-
그린수소 저가 생산 실마리 풀어
탄소중립의 필요성이 대두됨에 따라 수소를 에너지 캐리어로 활용하는 수소 에너지 사회로의 변화가 선택이 아닌 필수가 되어가고 있다. 이를 위해 수소를 생산하는 다양한 기술들이 제시되고 있으며, 수소 생산시 이산화탄소 배출이 전혀 없는 수소를 ‘그린수소 기술’이라고 한다. 그 중, 물을 전기분해하여 수소와 산소를 생성하는 수전해 기술이 변동성이 높은 재생에너지 기반 전력 시스템에 우수한 안정성을 가져, 앞으로 급증할 그린 수소의 수요를 책임질 차세대 시스템으로 주목받고 있다.
우리 대학 생명화학공학과 김희탁 교수 연구팀이 얇은 고분자 막을 분리막으로 사용하는 고분자전해질 수전해 시스템에서 양극 귀금속 촉매 함량을 낮췄을 때 발생하는 성능 악화 현상을 규명해 그린 수소 생산기술 저가화에 대한 실마리를 찾았다고 22일 밝혔다.
생명화학공학과 두기수 박사가 제1 저자로 참여한 이번 연구 결과는 국제학술지 `ACS 에너지 레터스(ACS Energy Letters)' 5월 12일 자 온라인판 표지논문으로 게재됐다. (논문명: Contact Problems of IrOx Anodes in Polymer Electrolyte Membrane Water Electrolysis)
양이온 전도성 고분자전해질 수전해는 물을 전기분해하여 수소 기체를 발생시키는 친환경 수소생산 장치로 기존의 알칼리성 수전해 대비 높은 성능과 높은 수소생산 순도를 강점으로 지닌다.
이 수전해 시스템은 산성 환경에서 작동하며 효율적인 물의 분해를 위해 귀금속 기반의 촉매를 사용한다. 하지만 백금, 이리듐 등의 귀금속 소재들은 수급 부족과 높은 가격 문제를 수반한다. 특히, 이리듐 기반 촉매는 양극 반응에 가장 적합하지만 매장량이 적어 현재보다 십 분의 일 수준의 촉매가 요구되는 고분자전해질 수전해 장치를 개발할 필요가 있다. 하지만 이리듐 촉매 함량을 줄일 때 발생하는 급격한 성능 저하 현상이 고분자전해질 수전해 저가화의 발목을 잡고 있다. 이러한 문제해결을 위한 대부분의 연구는 이리듐을 대체하는 새로운 촉매의 발굴에 주력하고 있다.
수전해 시스템에 사용하는 전극은 이리듐 촉매와 바인더로 구성된 촉매층과 티타늄 확산층 결합된 구조를 가지고 있다. 김희탁 교수 연구팀은 고분자전해질 수전해의 양극 내 이리듐 촉매 함량을 낮췄을 때 발생하는 성능 저하 문제가 촉매층과 확산층 계면에서 바인더의 함량이 증가하기 때문이라는 새로운 시각을 제시하고 이를 규명했다.
이리듐 촉매와 티타늄 확산층이 접촉하면, 티타늄 표면에 존재하는 자연 산화막의 전자띠가 굽는 띠굽음(band bending) 현상이 일어난다. 연구팀의 결과에 따르면 낮은 이리듐 함량의 전극에서는 이 띠굽음 현상이 바인더에 의해 증폭된다. 전자띠가 굽을수록 전자전달이 더욱 어려워지므로 성능 저하가 발생하게 되는 것이다.
연구팀은 띠굽음 현상이 완화된 계면을 설계하는 경우, 이리듐 함량을 1/10 수준으로 저감시켜도 동일한 수전해 성능을 얻을 수 있음을 확인하였다. 이는 전극계면의 조성을 변화시킴으로써 비싼 귀금속 촉매 사용량을 획기적으로 저감 가능하다는 것을 증명했다.
김희탁 교수는 "이번 연구결과는 그동안 베일에 싸여있던 이리듐 저감형 수전해 전극의 성능 문제를 짚어 그 이유를 규명하고 해결 전략을 제공했다는 점에서 중요한 의미가 있다ˮ라고 말하면서, "이를 바탕으로 효율과 가격을 동시에 잡을 수 있는 그린 수소 생산 시스템의 개발에 응용되기를 기대한다ˮ고 말했다.
한편 이번 연구는 산업통상지원부 에너지기술개발사업의 지원을 받아 수행됐다.
2023.05.22
조회수 4263
-
저농도 폐수에서 암모니아 생산 기술 개발
현대사회에서 우리의 삶을 위협하는 탄소 순환 불균형에 못지않게 부각되는 질소 순환 문제가 중요한 이슈다. 특히 질산염은 수질 오염, 산성비, 그리고 최근 기승을 부리는 미세먼지의 생성 원인으로도 알려져 있으며, 암모니아는 주로 농업용 비료, 플라스틱, 폭발물, 의약품, 선박용 청정원료, 수소 운반체, 암모니아 발전 등 다양한 산업군에 쓰이는 유용한 자원이다.
우리 대학 신소재공학과 강정구 교수 연구팀이 전기를 이용해 저농도 질산염 수용액으로부터 암모니아를 생산하는 고효율 촉매를 개발했다고 8일 밝혔다.
연구팀이 개발한 전기 촉매는 구리 금속 폼(Cu foam)과 니켈-철 층상이중수산화물(NiFe Layered double hydroxide)의 복합체로 구성돼 있다. 구리 폼은 질산염을 선택적으로 흡착하고, 니켈-철 층상이중수산화물은 화학이나 생체반응을 통해 반응 중 생성된 중간체 수소 라디칼을 생성해 구리 폼에 전달함으로써 질산염이 암모니아로 바뀌도록 효율적으로 진행한다. 구리, 철, 니켈 모두 귀금속과 비교해 지구에 풍부하고 비교적 저렴하므로 연구팀이 개발한 기술은 친환경적이고 경제적인 원천기술이다.
이 기술은 질산염을 통해 직접적으로 암모니아를 생산할 수 있을 뿐 아니라, 기존 질산염 환원의 가장 큰 문제였던 저농도 질산염 수용액에서도 좋은 성능을 갖는다. 실제 하천이나 강물, 혹은 여러 질산염을 배출하는 저농도 폐수를 이용해 암모니아를 생산할 수 있어 경제적이고 실용적이다는 특성을 가진다.
김건한 박사 (現 옥스퍼드 대학교 화학과, KAIST 신소재공학과 졸업생)가 제1 저자로 참여하고, 더모트 오헤어 교수 (옥스퍼드 대학교 화학과) 연구팀이 공동으로 참여한 강정구 교수 연구팀의 이번 연구 결과는 에너지 및 환경 분야 국제 학술지 `에너지 환경 과학(Energy & Environmental Science, IF 39.71)' 1월 24일 字 온라인 게재됐다. (논문명: Energy-efficient electrochemical ammonia production from dilute nitrate solution)
현재 암모니아 생산은 대부분 `하버-보쉬 공정'을 통해 생산된다. 이 공정은 고온, 고압의 합성 조건을 전제로 하기 때문에 안전성에서 문제를 갖고 있을 뿐만 아니라 값비싼 수소 기체를 반응물로 이용하기 때문에 경제성 문제를 동시에 유발한다. 이에 대한 대안으로, 친환경적이며 값싸고 풍부한 질소 기체를 직접 전기 환원시키는 전기화학적 질소 환원법도 수용액에 대한 낮은 용해도와 강한 질소-질소 삼중결합 때문에 발생하는 낮은 효율로 큰 문제를 겪고 있다.
