이션이 아닌 해석적 방법으로 메타표면의 광학적 특성을 예측할 수 있는 이론적 기법을 개발해 직관적, 포괄적으로 적용 가능한 메타표면의 설계 지침을 제시했다.
연구팀의 기술은 기존 파면 제어 기술 대비 월등히 높은 공간 해상도로 정확한 파면 제어가 가능할 것으로 기대된다. 이 기술을 기반으로 향후 적외선 홀로그래피, 라이다(LiDAR)에 적용 가능한 고속 빔 조향 장치, 초점 가변 적외선 렌즈 등의 능동 광학 시스템에 적용 가능할 것으로 보인다.
장민석 교수는 “이번 연구를 통해 기존 광변조기 기술의 난제인 빛의 세기와 위상의 독립제어가 가능함을 증명했다”라며 “앞으로 복소 파면 제어를 활용한 차세대 광학 소자 개발이 더욱 활발해질 것으로 예상된다”라고 말했다.
2020.02.18
조회수 13600
-
김일두 교수, 물 몇 방울로 전기 만들어내는 기술 개발
〈 배재형 박사과정, 김일두 교수, 윤태광 박사 〉
우리 대학 신소재공학과 김일두 교수 연구팀이 아주 소량의 물(0.15ml) 또는 대기 중의 수분을 자발적으로 흡수하는 조해성 물질을 활용해 전기에너지를 생성하는 친환경 발전기를 개발했다.
연구 결과는 나노과학 분야의 권위적인 학술지 ‘ACS Nano’ 11월 26일자 논문으로 발표됐다. 또한, 환경 분야의 권위 학술지인 에너지 및 환경과학 (Energy & Environmental Science) 온라인판에 게재됐으며, 1월호 후면 표지 논문으로 발표될 예정이다.
ACS Nano 연구는 증산 작용을 활용한 자가발전기의 원리를 규명한 논문으로 윤태광 박사와 배재형 박사과정 학생이 제 1 저자로 참여했으며, 테크니온 재료공학과의 아브너 로스칠드(Avner Rothschild) 교수가 공저자로 참여했다.
Energy & Environmental Science 논문은 조해성염을 활용하여 대기중의 수분 흡수를 통해 지속적으로 에너지를 생성하는 발전기에 관한 연구내용으로 제 1 저자인 배재형 박사과정과 윤태광 박사의 주도하에 진행이 됐고, 생명화학공학과의 서봉임 박사 , 김지한 교수가 공저자로 참여했다.
김 교수 연구팀은 전도성 탄소 나노 입자가 코팅된 면(cotton)섬유 표면에 소량의 물을 떨어뜨리면 젖은 영역과 마른 영역으로 나뉘게 되면서 작은 양의 전기에너지가 발생하는 것을 발견했다.
이를 통해 물이 완전히 증발하기 전까지 수소 이온이 천천히 이동하며 약 1시간 동안 발전이 가능함을 확인했지만, 물이 완전히 증발하게 되면 전기 발생이 멈추게 된다. 지속적인 발전을 위해서는 주기적으로 물을 떨어뜨려야 하는 실용성 측면에 문제가 있다.
연구팀은 발전 시간을 늘리기 위해 대기 중의 물을 스스로 흡수한 후 천천히 방출하는 조해성 물질 중 하나인 염화칼슘(CaCl2)에 주목했다. 탄소 입자가 코팅된 면섬유의 한쪽 면에 염화칼슘을 묻혔더니, 습도 20% 이상에서는 자발적인 수분 흡착으로 전력이 지속해서 유지되는 결과를 얻었다.
이렇게 개발한 자가발전기 6개를 직렬로 연결해 전압 4.2V, 에너지 밀도 22.4mWh/cm3를 얻어 LED 전구(20mW)의 불을 켜는 데 성공했다.
태양광, 풍력 발전 등 친환경 발전기들이 외부의 환경적인 요소에 제약을 많이 받는 것에 비해 연구팀이 개발한 발전기는 20∼80% 습도 구간에서는 외부에서 물을 공급해 주지 않더라도 전기를 만들어 낼 수 있어 다양한 사물인터넷, 웨어러블 기기 등에 활용할 수 있을 것으로 기대된다.
김 교수는 "움직이기만 해도 생기는 땀이나 대기 중 흩날리다 사라지는 수분을 에너지원으로 활용할 수 없을까? 라는 의문에서 연구를 시작했다"라며, "조해성 염이 포함된 자가발전기는 일반 대기 환경에서 2주 이상 발전하는 성능을 보임을 확인했고, 사물인터넷용 지속 전력 공급원 또는 자가 발전기 크기 증대를 통해 이차전지를 충전하는 용도 등으로 활용할 수 있다"라고 말했다.
이번 연구 성과는 삼성전자미래육성재단 과제(SRFC-MA1802-05)의 지원으로 진행됐다.
□ 그림 설명
그림1. 물의 증산작용을 이용한 자가 발전기
그림2. 식물의 증산 과정을 통해 수분이 순환하는 원리를 모사하여, 수분의 순환을 전기 에너지로 변환하는 발전기
2019.12.16
조회수 14539