본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%ED%97%88%EC%9B%90%EB%8F%84
최신순
조회순
허원도 교수, 세포의 이동 방향 결정하는 방향타 단백질 발견
〈 허 원 도 교수 〉 우리 몸의 세포는 가만히 멈춰있는 것이 아니라 이동한다. 세포가 특정 방향으로 이동하는 과정은 배아 발달, 상처 치유, 면역 반응 등에 필수적이다. 우리 몸 여러 기관에 암이 전이되는 현상도 암 세포의 이동 때문에 발생한다고 볼 수 있는데 이처럼 세포의 이동은 다양한 생리 및 병리적 조건에서 중요한 역할을 담당한다. 세포 이동에는 여러 종류의 소형 GTP 결합 단백질과 이 단백질의 활성을 조절하는 GEF 단백질들이 관여한다. 세포는 진행 방향 부위의 소형 GTP 결합 단백질(Rac1, Cdc42)이 활성화되면서, 동력을 내는 액틴 섬유를 중합(polymerization)해 지느러미 같은 돌출부를 만들어 앞으로 나아갈 수 있다. 그러나 기존 연구에서는 세포 이동을 관장하는 여러 종류의 GEF 단백질을 세포에 발현시켜도 세포의 이동이 크게 증가하지 않는 한계가 있었고, 세포 이동의 구체적인 작동원리를 밝히지 못했다. 우리 대학 생명과학과 허원도 교수 연구진은 GEF 단백질 중 하나인 ‘PLEKHG3’ 단백질이 세포의 이동 방향을 결정하는 ‘방향타’ 역할을 담당한다는 사실을 처음으로 발견했다. 또한, 독자적으로 개발한 광유전학 기술(광유도 분자 올가미, LARIAT)을 접목, 빛으로 ‘방향타 단백질(PLEKHG3)’ 의 활성을 조절해 세포의 이동을 실시간으로 제어하는 데 성공했다. 연구진은 바이오이미징 기술로 세포 내 63개 GEF 단백질들의 분포양상을 분석해, 세포가 이동하는 동안 세포이동을 조절할 가능성이 높은 GEF 단백질들을 선별했다. 그 중 PLEKHG3가 세포의 진행 방향 부위로 빠르게 이동하는 현상을 확인했다. 방향타 역할을 하는 이 단백질은 해당 부위에서 소형 GTP 결합 단백질을 활성화해 세포 골격을 이루는 액틴 섬유를 형성한다. 액틴 섬유는 그물망을 이루며 지느러미 같은 돌출부를 형성,해 세포를 앞으로 나아가게 한다. 이 과정에서 방향타 단백질은 액틴 섬유 자체와도 매우 강하게 결합하는데, 이 결합이 소형 GTP결합 단백질의 활성을 더욱 촉진시킴으로써 세포의 이동 속도를 더 빠르게 한다는 사실을 발견했다. 또한 연구진은 광유전학 기술로 방향타 단백질의 활성을 조절해 세포가 움직이는 방향을 인위적으로 제어하는 데 성공했다. 청색광 수용체를 이용해 만든 융합 단백질이 발현된 세포에 청색광을 비추면 융합단백질이 PLEKHG3를 올가미처럼 붙잡아 PLEKHG3의 움직임을 방해하는 원리를 활용했다. 이에 따라 빛을 비추면 세포는 이동을 멈추고, 빛을 끄면 PLEKHG3의 활성이 다시 정상화돼, 세포는 움직인다. 빛을 비추는 부위를 조정해서, 세포의 이동방향도 제어할 수 있음을 확인했다. 본 연구는 방향타 단백질인 PLEKHG3가 세포를 움직이게 하는 핵심 단백질임을 밝히고, 광유전학 기술로 빛을 통해 세포의 이동을 자유롭게 제어한 데 의의가 있다. 허원도 교수는 “세포 이동을 극대화하는 새로운 메커니즘을 밝혀 암세포 전이 및 면역 세포 이동을 연구할 수 있을 것으로 기대된다”고 말했다. 이번 연구결과는 국제 학술지 미국국립과학원회보(PNAS) 8월 23일자 온라인 판에 게재됐다. □ 그림 설명 그림1. 세포내 PLEKHG3의 위치분석 그림2. 세포이동시 PLEKHG3의 세포내 위치추적 그림3. PLEKHG3에 의한 새로운 세포이동 메커니즘
