-
난치성 뇌종양 치료의 새로운 가능성 열다
면역항암제는 암세포를 제거하는 T세포의 항암 면역작용을 강화하는 가장 주목받는 항암치료 요법이다. 하지만 난치성 뇌종양인 교모세포종의 경우 면역관문억제제를 활용한 수차례 임상시험에서 그 효과를 확인할 수 없었다. 우리 연구진이 난치성 암종에서 T세포가 만성적 항원에 노출되어 기능이 상실되거나 약화된 원인을 분석하여 T세포 활성 제어 인자를 발굴하고 치료 효능 증진 원리를 규명했다.
우리 대학 생명과학과 이흥규 교수 연구팀이 한국화학연구원(원장 이영국) 감염병예방진단기술연구센터와 협력하여, 교모세포종 실험 쥐 모델에서 억제성 Fc 감마수용체(FcγRIIB)의 결손을 통한 면역관문억제제의 세포독성 T세포 불응성을 회복해, 항암 작용 증대를 유도함으로 생존율 개선 효능을 확인했다고 6일 밝혔다.
연구팀은 최근 세포독성 T세포에서 발견된 억제 수용체(FcγRIIB)가 종양 침윤 세포독성 T세포의 특성과 면역관문억제제(항 PD-1)의 치료 효능에 미치는 영향을 확인했다.
연구 결과, 억제 수용체(FcγRIIB)가 결손되었을때 종양항원 특이적 기억 T세포의 증가를 유도했다. 이 같은 T세포 아형은 탈진화를 억제하고 줄기세포 특성을 강화했고, 이를 통한 항 PD-1 치료의 회복된 T세포 항암 면역반응을 이끌었다. 또한, 연구팀은 항원 특이적 기억 T세포가 FcγRIIB 결손 시 상대적으로 높은 수의 증가와 함께 지속적인 종양 조직 내 T세포 침투를 이끈다는 결과를 확인했다.
해당 연구는 면역관문억제제에 불응성을 보이는 종양에 대한 새로운 치료 타깃을 제시했으며, 특히 교모세포종과 같은 항 PD-1 치료에 반응하지 않는 종양에 FcγRIIB 억제와 항 PD-1 치료를 병행함으로써 시너지 효과를 발휘할 수 있음을 증명했다.
연구팀은 이러한 FcγRIIB 억제를 통한 항암 면역작용 증진 전략이 면역관문억제제의 효능을 높이는 데 중요한 기여를 할 것으로 기대하고 있다.
생명과학과 이흥규 교수는 “면역관문 치료제를 이용한 뇌종양 치료 임상 실패를 극복할 가능성과 다른 난치성 종양으로의 범용적 적용 가능성을 제시한 결과로 추후 세포독성 T 세포의 종양 세포치료 활용과 접근 가능성도 확인한 결과”라고 소개했다.
우리 대학 구근본 박사(現, 한국화학연구원 감염병예방진단기술연구센터 선임연구원)가 제1 저자로 참여한 이번 연구는 암 면역치료 학회(Society for Immunotherapy of Cancer)에서 발간하는 종양면역 및 치료 분야 국제 학술지 `Journal for ImmunoTherapy of Cancer'에 10월 26일 온라인판에 게재됐다. (논문명: Inhibitory Fcγ receptor deletion enhances CD8 T cell stemness increasing anti-PD-1 therapy responsiveness against glioblastoma, http://dx.doi.org/10.1136/jitc-2024-009449)
한편 이번 연구는 한국연구재단 개인기초연구사업, 바이오의료기술개발사업 및 삼성미래육성재단의 지원을 받아 수행됐다.
2024.11.06
조회수 885
-
전기차 차세대 무음극 배터리 퇴화 막을수 있다
전기자동차에 사용되는 무음극 배터리는 1회 충전에 800㎞ 주행, 1,000회 이상 배터리 재충전이 가능할 것을 전망하는 꿈의 기술로 알려져 있다. 일반적으로 배터리는 양극과 음극으로 구성되는데, 무음극 배터리는 음극이 없어 부피가 감소하여 높은 에너지 밀도를 가지지만 리튬금속 배터리에 비해 성능이 현저하게 낮다는 문제점이 있다. 우리 연구진이 무음극 배터리를 고성능화시킬 방안을 제시했다.
우리 대학 생명화학공학과 최남순 교수 연구팀이 전극 계면에서 일어나는 반응의 비가역성과 계면피막 구조의 변화를 체계적으로 분석해 무음극 배터리의 퇴화 원인을 규명했다고 5일 밝혔다.
최남순 교수 연구팀은 무음극 배터리의 첫 충전 과정에서 구리 집전체 표면과 전착된 리튬 표면에서 바람직하지 않은 전해질 분해반응이 일어나 계면피막 성분이 불안정하게 변한다는 것을 밝혀냈다.
배터리 제조 직후에는 용매가 구리 집전체 표면에 흡착해 초기 계면 피막을 형성하고, 충전시 양극으로부터 구리 집전체로 이동된 리튬 이온이 구리 집전체 표면에서 전자를 받아 리튬금속으로 전착되면 전착된 리튬금속 표면에서 전해질 음이온(bis(fluorosulfonyl)imide (FSI-))이 분해하여 리튬금속표면에 계면 피막을 형성함을 규명했다.
연구에 따르면, 배터리 제조 직후에 집전체 표면에서 용매가 분해하여 계면 피막을 만들고 그 후 전해질의 갈바닉* 및 화학적 부식**에 의해 계면 피막성분이 불안정한 성분으로 변하게 되고 이로 인해 리튬금속 전착 및 탈리 반응의 가역성이 크게 감소했다.
* 갈바닉 부식: 서로 다른 두 금속을 전기적으로 직접 접촉시켜 전해질에 담그면 고유의 전위차이로 인하여 어느 한쪽이 부식되는 과정.
** 화학적 부식: 전착 리튬금속 표면층까지 전달된 전자가 접촉하고 있는 전해질 성분들에 전달되어 전해질의 환원 분해가 발생함.
특히, 리튬금속에 대한 높은 반응성을 가진 FSI- 음이온은 충·방전 동안 계속해서 분해되어 리튬금속 계면피막을 두껍게 하고 리튬염 농도를 감소시킨다. 이로 인해 리튬이온과 상호작용하지 않는 자유 용매(free solvent)가 많아지게 된다. 이 자유 용매는 분해가 잘되기 때문에 분해산물이 양극 표면에 쌓여 저항이 증가하고 양극 구조 열화*를 연쇄적으로 발생시켜 무음극 배터리 성능을 퇴화시키게 된다.
*자유 용매: 이온성 화합물의 이온 결합을 끊고 이온화시키는 용해(dissolution) 과정에 참여하지 않는 용매.