반면, 전기에너지를 이용해 질산염을 암모니아로 환원시키는 전기화학적 질산염 환원법은 수용액에 잘 녹는 질산염과 상대적으로 더 약한 질소-산소 결합에너지로 질소 환원법보다 더 높은 효율을 가지고 있다. 하지만, 기존의 질산염 전기 촉매의 경우, 경쟁 반응인 물 환원 반응으로 인해 암모니아로의 환원 효율이 떨어진다는 단점을 가지고 있다. 또한, 실제 하천이나 강물, 혹은 여러 질산염을 배출하는 폐수의 경우, 약 10mM(밀리몰) 이하 낮은 농도의 질산염을 포함하고 있는데, 저농도에서 촉매 특성이 급격히 떨어진다는 특성이 있다.
이에 강정구 교수 연구팀은 표면적이 넓은 구리 금속 폼을 호스트로 사용하여 저농도의 질산염이 효율적으로 흡착될 수 있도록 했다. 한편, 호스트인 구리 금속 폼에 수소 라디칼 생성이 가능한 니켈-철 층상이중산화물을 포함하는 `구리 금속 폼/니켈-철 층상이중수산화물' 복합체를 형성하였는데, 니켈-철 층상이중수산화물의 전기전도도가 낮아 질산염 환원이 일어나는 전압에서 수소-수소 결합을 통한 수소가스 (H2)를 생성하지 않고 효율적으로 수소 라디칼 (H)을 물로부터 만들 수 있었다.
강정구 교수는 "친환경적인 전기에너지를 이용해 질산염 환원법으로 암모니아를 생성하는 경우, 주로 메탄 리포밍을 통해 생산되는 값비싼 수소 기체를 이용하며 고온/고압의 반응 조건으로 유발되는 안전성 문제를 가진 하버-보쉬 공정을 효과적으로 대체할 수 있다ˮ라고 소개하면서 "특히, 반응 자리와 수소 라디칼 자리가 분리된 촉매 구조를 통해 저농도 질산염에서도 효율적으로 암모니아를 생성할 수 있기 때문에, 실제 강물, 하천, 공장 폐수에 포함돼있는 질산염을 농축시키는 과정 없이도 효율적으로 암모니아를 생산할 수 있어 질산염을 통한 암모니아 생산의 상용화에 이바지할 것이다ˮ고 말했다.
한편 이번 연구는 과학기술정보통신부 나노 및 소재기술개발사업 미래기술연구실의 지원을 받아 수행됐다.
2023.02.08
조회수 6076
-
기존 불소계 전해질 대체할 고성능 비불소계 전해질 개발
우리 대학 생명화학공학과 이진우 교수 연구팀이 포항공과대학교 조창신 교수 연구팀과 공동연구를 통해 장수명 소듐(나트륨) 금속 음극 및 고출력 해수 전지를 위한 비불소계 전해질을 개발했다고 28일 밝혔다.
불소(F)는 전지의 전기화학적 성능을 향상시키는데 크게 기여하여 현재 상용화된 리튬-이온 전지 외에도 다양한 차세대 전지 전해질의 필수 요소로 자리매김하고 있다. 다만, 비싼 가격, 인체 및 환경에 유해하며 강한 독성이라는 문제점을 가져 이를 대체할 비불소계 전해질 (F-free electrolyte) 개발이 필수적이다.
이 교수 연구팀은 기존 불소계 전해질을 대체할 수 있는 비불소계 전해질을 설계해 매우 뛰어난 가격 경쟁력과 불소계 전해질의 전기화학적 성능을 상회하는 전기화학적 성능을 달성했다.
생명화학공학과 김진욱 박사과정, 김지오 박사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `에너지 인바이론멘탈 사이언스(Energy & Environmental Science)' 10월 10권 15호에 출판됐으며, 후면 표지논문(outside back cover)로 선정됐다. (논문명 : Designing Fluorine-Free Electrolytes for Stable Sodium Metal Anodes and High-Power Seawater Batteries via SEI reconstruction)
소듐 금속 음극은 기존 리튬 이온 전지의 흑연 음극을 대체할 수 있는 높은 이론적 용량과(흑연: 372 mAh g-1, 소듐 금속: 1,166 mAh g-1) 리튬에 비해 매우 높은 지각 내 존재비로 인해(리튬: 0.002%, 소듐: 2%) 각광받고 있는 차세대 음극 소재 중 하나다.
하지만 소듐 금속 음극은 매우 강한 화학적, 전기화학적 반응성 때문에 지속적으로 유기 전해액과 반응해 소듐 표면에 불균일하고 두꺼운 고체-전해질 계면을 형성하고, 이는 충전 과정에 소듐 금속의 수지상 성장(나뭇가지 모양 성장)을 일으킨다. 소듐 금속의 수지상 성장은 고체-전해질 계면을 파괴해 새로운 소듐 금속을 유기 전해액에 노출시키고 추가적인 전해질 분해를 일으키며, 낮은 쿨롱 효율, 전지 단락 등을 발생시켜 전지 구동에 치명적이다.
기존 불소계 전해질은 소듐 금속 표면에 불화 소듐을(NaF) 형성해 앞서 언급한 소듐 금속의 수지상 성장을 억제한다. 불화 소듐은 강한 기계적 성질로 인해 소듐 금속의 수지상 성장을 물리적으로 억제할 수 있음이 널리 알려져 있으나 불소계 전해질의 높은 가격, 불산(HF) 부산물 형성 등의 치명적인 문제점이 수반된다.
연구팀은 수소화 소듐(NaH)이 불화 소듐을 대체할 수 있다는 최근 연구 보고에 착안해 수소화붕소 소듐(NaBH4) 염을 이써 (ether, C-O-C 결합을 포함) 계열 유기용매에 녹인 전해질을 설계했다. 수소화붕소 소듐은 환원제의 일종으로 유, 무기 합성이 필요한 산업계에서 널리 사용되는 물질이다. 따라서, 같은 부피의 불소계 전해질을 제작하는 것에 비해 5~10% 정도의 비용만이 소요돼 큰 가격 경쟁력을 가진다.
연구팀은 비행시간형 이차이온 질량 분석을 통해(Time of Flight Secondary Ion Mass Spectrometry, TOF-SIMS) 수소화붕소 소듐 기반의 전해질이 수소화 소듐이 우세한 고체-전해질 계면을 형성함을 밝혔다.
또한, 산화된 소듐 금속을 수소화붕소 소듐에 장시간 담가뒀을 때, 산화막이 점차 수소화 소듐으로 전환되는 것을 비행시간형 이차이온 질량 분석을 통해 확인했으며, 온라인 전기화학 질량 분석(Online Electrochemical Mass Spectrometry)을 통해, 수소화붕소 소듐 전해질을 이용해 전지 제작 후 8시간 정도의 휴지기에 수소 기체가 형성되는 것을 확인했다.