2016.08.24
조회수 10971
허원도 교수, 세포의 새로운 칼슘 신호 발견
〈 허 원 도 교수 〉 우리 대학 생명과학과 허원도 교수 연구팀이 세포이동 시 세포의 후방 부위에 새로운 칼슘신호가 있는 것을 발견하고 그 역할을 밝히는 데 성공했다. 허 교수 연구팀은 최근 독자적으로 개발한 광유전학 기법인 광활성세포성장인자수용체(OptoFGFR)와 그 하위 신호전달 단백질을 제어할 수 있는 다른 광유전학 기술을 조합하는 방법을 이용했다. 김진만 박사(의과학대학원), 이민지 박사과정 학생(생명과학과)이 주도한 이번 연구는 ‘미국국립과학원회보(PNAS)’ 온라인 판에 5월 17일자로 게재됐다. 우리 몸을 이루고 있는 세포들은 가만히 멈춰있는 것이 아니라 끊임없이 이동한다. 세포의 이동은 개체의 발달과 유지에 핵심적인 과정이며, 다양한 생리 및 암 전이와 같은 병리적 조건에서 중요한 역할을 담당한다. 특히 배아 발달, 상처 치유, 면역세포 이동 등에서는 세포가 특정 방향으로 이동하는 것이 중요하다. 방향성을 가진 세포는 주변 환경과 상호작용하며 이동하게 되는데 세포의 극성화(Polarization)와 액틴 섬유 등의 세포 골격의 재배열을 통해 이동한다. 방향성을 갖는 세포이동은 복잡한 신호와 신호전달단백질에 의해 매개되는데 신호전달과정은 매우 역동적이며 부위 특이적으로 일어난다. 따라서 이러한 세포의 생화학적인 변화에 중요한 요소와 그 분자적 기전을 밝히는 데에는 어려움이 따른다. 연구진은 원하는 특정 부위에만 자극을 줄 수 있고, 수용체와 같은 상위 신호전달 단백질부터 실제 세포가 움직이도록 작용하는 하위 단백질까지 활성을 각각 조절할 수 있는 광유전학 기술의 장점을 이용했다. 국소적인 빛 자극을 통해 세포의 이동을 유도하는 모델을 구축하고 이를 통해 방향성을 가지는 세포 이동을 개별 세포 수준에서 분석하는데 성공한 것이다. 연구진은 광유전학 기술의 적용을 통해 방향성을 가진 세포 이동시에 발생하는 부위 특이적인 칼슘신호(Ca²⁺ sparklet)를 발견했다. 기존 연구에서는 세포 이동시에 세포내 칼슘 농도 경사가 생기는 과정이 전혀 알려져 있지 않았다. 연구진은 세포전방부위에 빛을 비춰 세포성장인자수용체(FGFR)가 활성화돼 여러 신호전달과정이 진행되면서 세포막이 앞으로 팽창하고 세포가 전진하게 되는 것을 확인했다. 신호전달이 세포후방부위까지 전달되면서 세포후방에 있는 세포막칼슘채널의 국소적이고 반복적인 개방을 통해 칼슘이온 농도가 증가, 액틴(Actin)중합을 유도하여 세포후방부위가 수축, 세포이동이 이루어짐을 알게 됐다. 이번 연구는 신호전달 체계의 상, 하위에 있는 단백질들을 특이적으로 조절할 수 있는 다양한 광유전학 기술들을 효과적으로 적용하여 방향성을 가진 세포이동에서 칼슘이온의 새로운 역할을 밝혔다는 점에서 의의가 있다. 세포이동시 세포의 후방 부에 특이적이고 반복적으로 칼슘이 증가하는 현상을 확인, 증가한 칼슘이온이 세포 이동에서 세포의 전방부위와 후방부위의 신호전달단백질의 상호작용에 관여할 뿐만 아니라, 세포 내 전체적인 칼슘의 농도경사를 유지하는데 필수적으로 작용한다는 것을 밝혀낸 것이다. 이 기술은 광유전학 기술의 장점을 극대화한 생물학적 연구의 표본을 제시한다는 점에서 유용할 것으로 기대된다. □ 그림 설명 그림1. 청색광의 부분 자극에 의해 세포 내에서 발생하는 칼슘신호들 그림2. 광유전학 기술을 이용한 광유도 세포 이동 모델의 구축