**구조 열화: 니켈리치 삼원계 양극의 충전과정에서 생성되는 니켈 4가 양이온은 자유용매로부터 전자를 빼앗아 니켈 2가 양이온으로 환원되는데 리튬이 들어가야하는 자리에 대신 들어가 양극의 층상구조(layered)를 암염구조(rock-salt)로 상전이를 발생시킴.
본 연구에서는 무음극 배터리 선행 연구에도 불구하고 리튬금속 배터리에 비해 성능이 열세인 이유를 다각도로 접근한 결과, 무음극 배터리의 열화를 막기 위해서는 안정한 초기 전극 계면 피막을 만들어서 전해질의 갈바닉 및 화학적 부식을 감소시키는 것이 필수적임을 밝혔다.
최남순 교수는 “이번 연구는 무음극 배터리의 성능 감소는 집전체에 전착되는 리튬금속표면에서 전해질이 바람직하지 않은 분해반응을 하고 형성된 계면피막의 성분이 안정적으로 유지되지 못하기 때문에 일어나는 것임을 확인했다”며 “이번 성과는 향후 무음극 기술에 기반한 고에너지 차세대 배터리 시스템 개발에 중요한 실마리를 제공할 것이다”라고 연구의 의미를 강조했다.
생명화학공학과 최남순 교수, 이정아, 강하늘, 김세훈 연구원이 공동 1 저자로 진행한 이번 연구는 국제 학술지 ‘에너지 스토리지 머티리얼즈(Energy Storage Materials)’에 10월 6일 字로 온라인 공개되었으며, 연구의 우수성을 인정받아 표지 논문으로 선정되었다. (논문명 : Unveiling degradation mechanisms of anode-free Li-metal batteries)
한편 이번 연구는 현대자동차의 지원을 받아 수행됐다.
2024.11.05
조회수 907
-
페로브스카이트 태양전지의 한계를 극복하다
전체 태양 에너지의 약 52%를 활용하지 못하는 문제점을 가진 기존 페로브스카이트 태양전지가 한국 연구진에 의해 근적외선 광 포집 성능을 극대화하면서도 전력 변환 효율을 크게 향상하는 혁신기술로 개발되었다. 이는 차세대 태양전지의 상용화 가능성을 크게 높이며, 글로벌 태양전지 시장에서 중요한 기술적 진전에 기여할 것으로 보인다.
우리 대학 전기및전자공학부 이정용 교수 연구팀과 연세대학교 화학과 김우재 교수 공동 연구팀이 기존 가시광선 영역을 뛰어넘어 근적외선 광 포집을 극대화한 고효율·고안정성 유무기 하이브리드 태양전지 제작 기술을 개발했다고 31일 밝혔다.
연구팀은 가시광선 흡수에 한정된 페로브스카이트 소재를 보완하고, 근적외선까지 흡수 범위를 확장하는 유기 광반도체와의 하이브리드 차세대 소자 구조를 제시하고 고도화했다.
또한, 해당 구조에서 주로 발생하는 전자구조 문제를 밝히고 다이폴 층*을 도입해 이를 획기적으로 해결한 고성능 태양전지 소자를 발표했다.
*다이폴(쌍극자) 층: 소자 내 에너지 준위를 조절해 전하 수송을 원활하게 하고, 계면의 전위차를 형성해 소자 성능을 향상하는 역할을 하는 얇은 물질 층임
기존 납 기반 페로브스카이트 태양전지는 850나노미터(nm) 이하 파장의 가시광선 영역에만 흡수 스펙트럼이 제한돼 전체 태양 에너지의 약 52%를 활용하지 못하는 문제가 있다.
이를 해결하기 위해 연구팀은 유기 벌크 이종접합(BHJ)을 페로브스카이트와 결합한 하이브리드 소자를 설계, 근적외선 영역까지 흡수할 수 있는 태양전지를 구현했다.
특히, 나노미터 이하 다이폴 계면 층을 도입해 페로브스카이트와 유기 벌크 이종접합(BHJ) 간의 에너지 장벽을 완화하고 전하 축적을 억제, 근적외선 기여도를 극대화하고 전류 밀도(JSC)를 4.9 mA/cm²향상하는 데 성공했다.
이번 연구의 핵심 성과는 하이브리드 소자의 전력 변환 효율(PCE)을 기존 20.4%에서 24.0%로 대폭 높인 것이다. 특히, 이번 연구는 기존 연구들과 비교했을 때, 높은 내부 양자 효율(IQE)을 달성하며 근적외선 영역에서 78%에 달하는 성과를 기록했다.
또한, 이 소자는 높은 안정성을 보여, 극한의 습도 조건에서도 800시간 이상의 최대 출력 추적에서 초기 효율의 80% 이상을 유지하는 우수한 결과를 보였다.
이정용 교수는 “이번 연구를 통해 기존 페로브스카이트/유기 하이브리드 태양전지가 직면한 전하 축적 및 에너지 밴드 불일치 문제를 효과적으로 해결하였고 근적외선 광 포집 성능을 극대화하면서도 전력 변환 효율을 크게 향상시켜 기존 페로브스카이트가 가진 기계적-화학적 안정성 문제를 해결하고 광학적 한계를 뛰어넘을 수 있는 새로운 돌파구가 될 것”이라고 말했다.
전기및전자공학부 이민호 박사과정과 김민석 석사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스트 머티리얼스(Advanced Materials)' 9월 30일 자 온라인판에 게재됐다. (논문명 : Suppressing Hole Accumulation Through Sub-Nanometer Dipole Interfaces in Hybrid Perovskite/Organic Solar Cells for Boosting Near-Infrared Photon Harvesting).
한편 이번 연구는 한국연구재단의 지원을 받아 수행됐다.
2024.10.31
조회수 1496
-
인공지능으로 고성능 양자물성 계산시간 획기적 단축
인공지능과 고성능 과학계산 간의 밀접한 관련성은 최근 2024년도 노벨 물리학상과 화학상이 동시에 수상된 것을 보면 알 수 있다. 우리 연구진이 인공지능을 활용하여 3차원 공간에 분포하는 원자 수준의 화학결합 정보를 예측하여 양자역학적 고성능 컴퓨터 시뮬레이션의 계산 시간을 획기적으로 단축하는데 성공했다.
우리 대학 전기및전자공학부 김용훈 교수팀이 물질의 특성을 도출하기 위해 슈퍼컴퓨터를 활용해 수행되는 원자 수준 양자역학적 계산에 필요한 복잡한 알고리즘을 우회하는 3차원 컴퓨터 비전 인공신경망 기반 계산 방법론을 세계 최초로 개발했다고 30일 밝혔다.
슈퍼컴퓨터를 활용한 양자역학적 밀도범함수론(density functional theory, DFT)* 계산은 빠르면서도 정확하게 양자 물성을 예측할 수 있게 해 첨단 소재 및 약물 설계를 포함한 광범위한 연구·개발 분야에서 표준적인 도구로 자리 잡아 필수 불가결한 역할을 하고 있다.