결론적으로, 소듐 금속은 산화하려는 성질이 강해 표면에 불가피하게 산화막을 형성하는데, 수소화붕소 소듐은 환원성이 강해 표면 산화막을 환원시킬 수 있다. 소듐의 표면 산화막이 환원되면서 수소 기체가 발생함과 동시에 다시 소듐 금속과 반응해 수소화 소듐이 생성되며 연구팀은 이를 `고체-전해질 계면 재건 현상'이라고 명명했다.
이를 통해, 수소화붕소 소듐 기반의 전해질은 소듐-소듐 대칭전지에서 600 사이클, 소듐-알루미늄 반쪽 전지에서 99.67%의 쿨롱 효율을 보여 불소계 전해질에 비해 매우 우수한 전기화학적 성능을 제공했다.
더 나아가, 연구팀은 수소화붕소 소듐 기반 전해질을 해수 전지에 적용했다. 높은 전류밀도인 1 mA cm-2에서 기존 불소계 전해질은 35회 정도의 수명 특성을 보인 반면, 수소화붕소 소듐 기반 전해질은 150회 이상의 장수명 특성을 달성했다. 마찬가지로, 기존 불소계 전해질의 출력밀도는 2.27 mW cm-2 에 그친 반면, 수소화붕소 소듐 기반 전해질의 출력밀도는 2.82 mW cm-2로 큰 차이를 보였다.
연구팀이 개발한 수소화붕소 소듐 기반의 전해질은 비용 절감, 수명 특성 향상을 통해 해수전지의 상용화에 이바지할 수 있을 것으로 기대된다.
제1 저자인 김진욱 박사과정은 "기존 소듐 전해질의 필수 원소였던 불소 없이도 불소계 전해질의 성능을 상회하는 전해질을 개발한 것은 큰 의미가 있다ˮ 라며 "앞으로 비불소계 소듐 전해질과 그에 따른 고체-전해질 계면에 관한 연구가 활발해질 것으로 판단된다ˮ 라고 말했다.
한편 이번 연구는 한국연구재단 중견연구자지원사업과 한국전력 사외공모 기초연구지원사업의 지원을 받아 수행됐다.
2022.10.31
조회수 6099
-
발걸음만으로 태양광 패널의 먼지를 제거하는 기술 개발
우리 대학 기계공학과 경기욱 교수 연구팀이 발걸음에서 얻어지는 충격 에너지를 전기 에너지로 변환해 태양광 패널의 먼지를 제거하는 기술을 개발했다고 4일 밝혔다.
탄소 중립 실현을 위해 태양광 발전의 중요성이 커지고 있다. 태양광 패널은 표면의 먼지로 효율이 점점 낮아지는 문제가 있기 때문에 주기적인 세척이 필요하다. 하지만 손이 닿지 않거나 도심에 분산되어있는 태양광 패널을 일일이 청소하는 것은 어려운 실정이다. 연구팀은 문제 해결을 위해, 마찰전기 발전기(triboelectric nanogenerator)와 전기력 기반 먼지 제거 방식(elelctrodynamic dust shield)을 사용하여 보행자의 걸음에서 생기는 충격만으로 태양광 패널을 청소하는 방법을 개발했다.
먼지 제거 태양광 패널은 표면에 깍지 형태의 전극이 배치된 구조로, 교류 고전압을 가했을 시 진동하는 강한 전기력으로 먼지를 털어낸다. 강한 전기장을 만들어야 하는 특성상, 작동에 수 kV의 교류 고전압이 필요하다. 마찰전기 발전기는 친환경 에너지 하베스터 중 하나로, 두 물체를 마찰시켜 생기는 정전기를 이용해 고전압 출력이 나오는 특징이 있다. 하지만 마찰전기 발전기 작동 원리상 마찰이 필수적이기 때문에 발걸음과 같은 충격에 대해서 에너지 전환 효율이 낮으며, 오래 지속되는 고압의 전류 얻을 수 없다는 단점이 있다. 연구팀은 외팔보 구조와 전하 충전구조를 적용해 충격을 가했을 때 에너지의 손실 없이 진동하며 교류 고전압을 장시간(약 10초/회) 동안 발생시키는 마찰전기 발전기를 개발하였다. 개발된 마찰전기 발전기는 약 50.8%의 높은 에너지변환 효율을 보여주었으며, 최대 전압 2.6kVpp (약 17Hz)로 먼지 제거 패널을 충분히 작동시킬 수준의 높은 출력을 발생시킬 수 있음을 확인하였다. 연구팀은 12번의 발걸음을 걷는 동안 태양광 패널의 표면 먼지의 약 79.2%를 제거하였으며, 이 결과 태양광 패널의 출력이 증가함도 확인했다.
연구팀이 개발한 마찰전기 발전기를 이용한 태양광 패널 먼지 제거 방법은 사람들이 태양광 패널 주변을 걸어 다니는 것만으로도 세척이 힘든 도심 속 태양광 패널을 청소하는 친환경적인 방법이 될 수 있다.
이번 연구는 정부의 재원으로 한국 연구재단과 정보통신기획평가원의 지원을 받아 수행된 연구이며 우수 국제학술지인 나노 에너지 (Nano Energy)에 2022년 9월 22일 온라인 게재되었다. (논문명 : Highly efficient long-lasting triboelectric nanogenerator upon impact and its application to daily-life self-cleaning solar panel, 제1 저자 박사과정 마지형) 본 연구는 우리 대학 기계공학과 졸업생인 한국기술교육대학의 박진형 교수팀과 공동으로 수행됐다.
연구 내용 영상 : https://www.youtube.com/watch?v=wvaltw15iVI
2022.10.04
조회수 6266
-
차세대 친환경 에너지 발전 소자를 통한 해양 모니터링 기술 개발
우리 대학 기계공학과 박인규 교수, 오일권 교수와 한국기계연구원(KIMM) 정준호 박사 공동연구팀이 `차세대 친환경 에너지 발전 소자를 통한 해양 모니터링 기술'을 개발하는 데 성공했다고 20일 밝혔다.
이전에 `다양한 센서 구동을 위한 소형 무선 측정 시스템', `마찰전기 나노발전기를 이용한 해양 에너지 수확 기술', `임프린팅을 통한 고효율 나노구조체 형성 기술'을 개발하는 데 각각 성공했던 공동연구팀은, 표면 나노구조체의 설계와 친환경 소재 선정을 통해 소자 전체 재활용이 가능하며 해양 환경에서 고성능·고안정성을 나타내는 마찰전기 나노 발전기를 구현할 수 있음을 처음으로 보였다.