2016.05.27
조회수 12861
허원도 교수, 빛을 통해 세포내 물질 이동 제어 기술 개발
〈 허 원 도 교수 〉 우리 대학 생명과학과 허원도 교수 연구팀이 막으로 이루어진 세포내 소기관들의 이동을 빛으로 자유롭게 제어하는데 성공했다. 이로써 세포내 물질 수송의 단계별 메커니즘을 규명해 암과 신경질환 치료에 새로운 해법을 제시할 수 있을 것으로 기대된다. 연구팀은 세포내 물질 수송을 조절하는 새로운 광유전학 기술인 생체막 올가미(IM-LARIAT; Light-Activated Reversible Inhibition by Assembled Trap of Intracellular Membrane) 기술을 개발했다. 세포 내에는 엔도좀(endosome)이나 리소좀(lysosome), 엑소좀(exosome) 등 막으로 이루어진 다양한 막 구조 세포 소기관2)(intracellular membranes)들이 존재한다. 막 구조 세포 소기관들은 세포의 성장과 분열에 밀접한 세포의 기본 기능인 물질 수송과 물질 분비, 신호전달과정 등에 관여한다. 세포내 물질 수송은 매우 역동적으로 움직이는 세포 소기관들에 의해 이루어지는데, 복잡한 움직임을 제어할 방법이 거의 없어 세포 관련 연구가 제한돼 왔다. 이에 허원도 교수는 생체막 올가미 기술을 개발, 빛을 통해 세포 소기관들의 이동을 원하는 때, 원하는 위치에서 일시 정지시켜 세포 소기관들의 이동 메커니즘을 실시간으로 연구하는데 성공했다. 허원도 교수팀은 청색 빛에 반응하는 식물의 청색광 수용 단백질에, 세포 소기관들의 생체막에 존재하는 랩 단백질(Rab small GTPase)을 결합시킨 융합단백질을 개발했다. 이 융합단백질을 실험동물의 암세포와 신경세포에 발현시킨 뒤 청색 빛을 비춘 결과, 많은 막 구조 세포 소기관들이 서로 응집하여 이동이 일시 정지되는 현상을 확인했다. 특히 생체막 올가미 기술을 신경세포에 적용, 엔도좀들의 이동을 일시 정지 시켜, 뇌 신경 세포 성장원추(growth cone)의 성장을 제어하는데 성공했다. 청색 빛을 비추자 일시적으로 성장이 멈췄던 신경세포가, 빛을 끄자 다시 빠르게 자라나는 것을 추가로 확인했다. 이번 연구는 약물이나 전기 자극이 아닌 빛을 비추는 비 침습적(non-invasive) 방식을 고안, 최소 자극으로 막 구조 세포 소기관들의 이동을 제어할 수 있게 된 데 의의가 있다. 신경세포의 분화 및 암세포의 물질 수송을 빛으로 정지시킬 수 있는 생체막 올가미 기술을 응용하면, 다양한 암과 신경질환의 치료 해법을 제시할 수 있을 것으로 기대된다. 허원도 교수는 “이번 연구는 살아있는 세포내에 존재하는 다양한 세포 소기관들을 빛으로 제어한 연구로, 적외선이나 소형 광원을 이용한 생체막 관련 질환 치료법이나 신경세포재생연구로 발전시킬 수 있을 것”이라며 “특히 뇌 신경세포 내 소기관들의 이동과 물질 수송 연구는 기억과 학습 관련 연구 분야에도 새 장을 열어줄 것”이라고 말했다. 이번 연구결과는 생명과학 분야 세계적 학술지인 네이처 케미컬 바이올로지(Nature Chemical Biology, IF 12.996) 온라인판 4월 12일자에 게재됐다. 