*밀도범함수론(DFT): 원자 단위에서부터 양자역학적으로 물성을 계산하는 제1원리 계산의 대표적인 이론
그러나 실제 밀도범함수론 계산에서는 3차원적인 전자밀도를 생성한 후 양자역학 방정식을 푸는 복잡한 자기일관장 과정(self-consistent field, SCF)*을 수십에서 수백 번씩 반복해야 해서 그 적용 범위가 수백~수천 개의 원자로 제한되는 한계가 있었다.
*자기일관장(SCF): 상호 연결된 여러 개의 연립 미분 방정식으로 기술해야 하는 복잡한 다체 문제(many-body problem)를 해결하기 위해 널리 사용되는 과학계산법
김용훈 교수 연구팀은 자기일관장 과정을 최근 급속한 발전을 이룬 인공지능 기법으로 회피하는 것이 가능한지 질문했다. 그 결과 3차원 공간에 분포된 화학 결합 정보를 컴퓨터 비전 분야의 신경망 알고리즘을 통해 학습해 계산을 가속화하는 딥SCF(DeepSCF) 모델을 개발했다.
연구진은 밀도범함수론에 따라 전자밀도가 전자들의 양자역학적 정보를 모두 포함하고 있으며 이에 더해 전체 전자밀도와 구성 원자들의 전자밀도의 합 간의 차이인 잔여 전자밀도가 화학결합 정보를 담고 있는 점에 주목하고 기계학습의 목표물로 선정했다.
이후 다양한 화학결합 특성을 포함한 유기 분자들의 데이터 세트를 채택했고 그 안에 포함된 분자들의 원자구조들에 임의의 회전과 변형을 가해 모델의 정확도 및 일반화 성능을 더욱 높였다. 최종적으로 연구팀은 복잡하고 큰 시스템에 대해 딥SCF 방법론의 유효성 및 효율성을 입증했다.
이번 연구를 지도한 김용훈 교수는“3차원 공간에 분포된 양자역학적 화학결합 정보를 인공 신경망에 대응시키는 방법을 찾았다”며 “양자역학적 전자구조 계산이 모든 스케일의 물성 시뮬레이션의 근간이 되므로 인공지능을 통한 물질 계산 가속화의 전반적인 기반 원리를 확립한 것”이라고 연구의 의의를 부여했다.
전기및전자공학부 이룡규 박사과정이 제 1저자로 수행한 이번 연구는 소재 계산 분야의 권위 있는 학술지 '네이쳐 파트너 저널 컴퓨테이셔널 머터리얼즈(Npj Computational Materials)'에 10월 24일 字 온라인판에 게재됐다. (논문명 : Convolutional network learning of self-consistent electron density via grid-projected atomic fingerprints)
한편, 이번 연구는 KAIST 석박사 모험사업, 한국연구재단 중견연구자지원사업 등의 지원을 받아 수행되었다.
2024.10.30
조회수 1252
-
기존보다 340% 피부 탄력 향상 LED 마스크 개발
피부 노화는 많은 사람들의 관심사로 주름, 처짐, 탄력 저하 등의 문제를 해결하기 위하여 최근 웨어러블 LED 마스크가 주목받고 있다. 우리연구진이 기존 제품 대비 피부 탄력을 340% 향상시키는 LED 마스크 개발에 성공했다.
우리 대학 신소재공학과 이건재 교수 연구팀이 3,770개의 마이크로 LED와 광확산층*을 활용하여 피부 노화를 억제할 수 있는 진피 자극 얼굴밀착형 면발광 마이크로 LED 마스크를 개발했다고 29일 밝혔다.
*광확산층: 광원이 방출하는 빛을 고르게 분산시켜 균일한 발광을 유도하는 층
기존 제품은 딱딱한 구조와 점발광 방식*으로 인해 피부에 밀착되지 않고 광손실이 발생하여, 치료용 빛이 진피까지 균일하게 전달되지 못하는 한계가 있다.
*점발광 방식: 점발광이란 점으로 보이는 발광의 형태을 일컫음
이 교수팀은 유연한 기판에 3차원 종이접기 구조를 적용해 얼굴의 굴곡과 돌출된 부위에 밀착할 수 있는 LED 마스크를 개발했다. 이를 통해 1.5mm 깊이의 진피까지 빛을 균일하게 전달할 수 있으며, 진피 내 미토콘드리아를 자극하고 콜라겐과 탄력 섬유의 합성을 촉진했다.
그 결과, 피부 탄력, 주름, 처짐, 모공 등 8가지의 모든 피부 노화 지표에서 탁월한 개선 효과를 확인했다. 특히 33명의 피시험자를 대상으로 한 대학병원 임상시험에서 기존 LED 마스크 대비 진피 층의 피부 탄력이 340% 향상되는 통계학적으로 유의미한 효과를 보였다.
이건재 교수는 "이번에 개발된 얼굴 밀착 면발광 마스크는 저온화상의 부작용 없이 얼굴 진피 전체에 미용 효과를 제공하여, 인류의 삶의 질을 향상시키는 홈케어 노화 치료를 가능하게 할 것”이라고 강조했다.
또한, "교원창업 기업 프로닉스를 통해 11월부터 제품을 본격적으로 판매할 예정이며, 현재 탈모 치료를 위한 면발광 마이크로 LED 제품의 임상 계획도 수립하고 있다.”라고 말했다.
신소재공학과 김민서 석·박사 통합과정, 안재훈 박사과정이 공동 제1저자로 참여한 이번 연구는 국제 학술지 어드밴스드 메터리얼즈(Advanced Materials)에 10월 22일 자로 출판됐다.
(논문명: Clinical Validation of Face-fit Surface-lighting Micro Light-emitting Diode Mask for Skin Anti-aging Treatment)
한편, 이번 연구는 글로벌 생체융합 인터페이싱 소재 센터(선도연구센터)의 지원을 받아 수행되었다.
2024.10.29
조회수 1346
-
KAIST, 국제사이보그올림픽 2연패, 세계 최고 아이언맨 재탄생
우리 연구진이 로봇 기술로 장애를 극복하자는 취지의 사이배슬론 국제대회에서 2016년 제1회 대회 동메달, 2020년 제2회 대회 금메달에 이어 제3회 대회인 2024년 대회에서 우승을 거머쥐며 디펜딩 챔피언의 타이틀을 지켜냈다.
우리 대학 기계공학과 공경철 교수(㈜엔젤로보틱스 의장)가 이끄는 엑소랩(EXO-Lab)과 무브랩(Move Lab), ㈜엔젤로보틱스 공동 연구팀이 개발한 하반신마비 장애인을 위한 웨어러블 로봇 ‘워크온슈트F1’으로, 27일에 열린 제3회 사이배슬론(Cybathlon)에 출전하여 우승을 차지했다고 28일 밝혔다.