기계공학과 안준성 박사과정과 김지석 박사과정이 공동 제1 저자로 참여한 이번 연구는 저명 국제 학술지 `어드밴스드 에너지 머터리얼즈(Advanced Energy Materials)' 2022년 8월 온라인판에 출판됐으며, 후면 표지 논문(Back Cover)으로 선정됐다. (논문명 : All-Recyclable Triboelectric Nanogenerator for Sustainable Ocean Monitoring Systems)
최근, 기후 변화와 같은 환경 관련 문제가 전 세계적으로 많이 발생하면서, 온실가스 규제, 친환경 에너지 생산, 재활용 가능한 소자 등 이를 해결하기 위한 연구가 국제사회에서 많은 관심을 받고 있다. 그중에서, 특히 마찰전기 나노발전기(triboelectric nanogenerator, 이하 TENG)는 버려지는 기계적 에너지를 전기 에너지의 형태로 수확하는 친환경 재생에너지 소자로서 많은 연구가 진행되고 있다. 하지만, 현재까지 개발됐던 대부분의 TENG는 버려지는 기계적인 에너지를 수확함으로써 화석 연료 사용 감소에 도움이 되지만, 한편으로는 사용된 전극 혹은 마찰 대전 고분자 소재 폐기 과정에서 수많은 전자 폐기물(electronic waste)을 발생시켜 또 다른 환경 문제를 일으킬 수 있다.
최근에는 이를 해결하기 위해 소자의 일부분이 물에 녹아 분해될 수 있는 친환경 소재 기반 TENG가 연구되고 있지만, 재활용과 응용 분야 관점에서 한계에 부딪혀있다. 첫 번째로, 마찰전기를 발생시키는 대전 물질은 물에 녹아 재활용할 수 있지만, 전자를 수확하기 위한 전극 부분의 재사용은 불가능하다. 두 번째로, 물에 녹는 소자 특성으로 인해 TENG의 가장 유망한 적용 분야인 해양 에너지 수확에 응용이 불가능하다. 세 번째로, 현재까지 개발된 재활용 소자 기반 TENG는 기존 상용 소자 기반 TENG에 비해 10~100배 이상 낮은 에너지 수확 성능과 기계화학적 불안정성을 나타낸다. 따라서, 해양 에너지 수확에 적용할 수 있으며 재활용이 가능한 고성능·고안정성 TENG를 개발하는 것은 차세대 친환경 에너지 수확 및 환경 오염 감소에 큰 발전을 이룰 수 있을 것으로 전문가들은 예상하고 있다.
연구팀은 소자 전체 재활용이 가능하며 기계화학적 내구성이 뛰어난 소재·구조 설계를 통해 해양 환경에서 고성능·고안정성을 나타내는 친환경 TENG를 개발했다. 또한, 수확된 해양 에너지를 통해 배터리를 충전하고, 바다 상태(산도, 염도, 온도, 오일 유출) 및 응급 상황 모니터링에 사용되는 전자 소자와 무선 통신 모듈을 구동했다. 이는 해양 에너지를 수확해 다양한 바다 환경을 모니터링할 수 있는 상용 소자들을 구동할 수 있음을 보인 것에서 그 의미가 크다.
연구를 지도한 박인규 교수, 오일권 교수, 한국기계연구원 정준호 박사는 "개발된 친환경 해양 에너지 수확 소자는 범지구적 에너지 문제를 해결할 수 있을 것으로 기대되고, 재활용 가능한 마찰전기 나노 발전기는 추후 바다 에너지를 넘어 친환경 풍력에너지 수확에도 활용될 수 있을 것이다ˮ라며 "이는 친환경 에너지 시대를 앞당기는 발판이 될 것이다ˮ고 연구의 의의를 설명했다.
한편 이번 연구는 과학기술정보통신부의 재원으로 한국연구재단 창의연구지원사업, 중견연구자지원사업, 극한물성시스템 제조플랫폼기술의 지원을 받아 수행됐다.
2022.09.20
조회수 5619
-
인공지능 활용 고용량 배터리 소재 역설계 기술 개발
우리 대학 신소재공학과 홍승범 교수 연구팀이 우리 대학 조은애 교수, 변혜령 교수, 이혁모 교수, 신종화 교수, 육종민 교수, 그리고 미국의 르하이 대학교(Lehigh University), 죠수아 C 에이가(Joshua C. Agar) 교수와 협업해 기존 문헌에 발표된 실험값들을 추출하는 데이터 마이닝 과정과 이런 실험값들을 입력변수로 하는 다변수 선형회귀 모형을 기반으로 배터리 소재 역설계 머신러닝(기계학습) 모델을 수립했다고 23일 밝혔다.
인공지능은 고차원의 변수 공간에서 각 매개변수 간의 정량적인 상관관계를 신속하고 정확하게 추출할 수 있다. 이를 공정-구조-물성 간의 상관관계를 기반으로 발전하는 신소재공학에 적용하면 신소재 개발 시간을 단축할 수 있으며, 이런 이유로 많은 연구자가 인공지능을 신소재 개발에 활용하려고 노력하고 있다. 특히, 배터리 소재 개발에 인공지능을 활용하는 예가 가장 많은데, 주로 제1 원리 계산(양자화학에 기반한 계산법으로 계산 시 다른 경험적 수량을 전혀 사용하지 않음)과 머신러닝을 융합해 수많은 전극 소재 조합을 대량으로 스크리닝하는 기술 개발이 주를 이루고 있다.
그런데, 인공지능을 활용해서 새로운 배터리 소재를 탐색하고, 탐색한 소재를 합성 및 특성 평가에 있어 가장 큰 문제점은 데이터의 신뢰성과 양이다. 제1 원리 계산으로 예측한 값들은 실험으로 검증이 돼야 하며, 실험데이터의 경우 실험실마다 편차가 있고, 중요한 공정변수들을 공개하지 않은 경우가 많아 인공지능이 학습할 수 있는 데이터의 크기가 한정적이라는 문제가 대두되고 있다.
연구팀은 배터리 양극재 원료조성, 1차 및 2차 소결 온도와 시간 등의 공정 변수와 컷오프 전위 및 충․방전률과 같은 측정 변수, 그리고 1차 및 2차 입자의 크기와 같은 구조 변수, 마지막으로 충․방전 용량과 같은 성능 변수 간의 상관관계를 정량적으로 수립했고, 이를 활용해 요구되는 에너지 용량에 맞는 합성 조건을 찾는 알고리즘을 개발했다.
홍 교수 연구팀은 고니켈 함량 양극재 관련 논문 415편 안에 발표된 주요 변수들을 추출하고, 그중 16% 정도의 정보가 기입되지 않음을 발견했으며, 머신러닝 기법 중에서 k-최근접 이웃 알고리즘(k-nearest neighbors (KNN)), 랜덤 포레스트(random forest (RF)), 연쇄등식을 이용한 다중대치(multiple imputations by chained equations (MICE))를 활용해 빠진 정보를 예측하여 기입했다. 그리고, 가장 신뢰도가 높은 MICE를 선택해 얻은 입력 데이터 셋을 기반으로 주어진 공정 및 측정 변수에 대해서 성능 변수를 예측하는 순방향 모델을 얻었다.
이어서 입자 군집 최적화(particle swarm optimization, PSO) 알고리즘을 활용하여 주어진 성능 변수에 대응하는 공정 및 측정 변수를 추출하는 역방향 모델을 수립했고, 이 모델을 검증하기 위해 소재를 실제로 합성하여 타깃 용량인 200, 175, 150 mAh/g과 11% 정도의 오차를 보여 상당히 정확하게 역설계할 수 있음을 입증했다.