허원도 교수는 지난 3년 동안 유명학술지에 독자적으로 개발한 광유전학기술들을 연속적으로 발표하고 있으며 현재 수편의 논문들도 해외유명저널에서 심사 중이다. 2014년에 Nature Methods, Nature Communications, Cell 자매지인 Chemistry & Biology 표지논문으로 발표를 시작했다. 2015년 Nature Biotechnology 표지논문에 이어, 이번에는 Nature Chemical Biology에 발표하는 등 세계적으로 광유전학분야를 선도하고 있다. □ 그림 설명 그림1. 세포 내 물질 수송의 과정
2016.04.18
조회수 14115
심장질환 원인신호전달메커니즘 규명
- 신약개발 및 심장질환 응용연구의 중요한 발판 마련 - IT와 BT를 융합한 시스템생물학 연구 통해 규명 우리학교 바이오및뇌공학과 조광현 교수팀과 생명과학과 허원도 교수팀이 시스템생물학 융합연구를 통해 심장질환 원인신호전달경로의 숨겨진 메커니즘을 규명했다. 심근비대증은 다양한 병인에 의해 심근세포가 비대해지는 병리학적 현상으로써 심부전증과 부정맥 등을 수반하는 주요 심장질환이다. 칼시뉴린-엔팻(calcineurin-NFAT) 신호전달경로는 이러한 심근비대증의 유발에 매우 중요한 역할을 하는 것으로 알려져 있다. 하지만 이 신호전달경로의 주요 조절단백질로 알려진 알캔(RCAN1)의 기능에 대해 많은 논쟁이 이어져 왔고 현재까지 그 구체적인 조절메커니즘이 밝혀지지 않았다. 조광현 교수 융합연구팀은 이러한 복잡한 현상에 대해 수학 모델링과 대규모 컴퓨터시뮬레이션, 그리고 단일세포 분자 이미징 기술을 동원한 시스템생물학 융합연구를 통해 어크(ERK)와 지에스케이(GSK3)로 구성된 스위칭 회로가 칼시뉴린-엔팻 신호전달경로를 조절한다는 것을 새롭게 규명했다. 특히 이 연구에서는 알캔이 세포내 농도가 낮을 때 칼시뉴린(calcineurin)의 기능을 저해하는 억제자로서 기능하지만, 그 농도가 증가하면 어크와 지에스케이에 의한 크로스토크를 통해 칼시뉴린 신호를 오히려 증가시키는 촉진자로서 기능 하도록 세포내 조절회로가 진화적으로 설계되어 있음을 최초로 밝혔다. 지금까지 많은 연구에서 알캔의 상반된 신호조절 역할이 보고되어 학계에서는 과연 무엇이 진실인가에 관한 논쟁이 이어졌다. 또한, 어떻게 동일한 분자가 그와 같이 서로 다른 기능을 보이는 것인지, 이를 유발하는 근본적인 메커니즘은 과연 무엇인지 등이 모두 수수께끼로 남아 있었다. 이번 연구를 통해 학계의 이러한 오랜 질문에 대한 해답이 제시됐으며, 알캔과 칼시뉴린-엔팻 신호전달경로의 근원적인 조절메커니즘이 시스템차원에서 최초로 규명됨으로써 앞으로 이를 표적으로 하는 신약개발 및 관련 심장질환 응용연구의 중요한 발판을 마련하게 되었다. 또한 기존의 실험적 접근만으로는 해결할 수 없는 복잡한 생명현상을 대상으로 IT와 BT의 융합연구인 생체시스템모델링 및 바이오시뮬레이션 연구를 통해 새로운 해결책을 찾을 수 있는 가능성을 제시하게 됐다. 이 연구는 교육과학기술부가 지원하는 한국연구재단의 기초연구실육성사업과 도약연구사업, 그리고 칼슘대사시스템생물학사업의 일환으로 수행됐으며, 연구 결과는 <저널오브셀사이언스(Journal of Cell Science)>의 표지논문으로 선정되어 2011년 1월 1일자(온라인판은 2010년 12월 13일자)에 게재된다.
2010.12.20
조회수 14167
<<
첫번째페이지
<
이전 페이지
1
2
>
다음 페이지
>>
마지막 페이지 2