사이배슬론은 로봇 기술로 장애를 극복하자는 취지로 스위스에서 처음 개최된 국제대회로, 일명 사이보그 올림픽이라 불린다. 매번 대회를 마친 후 바로 다음 대회의 미션들이 발표되고, 전 세계 연구팀들이 주어진 미션을 통과하기 위하여 4년여 동안 로봇 기술을 연구 개발한다.
웨어러블 로봇 종목 뿐만 아니라, 로봇 의수, 로봇 의족, 로봇 휠체어 등 8가지 종목이 열린다. 이번 제3회 사이배슬론 대회에는 총 26개 국가에서 71개 팀이 참가했다. 공경철 교수 연구팀은 지난 대회와 마찬가지로 웨어러블 로봇 종목에 참가했다.
웨어러블 로봇 종목은 사이배슬론의 핵심이라고 부를 만큼 하이라이트를 받는 종목이다. 의수나 의족 종목에서는 로봇이 아닌 고전적인 보조기를 착용한 장애인 선수가 우승을 하는 등, 로봇 기술보다 장애인 선수의 능력이 더 중요하게 작용하는 경우가 많다.
하지만 웨어러블 로봇 종목은 하반신 완전마비 장애인이 로봇에 완전히 의존하여 직접 걸으면서 다양한 미션을 수행해야 하는 만큼, 기술적 난이도도 높고 로봇 기술에 대한 의존도 또한 높다.
실제로 이번 대회의 미션을 보고 많은 팀이 출전을 포기했고, 기술 개발 과정에서도 반 이상의 연구팀들이 포기를 선언했다. 결국, 실제 경기에는 한국, 스위스, 독일, 네덜란드 등의 총 6팀만이 참가했다. 스위스 본진의 연구팀마저 포기를 선언했다.
이번 대회에서 특히 웨어러블 로봇 종목에 중도 포기한 팀이 많이 발생한 이유는 유난히 미션의 난이도가 높았기 때문이다. 대부분의 연구팀들이 하반신마비 장애인을 일으켜 걷는 것도 버거운 수준의 기술을 갖고 있는데, 지팡이 없이 걷도록 한다거나, 양손을 사용하여 칼질을 해야 하는 등 무리한 미션이 많이 등장했기 때문이다.
이렇게 미션의 난이도가 올라간 이유는 지난 대회 때 공 교수 연구팀이 주어진 모든 미션을 너무 빠르게 완수했기 때문이다. 실제로 지난 대회에서는 워크온슈트4를 착용한 김병욱 선수(하반신마비 장애인)에게 진짜 장애인이 맞느냐는 질문이 나오기도 했다.
공 교수 연구팀은 미션들을 성공적으로 수행하기 위하여 워크온슈트F1을 개발해냈다. 모터가 장착된 관절이 6개에서 12개로 늘었고, 모터의 출력 자체도 지난 대회보다 2배 이상 출력이 강화되었다. 발에 있는 6채널 지면반력 센서는 로봇의 균형을 1초에 천 번 측정하여 균형을 유지시키도록 하였다. 장애물을 감지하기 위하여 카메라를 설치하였고 인공지능 신경망 구현을 위한 AI 보드도 탑재시켰다.
그리고 대회 미션과는 관계 없이, 착용자 스스로 로봇을 착용할 수 있도록 스스로 걸어와 휠체어에서 도킹할 수 있는 기능을 구현하였다. 이 과정에서 모든 부품을 국산화했고, 모든 기초기술을 내재화했다. 로봇의 디자인은 우리 대학 산업디자인학과 박현준 교수가 맡아 사람과 로봇의 조화를 추구했다.
결국, 대회의 결과는 예상대로였다. 애초에 공 교수 연구팀을 겨냥해 만들어진 미션들을 수행할 수 있는 팀은 공 교수 연구팀 밖에 없었다. 좁은 의자 사이로 옆걸음, 박스 옮기기, 지팡이 없는 자유 보행, 문 통과하기, 주방에서 음식 다루기 등의 미션들을 6분 41초 기록으로 성공했다.
2위, 3위를 차지한 스위스와 태국 팀들은 10분을 모두 사용하면서도 2개 미션을 수행하는데 그쳤다. 애초에 적수가 되지 않는 경기였다. 사이배슬론 중계진도 경쟁보다는 워크온슈트F1의 성능에 더 큰 놀라움과 관심을 보였다.
이번 Team KAIST의 주장인 박정수 연구원은 “애초에 우리 스스로와의 경쟁이라 생각하고 기술적 초격차를 보여주는 것에 집중했는데, 좋은 결과까지 따라와서 매우 기쁘고 자랑스럽다”며, “아직 공개하지 않은 워크온슈트F1의 다양한 기능을 계속해서 공개할 예정”이라고 밝혔다.
팀의 하반신마비 장애인 선수인 김승환 연구원은 “세계 최고인 대한민국의 웨어러블 로봇 기술을 내 몸으로 알릴 수 있어서 너무나 감격스럽다”라며 소감을 밝혔다.
한편, 공 교수 연구팀은 지난 2020년 대회 이후로 ㈜엔젤로보틱스를 통하여 웨어러블 로봇을 상용화하는데 성공했다. 2022년에는 의료보험 수가의 적용을 받는 최초의 웨어러블 로봇인 “엔젤렉스M20”을 보급하기 시작했고, 그 결과 ㈜엔젤로보틱스는 지난 3월에 성공적으로 코스닥 상장했다.
이번 대회로 쌓인 다양한 노하우와 기초기술을 바탕으로 또 어떤 웨어러블 로봇이 우리의 일상생활을 바꿀 것인지, 미래가 더 기대된다.
<영상 목록>
결승경기 (자체촬영) : https://youtu.be/3ASAtvkiOhw
결승경기 및 인터뷰 (공식영상) : https://youtu.be/FSfxOTpDjSE
결승경기 및 인터뷰 (요약) : https://youtu.be/Sb_vd5-3f_0
2024.10.28
조회수 1903
-
웨어러블 로봇이 걸어와 장애인에게 착용되다니!
하반신 완전마비 장애인을 위해 우리 연구진이 이제는 휠체어에서 내릴 필요 없이 로봇이 직접 걸어와서 타인의 도움 없이 바로 착용할 수 있도록 개발한 새로운 웨어러블 로봇을 공개하였다. 또한, 공경철 교수팀은 2020년 사이배슬론(Cybathlon)의 웨어러블 로봇 종목에서 금메달을 딴 이후 4년 만에 열리는 제3회 사이배슬론에 출전한다.
우리 대학 기계공학과 공경철 교수(엔젤로보틱스 의장) 연구진이 하반신마비 장애인용 웨어러블 로봇의 새로운 버전, 워크온슈트 F1 (WalkON Suit F1)을 24일 공개했다.