교신 저자인 홍승범 교수는 "인공지능을 활용해 대량의 논문 및 특허 내에 있는 공정-구조-물성 변수들을 자동으로 분류하고 실험값들을 추출해 각 변수 간의 다차원 상관관계를 기반으로 모델을 수립하는 것이 차세대 배터리 소재의 역설계의 핵심ˮ이라며 "향후 데이터 마이닝 기술, 머신러닝 기술 그리고 공정 자동화 기술을 융합하는 것이 미래의 신소재공학ˮ이라고 말했다.
신소재공학과 치 하오 리오우(Chi Hao Liow) 박사가 제1 저자로 참여한 이번 연구는 국제 학술지 `나노에너지(Nano Energy)'에 게재됐다. (논문명: Machine learning assisted synthesis of lithium-ion batteries cathode materials)
한편 이번 연구는 KAIST 글로벌 특이점 사업의 지원을 받아 수행됐다.
2022.08.23
조회수 6986
-
탄소중립을 위한 차세대 에너지 변환기술인 고성능 프로토닉 세라믹 연료전지 개발 성공
우리 대학 기계공학과 이강택 교수 연구팀이 마이크로파를 이용한 초고속 소결 공정을 통해 고성능 프로토닉 세라믹 연료전지(PCFC) 개발에 성공했다고 3일 밝혔다.
기존의 산소 이온 전도성 고체 산화물 연료전지(SOFC)와 달리, 프로토닉 세라믹 연료전지는 양성자 전도성 세라믹 전해질의 높은 이온 전도도와 낮은 활성화 에너지 특성으로 인해, 600oC 이하 저온에서 고효율로 전력 변환 및 수소 생산이 가역적으로 가능한 에너지 변환 시스템으로 이는 수소전기차, 수소 충전소, 건물 및 선박용 발전시스템 등에 활용이 가능한 탄소중립 사회를 위한 차세대 핵심 기술로 떠오르고 있다.
이러한 프로토닉 세라믹 연료전지는 난소결성 바륨 기반 산화물 전해질을 사용하는데, 이를 치밀화하기 위해서 1,500oC 이상 고온에서 장시간 소결(세라믹 입자를 가열하여 단단하게 결합시키는) 공정이 필수적이다. 하지만, 이러한 극한 공정 중에 산화물 내부에서 발생하는 양이온 확산으로 화학적 조성이 불안정해지는 치명적인 문제가 있었다. 이를 해결하기 위해 다양한 연구가 진행되고 있지만, 대부분 실험실에서 국소적으로 가능한 방법들이 보고되고 있으며, 실용적으로 상용화가 가능한 새로운 제조 공정의 연구가 시급한 실정이다.
연구팀은 이러한 문제점을 해결할 방법으로 기존에 복사열로 장시간 (300분) 소결하는 방법 대신 흔히 전자레인지나 오븐 등에 쓰이는 마이크로파를 사용해 5분 만에 초고속 소결을 해 이론적 화학조성의 전해질을 갖는 프로토닉 세라믹 연료전지를 개발하는 데 성공했다. 이와 동시에, 초고속 온도 상승으로 연료극이 나노 구조화돼 전기화학적 활성 영역 또한 크게 확장됨을 증명했다. 연구팀은 이와 더불어 3차원 형상 복원 기술을 통해, 연료극 입자 미세화로 인한 삼상계면 길이의 증가가 전극 표면 활성 반응을 가속화하는 미세구조와 전기화학 특성 간의 상관관계를 규명했다.
연구팀이 개발한 프로토닉 세라믹 연료전지는 현재까지 보고된 동일 소재의 연료전지 중 가장 우수한 성능을 보였으며, 장시간 (800시간) 구동에도 매우 높은 안정성이 확인돼, 마이크로파 기반 초고속 제조 공정 도입의 이점을 효과적으로 증명했다.
우리 대학 기계공학과 김동연, 배경택 박사과정생이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지인 `에이씨에스 에너지 레터스, ACS Energy Letters' (IF:23.991) 6월 29일 字 온라인판에 게재됐다. (논문명: High-Performance Protonic Ceramic Electrochemical Cells)
이강택 교수는 "이번 연구를 통해 마이크로파를 이용한 초고속 제조 공정이 기존 공정의 난제를 해결하고 프로토닉 세라믹 연료전지 성능을 극대화할 수 있음을 실험적으로 증명했고, 이는 탄소중립 사회 실현을 앞당길 수 있는 고성능 차세대 에너지 변환기술 발전의 촉매 역할을 할 것ˮ 이라고 말했다.
한편 이번 연구는 과학기술정보통신부 수소에너지혁신기술개발사업, 중견연구자지원사업 그리고 나노 및 소재 기술개발사업의 지원으로 수행됐다.
2022.08.03
조회수 13741
-
리튬이온전지 충방전 과정을 나노스케일에서 영상화 성공
리튬이온전지는 스마트폰과 전기차 그리고 드론을 비롯한 각종 이동 수단에 필수적인 에너지 저장 매체로 사용되고 있다. 기후변화와 코로나 팬데믹이 키워드가 되는 시대가 도래하면서 급증하는 수요에 대응하기 위해 리튬이온전지의 에너지 용량, 충전 속도 등의 전기화학적 특성을 향상하려는 연구들이 이뤄지고 있지만, 기존의 전기화학 특성 평가 방법으로는 나노미터 수준의 미시세계에서 벌어지고 있는 현상들을 이해하기 어렵다. 따라서, 전기화학 특성에 대한 통합적인 이해를 위해 나노스케일 수준에서 리튬이온의 농도 및 전기전도도 분석 기술의 개발은 필수적이다.
우리 대학 신소재공학과 홍승범 교수 연구팀이 독일의 아헨공과대학교 플로리안 하우센(Florian Hausen) 교수와 독일 뮌스터 대학교 카린 클라이너(Karin Kleiner) 교수와 협업하여 고용량 리튬이온배터리를 충‧방전할 때 리튬이온이 움직이는 모습과 그로 인해서 전자들이 움직이는 전도 경로 그리고 격자들의 움직임을 원자간력 현미경과 엑스레이 회절 및 흡수 패턴을 분석해 영상화하는 데 성공했다고 28일 밝혔다.
홍 교수 연구팀은 원자간력 현미경의 모드 중에서 전기화학적 변형 현미경(Electrochemical Strain Microscopy, 이하 ESM)과 전도성 원자간력 현미경(Conductive Atomic Force Microscopy, 이하 C-AFM)을 활용해, 친환경차 배터리에 적용되는 고용량 양극재인 NCM622 시료의 충방전상태(State of Charge, SOC)에 따른 리튬이온의 나노스케일 분포도를 영상화했으며, 이를 근단엑스선형광분광계(Near Edge X-ray Absorption Fluorescence Spectroscopy, NEXAFS)와 엑스선회절패턴(X-ray Diffraction Pattern, XRD pattern)과 비교 분석해 리튬이온이 양극재에 확산하여 들어갈 때 산소팔면체에 들어가면서 니켈과 산소의 결합이 이온 결합에서 공유결합으로 바뀌면서 전기전도도가 낮아지는 현상을 검증하고, 이를 ESM, C-AFM 영상과 비교하면서 상당한 상관관계가 있음을 밝혀냈다.