워크온슈트는 연구팀이 2015년부터 지속적으로 연구해 온 하반신마비 장애인을 위한 웨어러블 로봇이다. 이번 로봇은 하반신마비 중에서도 중증도가 가장 높은 ASIA-A(완전마비)레벨을 대상으로 한다. 따라서 현재 ㈜엔젤로보틱스의 상용화를 통해 전국적으로 보급되고 있는 재활치료 및 근력 보조 웨어러블 로봇과는 개발 목적이 다르다.
이미 공 교수 연구팀은 2016년에 워크온슈트1을 처음으로 발표한 이후, 2020년에 워크온슈트4를 발표하면서 보행속도를 시속 3.2km까지 끌어올려 비장애인의 정상 보행속도를 달성한 바 있다. 이외에도 일상생활에서 마주할 수 있는 좁은 통로, 문, 계단 등의 장애물을 통과하는 기능을 선보였다.
그러나, 로봇을 착용하기 위해 타인의 도움이 반드시 필요하다는 모든 웨어러블 로봇이 가진 본질적인 문제를 똑같이 갖고 있었다. 로봇을 입고 나면 타인의 도움 없이 걸을 수 있는데, 로봇을 입기 위해 누군가의 도움이 필요한 것이다.
이번에 새로 공개한 워크온슈트 F1은 이러한 본질적인 문제에 대한 기술적인 해결 방안을 제시했다. 휠체어에서 내리지 않고 타인의 도움 없이 로봇을 바로 착용할 수 있도록 후면 착용 방식이 아닌, 전면 착용 방식을 적용했다.
또한 로봇을 착용하기 전에는 마치 휴머노이드처럼 스스로 걸어와 착용자에게 다가온다. 무게중심을 능동적으로 제어하는 기능을 적용해서, 착용자가 로봇을 잘못 밀더라도 넘어지지 않고 균형을 유지하는 기능도 구현됐다. 휴머노이드와 웨어러블 로봇을 넘나드는 워크온슈트 F1의 디자인은 우리 대학 산업디자인학과 박현준 교수가 맡았다.
웨어러블 로봇 본연의 기능도 대폭 개선됐다. 직립 상태에서는 두 손을 자유롭게 사용할 수 있는 것은 물론이고, 지팡이 없이 수 걸음을 걸을 수 있도록 균형 제어 성능이 향상됐다.
부품 단위에서의 기술 발전도 주목할 만하다. ㈜엔젤로보틱스와의 긴밀한 협업으로 로봇의 핵심부품인 모터와 감속기, 모터드라이버, 메인 회로 등을 전부 국산화했으며, 모터와 감속기 모듈의 출력밀도는 기존 연구팀의 기술에 비해 약 2배(무게당 파워 기준), 모터드라이버의 제어 성능은 해외 최고 기술 대비 약 3배(주파수 응답속도 기준) 향상됐다.
특히, 고가의 상위제어기를 사용하지 않아도 고급 모션제어 알고리즘을 안정적으로 구현할 수 있도록 모터드라이버의 임베디드 소프트웨어 기술이 대폭 향상됐다. 이외에도 장애물 감지를 위한 비전, 인공지능 적용을 위한 AI보드 등이 탑재됐다.
공 교수는, “워크온슈트는 장애인을 위한 웨어러블 로봇 기술의 결정체”라고 설명하면서, “워크온슈트에서 파생된 수많은 부품, 제어, 모듈 기술들이 웨어러블 로봇 산업 전체의 표준을 제시하고 있다”고 밝혔다.
공 교수 연구팀은 워크온슈트F1을 공개하면서, 4년 만에 열리는 제3회 사이배슬론에 출전한다고 밝혔다. 10월 27일 열리는 이번 대회는 박정수 연구원을 주장으로, 김승환 연구원(완전마비 장애인)이 선수로 참가할 예정이다.
이번에 새로 열리는 대회는 지난 대회보다 미션의 난이도가 대폭 올랐으며, 그 수도 6개에서 10개로 늘어났다. 일부 미션은 일상생활에서 마주할 만한 수준을 넘어 지나치게 도전적으로 설정했다는 비판이 나올 정도다.
이에 대해 박정수 주장은 “이미 지난 대회에서 1등을 차지한 만큼 이번 대회에서는 순위 경쟁보다는 기술적 초격차를 보여주는 것이 목표다”라고 포부를 밝혔다.
사이배슬론 대회는 스위스에서 4년마다 개최되는 장애 극복 사이보그 올림픽이다. 이번 대회는 10월 27일 일부 참가자는 스위스 현지에서, 일부는 각국의 경기장에서 생중계하는 하이브리드 방식으로 진행된다. 공 교수 연구팀은 엔젤로보틱스의 선행연구소(플래닛대전) 내에 설치된 경기시설에서 온라인으로 참가한다.
한편, 워크온슈트F1의 시연 영상은 아래 링크를 통해 확인할 수 있다.
(https://www.youtube.com/KyoungchulKong_EXO-Lab)
2024.10.24
조회수 2015
-
뇌 기반 인공지능의 난제 해결
인간의 두뇌는 외부 세상으로부터 감각 정보를 받아들이기 이전부터 자발적인 무작위 활동을 통해 학습을 시작한다. 우리 연구진이 개발한 기술은 뇌 모방 인공신경망에서 무작위 정보를 사전 학습시켜 실제 데이터를 접했을 때 훨씬 빠르고 정확한 학습을 가능하게 하며, 향후 뇌 기반 인공지능 및 뉴로모픽 컴퓨팅 기술 개발의 돌파구를 열어줄 것으로 기대된다.
우리 대학 뇌인지과학과 백세범 교수 연구팀이 뇌 모방 인공신경망 학습의 오래된 난제였던 가중치 수송 문제(weight transport problem)*를 해결하고, 이를 통해 생물학적 뇌 신경망에서 자원 효율적 학습이 가능한 원리를 설명했다고 23일 밝혔다.
*가중치 수송 문제: 생물학적 뇌를 모방한 인공지능 개발에 가장 큰 장애물이 되는 난제로, 현재 일반적인 인공신경망의 학습에서 생물학적 뇌와 달리 대규모의 메모리와 계산 작업이 필요한 근본적인 이유임.
지난 수십 년간 인공지능의 발전은 올해 노벨 물리학상을 받은 제프리 힌튼(Geoffery Hinton)이 제시한 오류 역전파(error backpropagation) 학습에 기반한다. 그러나 오류 역전파 학습은 생물학적 뇌에서는 가능하지 않다고 생각되어 왔는데, 이는 학습을 위한 오류 신호를 계산하기 위해 개별 뉴런들이 다음 계층의 모든 연결 정보를 알고 있어야 하는 비현실적인 가정이 필요하기 때문이다.
가중치 수송 문제라고 불리는 이 난제는 1986년 힌튼에 의해 오류 역전파 학습이 제안된 이후, DNA 구조의 발견으로 노벨 생리의학상을 받은 프랜시스 크릭(Francis Crick)에 의해 제기됐으며, 이후 자연신경망과 인공신경망 작동 원리가 근본적으로 다를 수밖에 없는 이유로 여겨진다.
인공지능과 신경과학의 경계선에서, 힌튼을 비롯한 연구자들은 가중치 수송 문제를 해결함으로써 뇌의 학습 원리를 구현할 수 있는, 생물학적으로 타당한 모델을 만들고자 하는 시도를 계속해 왔다.
지난 2016년, 영국 옥스퍼드(Oxford) 대학과 딥마인드(DeepMind) 공동 연구진은 가중치 수송을 사용하지 않고도 오류 역전파 학습이 가능하다는 개념을 최초로 제시해 학계의 주목을 받았다. 그러나, 가중치 수송을 사용하지 않는 생물학적으로 타당한 오류 역전파 학습은 학습 속도가 느리고 정확도가 낮은 등 효율성이 떨어져, 현실적인 적용에는 문제가 있었다.
연구팀은 생물학적 뇌가 외부적인 감각 경험을 하기 이전부터 내부의 자발적인 무작위 신경 활동을 통해 이미 학습을 시작한다는 점에 주목했다. 이를 모방해 연구팀은 가중치 수송이 없는 생물학적으로 타당한 신경망에 의미 없는 무작위 정보(random noise)를 사전 학습시켰다.
그 결과, 오류 역전파 학습을 위해 필수적 조건인 신경망의 순방향과 역방향 신경세포 연결 구조의 대칭성이 만들어질 수 있음을 보였다. 즉, 무작위적 사전 학습을 통해 가중치 수송 없이 학습이 가능해진 것이다.
연구팀은 실제 데이터 학습에 앞서 무작위 정보를 학습하는 것이 ‘배우는 방법을 배우는’메타 학습(meta learning)의 성질을 가진다는 것을 밝혔다. 무작위 정보를 사전 학습한 신경망은 실제 데이터를 접했을 때 훨씬 빠르고 정확한 학습을 수행하며, 가중치 수송 없이 높은 학습 효율성을 얻을 수 있음을 보였다.
백세범 교수는 “데이터 학습만이 중요하다는 기존 기계학습의 통념을 깨고, 학습 전부터 적절한 조건을 만드는 뇌신경과학적 원리에 주목하는 새로운 관점을 제공하는 것”이라며 “발달 신경과학으로부터의 단서를 통해 인공신경망 학습의 중요한 문제를 해결함과 동시에, 인공신경망 모델을 통해 뇌의 학습 원리에 대한 통찰을 제공한다는 점에서 중요한 의미를 가진다”고 언급했다.
뇌인지과학과 천정환 석사과정이 제1 저자로, 같은 학과 이상완 교수가 공동 저자로 참여한 이번 연구는 12월 10일부터 15일까지 캐나다 벤쿠버에서 열리는 세계 최고 수준의 인공지능 학회인 제38회 신경정보처리학회(NeurIPS)에서 발표될 예정이다. (논문명: Pretraining with random noise for fast and robust learning without weight transport (가중치 수송 없는 빠르고 안정적인 신경망 학습을 위한 무작위 사전 훈련))
한편 이번 연구는 한국연구재단의 이공분야기초연구사업, 정보통신기획평가원 인재양성사업 및 KAIST 특이점교수 사업의 지원을 받아 수행됐다.
2024.10.23
조회수 1327
-
화재 위험 차단한 자가발전형 수소 생산 시스템 개발
현재 그린 수소 생산의 한계를 극복할 새로운 수소 생산 시스템을 KAIST 연구진이 개발하여 수용성 전해질을 사용한 물분해 시스템을 활용해 화재의 위험을 차단하고 안정적인 수소 생산이 가능할 것으로 예상된다.
우리 대학 신소재공학과 강정구 교수 연구팀이 우수한 성능의 아연-공기전지* 기반의 자가발전형 수소 생산 시스템을 개발했다고 22일 밝혔다.
*공기전지: 일차 전지 중 하나로 공기 중 산소를 흡수해 산화제로 사용하는 전지이며, 수명이 긴 것이 장점이지만 기전력이 낮은 것이 단점임.
수소(H2)는 고부가가치 물질 합성의 원료로 기존 화석연료(휘발유, 디젤 등) 대비 3배 이상 높은 에너지밀도(142MJ/kg)를 지녀 청정 연료로 주목받고 있다. 그러나 현재 수소 생산 방식 대부분 이산화탄소(CO2)를 배출하는 문제가 있다.
아울러 그린 수소 생산은 태양전지, 풍력 등 신재생에너지를 동력원으로 물을 분해해 수소의 생산이 가능하나, 신재생에너지 기반의 동력원은 온도, 날씨 등에 영향을 받아 불규칙한 발전량에 따른 낮은 물 분해 효율을 보인다.
이를 극복하기 위해 물 분해를 통한 수소 생산에 충분한 전압(1.23V 이상)을 방출할 수 있는 공기전지가 동력원으로 주목받고 있지만, 충분한 용량 구현을 위해 귀금속 촉매를 사용해야 하고, 장시간 충·방전시 촉매 소재의 성능이 급격히 저하되는 한계가 있다.
이에 물 분해 반응(산소 발생, 수소 발생)에 효과적인 촉매와 반복적인 아연-공기전지 전극의 충·방전 반응(산소 환원, 산소 발생)에 안정적인 물질의 개발이 필수적이다.
이에 강 교수 연구팀은 산화 그래핀에 성장시킨 나노 사이즈의 금속-유기 골격체를 활용해 3가지 다른 촉매반응(산소 발생-수소 발생-산소 환원)에 모두 효과적인 비귀금속 촉매 소재(G-SHELL)의 합성법을 제시했다.
연구팀은 개발된 촉매 물질을 공기전지의 공기극 물질로 구성해 기존 배터리 대비 약 5배 높은 에너지밀도(797Wh/kg), 높은 출력 특성(275.8mW /cm²), 그리고 반복적인 충·방전 조건에서도 장시간 안정적인 구동이 가능함을 확인했다.
또한 수용성 전해질로 구동돼 화재의 위험으로부터 안전한 아연-공기전지는 차세대 에너지 저장 장치로서 수전해 시스템과 연동시켜 수소 생산을 위한 친환경적인 방법으로 적용할 수 있을 것으로 기대된다.
강 교수는 “낮은 온도, 간단한 방법으로 3가지 다른 전기화학 촉매반응에서 높은 활성도와 수명을 지닌 촉매 소재를 개발해 구현된 아연-공기전지 기반 자가발전형 수소 생산 시스템은 현재 그린 수소 생산의 한계를 극복할 수 있는 새로운 돌파구가 될 것이다”고 밝혔다.
신소재공학과 김동원 박사과정과 김지훈 석사과정이 공동 제1 저자로 참여한 이번 연구 결과는 융복합 분야(MATERIALS SCIENCE, MULTIDISCIPLINARY)의 국제 학술지 `어드밴스드 사이언스(Advanced Science)'에 9월 17일 字 게재됐다.