교신 저자인 홍승범 교수는 "배터리 소재 내에서 리튬이온의 확산을 영상화하고 이를 통해서 일어나는 현상들을 다중스케일에서 이해하는 것은 향후 신뢰성이 높고 수명이 긴 고속 충‧방전 배터리 소재를 디자인하는 데 있어 매우 중요하다ˮ라며 "향후 신소재 영상화 기술과 머신러닝 기술을 융합하는 것이 20년 걸리던 배터리 소재 개발기간을 5년 이내로 단축할 수 있을 것이다ˮ 라고 말했다.
신소재공학과 알비나 제티바예바(Albina Jetybayeva) 연구원이 제1 저자로 참여한 이번 연구는 국제 학술지 `ACS 어플라이드 에너지 머티리얼스 (ACS Applied Energy Materials)'에 게재됐다. (논문명: Unraveling the State of Charge-Dependent Electronic and Ionic Structure−Property Relationships in NCM622 Cells by Multiscale Characterization)
이번 연구는 KAIST 글로벌 특이점 사업과 한국연구재단의 거대과학연구개발사업의 지원을 받아 수행됐다.
2022.04.29
조회수 9436
-
물과 산소로 햇빛을 이용해 과산화수소를 생산하는 고효율 촉매 개발
우리 대학 신소재공학과 강정구 교수 연구팀이 물과 산소만으로 햇빛을 이용해 과산화수소를 생산하는 고효율 촉매를 개발했다고 31일 밝혔다. 과산화수소는 주로 소독, 염색, 산화제, 의약품, 반도체, 디스플레이, 로켓 추진연료 등 다양한 산업군에 쓰이는 유용한 자원이다.
연구팀이 개발한 나노구조체 촉매는 빛을 흡수해 산소 분자를 과산화수소 분자로 선택적으로 환원시키며, 지구에 풍부하고 친환경적인 물을 산화제로 이용하기 때문에 친환경적이고 경제적인 원천기술이다.
이 기술은 현재 공정에서 이용되는 고가의 팔라듐 촉매보다 각각 1,500배, 4,500배, 115,000배 저렴한 코발트, 티타늄, 철 산화물을 이용했기 때문에 경제성이 뛰어날 뿐만 아니라, 환경 문제를 유발하는 유기화합물 없이 물과 산소, 햇빛만으로 과산화수소를 생산하기 때문에 친환경적인 특성을 가진다.
김건한 박사(現 옥스포드 대학교 화학과, 우리 대학 신소재공학과 졸업)가 제1 저자로 참여하고, 우리 대학 화학과 김형준 교수 연구팀이 공동으로 참여한 강정구 교수 연구팀의 이번 연구 결과는 재료 분야 국제 학술지 `어드밴스드 에너지 머티리얼즈(Advanced Energy Materials, IF 29.37)' 2월 25일 字 온라인 게재됐다. (논문명: Triphasic metal oxide photocatalyst for reaction site-specific production of hydrogen peroxide from oxygen reduction and water oxidation)
현재 과산화수소 생산은 대부분 `안트라퀴논 공정'을 통해 생산된다. 이 공정은 고압의 수소 기체와 값비싼 팔라듐 기반 수소화 촉매를 이용하기 때문에 경제성과 안전성에서 문제를 가지고 있을 뿐만 아니라 반응 중에 이용되는 유기 오염 물질이 방출되기 때문에 환경 문제를 유발한다.
반면, 햇빛을 에너지원으로 이용해 산소를 과산화수소로 환원시키는 광촉매는 물리적으로 반도체 특성을 갖는 전이 금속산화물을 이용할 수 있기 때문에 기존 팔라듐 촉매보다 수 천배 이상 저렴하다. 또한, 지구에 풍부한 산소로부터 태양에너지를 통해 과산화수소를 생산할 수 있어 안전하고 친환경적인 특성을 가진다. 하지만 기존 과산화수소 생산 광촉매는 산소로부터 과산화수소를 생산하기 위해 전자를 전달하는 산화 반응에 과산화수소보다 더 비싼 알코올류의 산화제를 첨가해야 했다. 또한, 생산된 과산화수소가 광촉매 표면에서 빠르게 분해돼 촉매 효율이 떨어지는 단점을 가지고 있었다.
이에 강정구 교수 연구팀은 고가의 팔라듐 촉매보다 훨씬 저렴한 코발트, 티타늄, 철 산화물을 요소-수열 합성법을 통해 나노 구조화했다. 두 가지 이상의 금속 조합을 갖는 금속산화물의 경우, 일반적으로 각기 다른 금속이 혼합되어 한 가지 구조의 상을 형성한다. 하지만 연구팀은 코발트 전구체의 비율을 높여 철과 코발트 산화물을 분리한 후, 2가 철 산화물의 화학적 비안정성을 이용해 티타늄 산화물과 다시 분리함으로써, 각기 다른 세 가지 금속 산화물이 각자의 산화물 상으로 분리되어 형성되는 삼상 산화물 (Triphasic metal oxide)을 합성했다.
삼상 산화물 광촉매는 2차원적으로 넓은 나노시트(nanosheet) 형태의 코발트 산화물이 있고, 그 위에 코어-쉘(core-shell) 구조를 가진 철 산화물-티타늄 산화물 나노입자가 배열된 독특한 구조를 하고 있다. 또한, 연구팀은 김형준 교수 연구팀과 공동 연구를 통해, 코어-쉘 구조의 나노입자는 효율적으로 가시광선과 자외선을 흡수해 전자를 전달함을 계산 과학을 통해 입증에 성공했다.
코발트 산화물은 기존 물 산화 반응 촉매로 가장 잘 알려진 물질이기 때문에, 물 분자를 흡착해 산소로 환원하고 전자를 제공할 수 있는 능력이 있다. 즉, 물을 산화제로 이용하기 때문에 기존 광촉매에서 이용하는 알코올류를 이용하지 않고도 환원 반응점(reduction reaction-site)으로 원활한 전자전달을 할 수 있다. 한 편, 철 산화물-티타늄 산화물 코어-쉘 나노입자는 각각 가시광선과 자외선을 흡수할 수 있어 효율적인 방법으로 태양광을 흡수할 수 있을 뿐 아니라 산소 흡착 능력이 우수해 반응물인 산소 분자를 선택적으로 흡착할 수 있다.
또한, 구조적으로 코발트 산화물 나노시트 위에 배열되어 있어, 물 산화 반응에서 생긴 전자를 철 산화물이 받아 효율적으로 티타늄 산화물에 전달해 산소 환원 반응을 통한 과산화수소를 생산할 수 있다. 이렇게 생성된 과산화수소는 환원점과 산화점이 분리돼있는 광촉매의 구조적인 특성으로 인해 분해되지 않고 안정적으로 농축되는 특성을 가진다.
강 교수는 "신재생에너지를 이용한 친환경적인 이 기술은 수소 분자와 유기물질을 이용하지 않아 안전성이 뛰어나고, 비교적 값이 저렴한 전이 금속산화물을 이용하기 때문에 경제성이 뛰어나다ˮ라고 소개하면서 "3가지 상의 각 구역에서 산소 환원 반응, 전자-홀 수송, 그리고 물 산화 반응이 일어나기 때문에 광촉매에서 문제가 되고 있던 과산화수소 분해 문제나 알코올 산화제 이용 문제에서 벗어나며 이를 통한 높은 촉매 효율은 기존에 가장 효율이 높다고 알려진 귀금속계 촉매보다 수 천배 저렴할 뿐만 아니라 약 30배 정도 높은 생산성능을 가져 광촉매를 통한 과산화수소 생산의 상용화에 이바지할 것이다ˮ고 말했다.