(논문명: Trifunctional Graphene-Sandwiched Heterojunction-Embedded Layered Lattice Electrocatalyst for High Performance in Zn-Air Battery-Driven Water Splitting)
한편 이번 연구는 과학기술정보통신부와 한국연구재단의 나노 및 소재기술개발사업 미래기술연구실의 지원을 받아 수행됐다.
2024.10.22
조회수 1089
-
극한의 환경에서도 적용가능 열전 소재 최초 개발
스마트 의류와 같은 웨어러블 기기에서 활용될 수 있으며, 극한의 환경에서도 안정적인 열 에너지 성능을 유지할 수 있는 열전 소재가 한국 연구진에 의해 개발되었다. 기존 열전 소재 분야의 오랜 난제였던 열전 소재의 성능과 기계적 유연성 간의 딜레마를 획기적으로 해결하였고 상용화 가능성을 입증하기도 했다.
우리 대학 신소재공학과 정연식 교수와 기계공학과 박인규 교수 공동 연구팀이 국립한밭대학교 오민욱 교수, 한국기계연구원(원장 류석현) 정준호 박사 연구팀과 협업을 통해, 차세대 유연 전자소자를 위한 혁신적인 에너지 수확 솔루션인 ‘비스무트 텔루라이드(Bi2Te3) 열전 섬유’를 개발하는 데 성공했다고 21일 밝혔다.
열전 소재는 온도 차이가 있을 때 전압을 발생시켜 열에너지를 전기에너지로 변환하는 소재로, 현재 약 70%의 에너지가 폐열로 사라지는 상황에서 이러한 폐열을 회수해 재활용할 수 있는 지속가능한 에너지 물질로 주목받고 있다.
우리 주변의 열원은 인체, 차량 배기구, 냉각 핀 등 대부분 곡면 형태를 띠고 있다. 세라믹 재료 기반의 무기 열전 소재는 높은 열전 성능을 자랑하지만 깨지기 쉬워 곡선형 제작이 어렵다는 단점이 있다. 반면, 기존 고분자 바인더를 사용한 유연 열전 소재는 다양한 형상의 표면에 적용할 수 있지만 고분자의 낮은 전기전도성과 높은 열 저항으로 인해 성능이 제한적이었다.
기존 유연 열전 소재는 유연성 확보를 위해 고분자 첨가제가 들어가지만, 이는 소자 성능에 심각한 제약을 가져오는 문제가 있었다. 연구팀이 개발한 무기 열전 소재는 첨가제 대신 나노 리본을 꼬아 실 형태의 순도 100% 열전 소재를 제작하는 방식으로 이러한 한계를 극복했다.
무기 나노 리본의 유연성에서 아이디어를 착안한 연구팀은 나노몰드 기반 전자빔 증착 기술을 사용해 나노 리본을 연속적으로 증착한 후 이를 실 형태로 꼬아 비스무트 텔루라이드(Bi2Te3) 무기 열전 섬유를 제작했다.
이 무기 열전 섬유는 기존 열전 소재보다 높은 굽힘 강도를 지니며 1,000회 이상의 반복적인 구부림과 인장 테스트에도 전기적 특성 변화가 거의 나타나지 않았다. 연구팀이 만든 열전소자는 온도차를 이용해 전기를 생산하는 소자로 섬유형 열전소자로 옷을 만들면 체온으로부터 전기가 만들어져서 다른 전자제품을 가동시킬 수도 있다.
실제로 구명조끼나 의류에 열전 섬유를 내장해 에너지를 수집하는 시연을 통해 상용화 가능성을 입증했다. 또한 산업 현장에서는 파이프 내부의 뜨거운 유체와 외부의 차가운 공기 사이의 온도 차를 이용해 폐열을 재활용하는 고효율 에너지 수확 시스템을 구축할 가능성도 열었다.
정연식 교수는 "이번 연구에서 개발된 무기 유연 열전 소재는 스마트 의류와 같은 웨어러블 기기에서 활용될 수 있으며, 극한의 환경에서도 안정적인 성능을 유지할 수 있어 향후 추가 연구를 통해 상용화될 가능성이 크다”고 말했다. 또한 박인규 교수는 “이 기술은 차세대 에너지 수확 기술의 핵심이 될 것이며, 산업 현장의 폐열 활용부터 개인용 웨어러블 자가발전 기기까지 다양한 분야에서 중요한 역할을 할 것으로 기대된다.”고 강조했다.
우리 대학 신소재공학과 장한휘 박사과정 학생과 고려대학교 세종캠퍼스 안준성 교수, 한국원자력연구원 정용록 박사가 공동 제1 저자로 참여한 이번 연구는 국제학술지‘어드밴스드 머티리얼즈 (Advanced Materials)’9월 17일 字 온라인판에 게재되었으며, 연구의 우수성을 인정받아 후면표지(Back cover)논문으로 선정되었다. (논문명: Flexible All-Inorganic Thermoelectric Yarns)
한편 이번 연구는 과학기술정보통신부의 지원을 받아 한국연구재단 중견연구자지원사업, 미래소재디스커버리사업, 글로벌 생체융합 인터페이싱 소재 센터, 산업통상자원부와 한국산업기술평가원(KEIT)의 지원 아래 수행됐다.
2024.10.21
조회수 1313
-
소량의 전류로 전기차 배터리 정밀 진단 가능하다
전기차 배터리를 효율적으로 관리하고 안전하게 사용하기 위해서는 정확한 배터리 상태 진단이 필수적이다. 우리 연구진이 소량의 전류만을 사용해 높은 정밀도로 배터리의 상태를 진단하고 모니터링할 수 있는 기술을 개발하여 배터리의 장기적 안정성과 효율성을 극대화할 것으로 기대된다.
우리 대학 전기및전자공학부 권경하 교수와 이상국 교수 연구팀이 전기차 대용량 배터리의 안정성과 성능 향상에 활용할 수 있는 전기화학 임피던스 분광법(이하 EIS) 기술을 개발했다고 17일 밝혔다.
EIS 기술은 배터리의 임피던스* 크기와 변화를 측정해 배터리 효율과 손실을 평가할 수 있는 강력한 도구로, 배터리의 충전 상태(state-of-charge; SOC) 및 건강 상태(state-of-health; SOH)를 평가하는 중요한 도구로 여겨진다. 또한 배터리의 열적 특성과 화학적/물리적 변화, 수명 예측, 고장의 원인을 식별하는 데 활용 가능하다.