한편 이번 연구는 과학기술정보통신부 글로벌프론티어사업의 하이브리드인터페이스기반 미래소재연구단의 지원을 받아 수행됐다.
2022.03.31
조회수 10654
-
장수명 리튬 금속 배터리를 위한 새로운 액체 첨가제 개발
우리 대학 신소재공학과 강지형 교수와 박찬범 교수, 충남대학교 송우진 교수 공동연구팀이 새로운 대칭성 이온성 액체 첨가제를 개발하고, 이를 이용해 장수명 리튬 금속 배터리를 구현했다고 21일 밝혔다.
리튬 금속 배터리는 기존의 흑연 음극재를 리튬 금속 음극으로 대체한 배터리로, 흑연 전극이 사용된 배터리에 비해 높은 에너지 밀도를 가지는 차세대 전지다.
하지만 리튬 금속은 증착 시 발생하는 침상(dendrite)의 리튬이 내부 단락을 일으켜 배터리의 수명과 안전성을 저해시킨다는 문제점이 있었다. 이러한 침상의 성장은 리튬 팁(Tip)이 평평한 부분에 비해 강한 전기장을 띄는 것으로 인해 리튬 이온 흐름이 돌출부에 집중되는 현상으로부터 발생한다.
이온성 액체는 이러한 침상의 리튬을 억제할 수 있는 유망한 첨가제다. 이온성 액체의 양이온은 리튬 팁에 흡착돼 알킬 사슬 기반의 반(反)리튬성 보호층을 형성하고 이를 통해 리튬 이온을 팁 주변으로 반발시켜 균일한 리튬 증착을 유도할 수 있다.
그러나 기존의 이온성 액체는 비대칭적인 분자 구조를 가져 높은 양친매성(amphiphilic, 극성인 물과 비극성인 기름 모두에 친화적인 성질)을 보이기 때문에 자가 응집되는 현상이 일어난다. 그 결과 상대적으로 이온성 액체가 부족한 부분이 발생해 불완전한 보호층이 생기는 문제가 있었다.
강지형 교수 연구팀은 최적의 반리튬성 보호층을 형성하는 분자 구조가 대칭성을 띠는 이온성 액체 첨가제를 새롭게 개발해 침상의 리튬 성장을 억제하고 리튬 금속 배터리의 안정성을 크게 개선했다.
공동연구팀은 이온성 액체에 대칭성의 알킬 사슬을 도입해 양친매성을 완화했으며, 이에 따라 이온성 액체가 응집 현상 없이 균일한 반리튬성 보호층을 형성한다는 것과 대칭 사슬 중에 `n-헥실 사슬'이 최적의 보호층을 만든다는 것을 확인했다.
대칭성의 이온성 액체 첨가제를 삼원계(니켈·고발트·망간) 배터리에 사용한 경우, 600 사이클 동안 쿨롱 효율 99.8%와 초기 용량의 80%를 유지하며 우수한 성능을 보였고, 희박 전해액(E/C, electrolyte/cathode ratio=3.5 g/Ah), 초박막 리튬(두께 40μm)과 같은 실용적인 조건에서도 250 사이클 동안 전극의 용량이 80% 이상 유지되는 높은 안정성을 보였다. 이는 기존 기술 대비 3배 향상된 결과다.
우리 대학 신소재공학과 장진하 박사과정이 제1 저자로 참여한 이번 연구 결과는 에너지 재료 분야 저명 국제 학술지 `어드밴스드 에너지 머티리얼즈 (Advanced Energy Materials)' 2월 10일 字 온라인판에 게재됐다. (논문명 : Self-assembled Protective Layer by Symmetric Ionic Liquid for Long-cycling Lithium-Metal Batteries).
강지형 교수는 "이번 연구는 장수명 리튬 금속 배터리 구현을 위한 전해질 설계 방향을 새롭게 제시했다는 점에서 의미가 있다ˮ고 하면서, "이번에 개발된 신개념 전해질은 급속도로 성장하고 있는 배터리 소재 시장에 게임 체인저가 될 것으로 기대된다.ˮ고 말했다.
한편 이번 연구는 한국연구재단의 미래소재디스커버리사업, 과학기술정보통신부의 리더연구자 지원사업, 나노소재기술개발사업, 2020 과학기술연구원 공동연구사업의 지원을 받아 수행됐다.
2022.02.22
조회수 9298
-
차세대 친환경 유기 이차전지 핵심기술 개발
우리 대학 신소재공학과 전석우 교수와 김일두 교수, 미국 일리노이대학 어바나-샴페인 캠퍼스 폴 브라운(Paul V. Braun) 교수 공동연구팀이 차세대 친환경 유기 이차전지의 핵심기술을 개발하는 데 성공했다고 24일 밝혔다.
연구진은 재현성 있는 광학 패터닝 기술을 통해 고도로 정렬된 나노 네트워크 구조의 유기 음극을 설계해 리튬유기전지의 성능을 획기적으로 향상시켰다. 연구진이 이번에 확보한 충·방전 특성은 현재까지 보고된 유기 음극 소재 중 가장 높은 수준으로, 무기물 기반의 현 전극 소재를 대체할 수 있으며 장기적으로는 전기차 또는 휴대용 전자기기 등 상용화에 크게 기여할 것으로 기대되고 있다.
유기 이차전지는 원료 수급에 제한이 적고 저렴한 유기 전극 소재를 기반으로 하며 전극의 경량화가 가능하고 우수한 가변성은 물론 재활용이 용이하다는 장점이 있어 지속 가능한 친환경 전지 시스템으로 각광 받고 있다.
하지만 유기물의 낮은 전기전도도를 극복하기 위해 높은 함량의 탄소계 도전재가 첨가돼 고에너지밀도 달성에는 한계가 있었다. 또한, 실제 전기차 및 휴대용 전자기기 등에 적용되기 어려운 느린 충전 속도와 수명 저하 이슈가 결정적인 걸림돌로 지적돼왔다.
연구진은 전기화학적 활성과 안정성을 제한하는 기존의 비정렬적 전극 구조 대신 정렬된 서브 마이크론(100만분의 1미터 이하) 크기의 기공 채널을 갖는 3차원 이중 연속 구조의 유기 고분자-니켈 복합전극을 도입했다.
그 결과 탄소계 도전재 없이도 속도 특성을 비약적으로 향상하는 데 성공했으며, 15 A g-1 의 높은 전류밀도에서도 250회의 충·방전 사이클 동안 전극의 용량이 83% 이상 유지되는 높은 내구성과 안정성을 확인했다.
나아가 3차원 나노 네트워크 구조를 기반으로 유기물 내 다중 탄소 고리의 불포화 결합에서의 촉진된 `슈퍼리튬화' 현상을 규명해 1,260mAh g-1의 높은 가역 용량 달성을 확증함과 동시에 우수한 전하 이동에 대한 동역학 분석을 통해 초고속 성능의 메커니즘을 검증했다.
전석우 교수는 "친환경적이고 유망한 에너지 저장을 실현하기 위한 유기 전극의 구조 공학적 설계 방향을 새롭게 제시한 결과ˮ라며 "이번 연구의 3차원 정렬 나노 네트워크 구조는 다양한 유기 화합물과 호환 가능해 유기 전극의 플랫폼으로써 일반적 활용이 가능하다ˮ라고 밝혔다.
우리 대학 신소재공학과 함영진 박사과정이 제1 저자로 참여한 이번 연구는 에너지·환경 분야 최고 권위지 `에너지와 환경 과학(Energy & Environmental Science, IF: 38.532)' 11월호에 게재되는 한편 학계 및 일반인에게 널리 알릴만한 내용으로 인정받아 내부 표지 논문(Inside Back Cover)으로 선정됐다. (논문명: 3D Periodic Polyimide Nano-Networks for Ultrahigh-Rate and Sustainable Energy Storage)
한편 이번 연구는 한국연구재단 미래소재디스커버리사업의 지원을 받아 수행됐다.
2021.11.24
조회수 12298
-
전해액 첨가제로 리튬금속전지 수명 높인다
우리 대학 생명화학공학과 최남순 교수 연구팀이 리튬금속전지의 장수명화를 가능하게 하는 전해액 첨가제 기술을 개발했다고 16일 밝혔다. 개발된 첨가제 조합 기술은 리튬금속 음극 표면에 바람직한 이중층 고체전해질 계면 박막을 형성해 리튬 덴드라이트 형성을 억제하고 리튬이온을 균일하게 전달해 리튬금속전지의 수명과 고속 충‧방전 특성을 대폭 향상시켰다.
오래 달리는 전기차를 실현하기 위해서는 전지의 핵심 성능인 에너지밀도를 높여야 한다. 리튬금속전지는 리튬이온전지의 흑연보다 10배 이상 높은 용량을 발현하는 리튬금속 음극을 채용하고 있어 전지의 고에너지 밀도화를 달성할 수 있다.
그러나 높은 환원력을 가지는 리튬금속 음극과 전해액의 반응을 제대로 제어하지 못하면 리튬금속전지의 장수명을 달성하기 어렵다. 리튬금속 표면에 고체전해질 계면막을 형성시키는 것에만 집중해 한계점을 보이는 기존 연구들과는 달리 연구팀은 고체전해질 계면막을 계층화하고 형성된 이중층 계면막의 담당 기능을 구체화할 수 있는 환원반응성과 흡착력이 다른 2종 이온성 첨가제를 도입해 리튬금속 전지 수명을 획기적으로 끌어올리는데 성공했다. 또한, 니켈리치 양극 표면을 보호하는 얇은 계면막을 형성하여 양극의 구조적 안정성도 확보할 수 있었다.
최남순 교수 연구팀은 리튬금속 음극이 가지는 불안정성을 해결하기 위해 전자 받음 능력과 흡착 경향성에 따른 이온성 첨가제의 순차적인 환원 분해에 의해 이중층 고체전해질 계면막이 형성되도록 설계했으며 리튬금속 음극에 근접한 계면막은 리튬 전착-탈리반응에 따른 스트레스를 견딜 수 있는 기계적 강도를 가지는 리튬플루오라이드(LiF) 성분의 물질을 가지도록 했다.
바깥쪽 계면막은 전해액으로부터 리튬이온이 균일하게 공급되도록 하는 이온 수송 능력이 우수한 리튬나이트라이드(Li3N) 물질이 포함되도록 했다. 이러한 리튬금속 음극 표면 고체전해질 계면막의 계층적 구조화 기술은 리튬-합금기반 음극재, 리튬저장 구조체 및 무음극 기술 등과도 접목이 가능해 기업에서 요구하는 수준의 리튬금속전지를 실현하는 전해액 핵심 소재 기술이 될 것으로 기대된다. 특히, 이차전지 시장 판도를 바꿔 놓을 게임 체인저(game changer)가 될 것으로 기대하고 있는 무음극 이차전지 기술의 경우 충전 시 리튬금속이 음극 기재에 생성되므로 리튬금속을 안정화시키는 전해액 첨가제 기술은 무음극 이차전지의 성능을 더욱 끌어올리는 데 기여할 것이다.
이번 논문의 공동 제1 저자인 우리 대학 생명화학공학과 김세훈 박사과정은 "리튬디플루오로 옥살레이트 포스페이트(LiDFBP)와 리튬나이트레이트(LiNO3)를 불소 도너와 질소 도너형 첨가제로 도입해 리튬금속 음극의 가역성과 형상 균일화가 가능했으며 이러한 이중층 계면막은 양극과의 크로스 토크(cross-talk)을 최소화해 4V 이상의 고전압에서 전해액이 분해되지 않도록 했다ˮ며 "기존에 보고된 리튬금속 전지용 전해액 조성 기술의 한계를 뛰어넘는 고전압·장수명 리튬금속 전지용 전해액 소재를 개발하게 됐다ˮ 라고 말했다.
개발된 리튬금속 음극 보호용 이중층 계면막 기술은 리튬금속 음극과 니켈 리치 양극으로 구성된 전지의 600회 충·방전 후에도 초기 용량의 80.9%를 발현했으며 99.94%의 매우 높은 쿨롱효율을 보였다.
최남순 교수는 “개발된 고체전해질 이중층 계면막 기술은 기존에 보고되던 고체전해질 계면막과는 달리 계층적 구조화를 통해 고강도 막과 고이온 전달성 막을 리튬금속 음극 표면에 형성하는 새로운 시도”라며 “이러한 기술은 리튬금속 전지의 최대 과제인 리튬금속 음극과 전해액의 불안정한 계면을 제어하는 첨가제 개발에 새로운 방향을 제시했다”라고 연구의 의미를 강조했다.
이번 연구에서 우리 대학 최남순 교수와 김세훈, 이민영(現 SK Innovation 연구원), 이정아 연구원은 구조화된 고체전해질 계면막을 형성하는 전해액 첨가제 기술을 개발하고 이중층 계면막의 구조를 분석해냈다. UNIST 곽상규 교수와 박성오 박사, 임마누엘 크리스탄토(Imanuel Kristanto) 연구원, 이태경 박사(現 한국에너지기술연구원 연구원), 황대연 박사(現 현대자동차 연구원)는 계산화학을 통해 음극 및 양극의 고체전해질 계면막의 구조화 기술에 대한 메커니즘을 규명했으며 UNIST 이현욱 교수와 김주영, 위태웅 연구원은 전해액 첨가제가 수지상 리튬 형성을 억제함을 시각적으로 보였다.
한편 이번 연구는 저명한 국제 학술지 `에너지 스토리지 머터리얼즈 (Energy Storage Materials)'에 10월 25일 字로 온라인 공개됐다(논문명 : Stable electrode-electrolyte interfaces constructed by fluorine- and nitrogen-donating ionic additives for high-performance lithium metal batteries).
이번 연구 수행은 과학기술정보통신부의 기후변화대응기술개발사업, 산업통상자원부의 차세대 이차전지용 극박 음극전극 개발 사업, 현대자동차의 지원으로 이뤄졌다.
2021.11.16
조회수 10716