* 배터리 임피던스: 배터리 내부에서 전류 흐름에 저항하는 요소로, 이를 통해 배터리 의 성능과 상태를 평가할 수 있는 지표
그러나 기존 EIS 장비는 비용 및 복잡성이 높아 설치, 운영 및 유지 보수가 쉽지 않다. 또한, 감도 및 정밀도 제약으로 수 암페어(A)의 전류 교란을 배터리에 인가하는 과정에서 배터리에 큰 전기적 스트레스가 가해지기 때문에 배터리의 고장이나 화재 위험을 증가시킬 수 있어 활용이 어려웠다.
이에 연구팀은 고용량 전기차 배터리의 상태 진단 및 건강 모니터링을 위한 소전류 EIS 시스템을 개발하고 입증했다. 이 EIS 시스템은 낮은 (10mA) 전류 교란으로, 배터리의 임피던스를 정밀하게 측정할 수 있으며 측정 시 발생하는 열적 영향 및 안전 문제를 최소화한다.
추가로 부피가 크고 비용이 많이 드는 구성요소를 최소화해 차량 내 탑재가 용이한 설계다. 해당 시스템은 전기차 배터리의 여러 운영 조건(다양한 온도 및 배터리 잔존용량을 나타내는 SOC 레벨에서 배터리의 전기화학적 특성을 효과적으로 파악할 수 있음이 입증됐다.
권경하 교수(교신저자)는 "이 시스템은 전기차용 배터리 관리 시스템 (BMS)에 쉽게 통합 가능하며, 기존의 고전류 EIS 방식 대비 비용과 복잡성을 현저히 낮추면서도 높은 측정 정밀도를 입증했다ˮ면서 "전기차 뿐만 아니라 에너지저장시스템(ESS)의 배터리 진단 및 성능 향상에도 기여할 수 있을 것ˮ이라고 말했다.
이번 연구 결과는 국제 저명 학술지 `IEEE Transactions on Industrial Electronics (동 분야 상위 2%; IF 7.5)'에 지난 9월 5일 발표됐다.
(논문명 : Small-Perturbation Electrochemical Impedance Spectroscopy System With High Accuracy for High-Capacity Batteries in Electric Vehicles, 링크: https://ieeexplore.ieee.org/document/10666864)
한편, 이번 연구는 과학기술정보통신부 한국연구재단의 기초연구사업, 산업통상자원부 한국산업기술기획평가원의 차세대지능형반도체기술개발사업 및 정보통신기획평가원의 인공지능반도체대학원사업의 지원을 받아 수행됐다.
2024.10.17
조회수 1614
-
전염병 확산 예측하는 더 정확한 수학 공식 나왔다
인류와 전염병의 전쟁에서 수학은 최적의 방어막 구축을 위한 과학적 근거를 제시해왔다. 우리 대학 김재경 교수 연구팀은 국가수리과학연구소 최선화 선임연구원, 고려대 최보승 교수, 경북대 이효정 교수팀과 공동으로 정확도를 획기적으로 높인 전염병 확산 예측 모델을 새롭게 제시했다.
미지의 바이러스가 나타나면 과학자들은 구조와 실체를 파악하고, 제약사는 바이러스에 대항할 백신과 치료제를 개발한다. 바이러스를 제압할 무기를 만드는 동안, 방역은 국민을 보호하고 피해를 최소화하는 방어막 역할을 한다. 피해를 정확하게 예측하고, 의료진을 배치하고, 병상을 확보하는 등 대책 수립에 수학이 쓰인다.
코로나19 팬데믹은 수리 모델 기반 전염병 확산 모델의 중요성을 재조명하게 해준 사례다. 이를 통해 추정한 감염재생산지수(R값), 잠복기, 감염기 등 변수들은 질병의 확산 양상을 이해하고, 방역 정책을 설계하는 데 중요한 요소로 작용했다.
그러나 기존 모델에는 한계가 있었다. 기존 대부분 모델은 감염자와 접촉한 시점에 상관없이 모든 접촉자가 동일 확률로 감염력이 발현된다고 가정한다. 미래 상태가 현재 상태에 의해서만 결정되고, 과거의 영향을 받지 않는다는 마르코프(Markovian) 시스템에 기반하여 미래를 추정해왔다.
하지만 실제 환경에서는 현재뿐 아니라 과거 상태도 미래에 영향을 준다(비마르코프(non-Markovian) 시스템). 감염자와 접촉 이후 잠복기를 거쳐 감염되기 때문에, 접촉 시점이 오래된 사람일수록 감염력이 발현될 확률이 높다.
최보승 교수는 “현재와 과거를 모두 고려해야 하는 비마르코프 시스템은 수학적 추정과 모델링이 복잡하고, 계산이 어려워서 기존 전염병 확산 모델은 마르코프 시스템을 가정하고 추정을 진행해왔다”며 “즉, 실제 감염병 확산 양상을 정확하게 반영하지는 못했다”고 설명했다.
공동 연구팀은 현재와 과거를 모두 고려하는 새로운 감염병 확산 모델을 개발했다. 미래의 변화를 현재의 상태만으로 설명하는 상미분방정식 대신, 미래의 변화를 현재와 과거의 상태를 모두 이용하여 설명하는 지연미분방정식을 도입해 기존 모델의 한계를 극복했다.
연구진은 2020년 1월 20일부터 11월 25일까지 서울의 누적 코로나19 확진자 정보를 활용해 새로 제시한 모델의 정확도를 평가했다. 초기 바이러스의 전파로 확진자가 급증했던 시기(2020.1.20.~3.3)의 감염재생산지수를 기존 모델은 4.9, 새 모델은 2.7로 추정했다. 확진자 전염 경로를 추적해 얻은 실제 값은 2.7이었다. 즉, 기존 모델이 감염재생산지수를 2배 가까이 과대 추정하는 상황이 생길 수 있고, 이에 따라 코로나19 감염력을 과대 예측할 수 있다는 것을 보여준다.
최선화 선임연구원은 “과대 예측 문제를 해결하기 위해 기존 모델은 감염기(감염자가 다른 사람에게 전염을 일으킬 수 있는 기간) 등 추가 역학 정보를 사용해 값을 보정해 사용해왔다”며 “새로운 모델은 추가 역학 정보 없이도 감염재생산지수를 정확히 추정할 수 있다는 장점이 있다”고 설명했다.
연구를 이끈 김재경 교수는 “우리 연구진은 새로운 모델을 바탕으로 ‘IONISE(Inference Of Non-markovIan SEir model)’라는 프로그램을 개발하여, 분야 연구자들이 활용할 수 있도록 무료로 공개했다”며 “향후 공중보건 전문가들이 전염병 확산 양상을 보다 깊이 이해하고, 효과적인 방역 전략을 수립하도록 도울 것으로 기대한다”고 말했다.
연구 결과는 10월 9일 국제학술지 ‘네이처 커뮤니케이션스(Nature Communications, IF 14.7)’에 실렸다.
※ 논문명: Overcoming Bias in Estimating Epidemiological Parameters with Realistic History-Dependent Disease Spread Dynamics(제1저자: 홍혁표, 엄은진)
2024.10.17
조회수 1833