-
발열 40% 낮춘 초고해상도 마이크로 LED 기술 구현
디지털화된 현대인 생활 속에는 웨어러블, 롤러블 디스플레이 등 다양한 형태의 미래 디스플레이가 요구되는데 특히 증강현실 및 가상현실을 위한 스마트 글라스 등 디바이스의 경우에 완벽하게 유저들을 몰입시키는데 요구되는 4K 이상의 해상도가 필요하다. 하지만 디바이스에 요구되는 작은 소비전력 및 제한된 면적에 많은 픽셀을 구현해야 하는 기술적 한계에 봉착하여 완벽하게 구현되지 못하고 있는 실정이다.
우리 대학 전기및전자공학부 김상현 교수 연구팀이 소자의 크기가 마이크로미터(μm, 백만분의 1미터) 정도의 크기를 갖는 마이크로 LED의 소형화될 때 소자 효율이 저하되는 현상을 재규명하고 이를 에피택시 구조 변경으로 근본적인 해결이 가능함을 제시했다고 22일 밝혔다.
에피택시 기술이란 마이크로 LED로 사용되고 있는 초순수 규소 (Silicon) 혹은 사파이어 (Sapphire) 기판을 매개체로 삼아 그 위에 발광체로 쓰이는 질화갈륨 결정체를 쌓아 올리는 공정을 말한다.
마이크로 LED는 OLED 대비 우수한 밝기, 명암비, 수명이라는 장점이 있어 활발히 연구되고 있으며, 삼성전자는 지난 2018년에 ‘The Wall’이라는 마이크로 LED를 탑재한 제품을 상용화했고, 애플은 2025년에 마이크로 LED를 탑재한 제품이 상용화될 것이라는 전망이 있다.
마이크로 LED를 제작하기 위해선 웨이퍼 위에 성장된 에피택시 구조를 식각 공정을 통해 원기둥 혹은 직육면체의 모양으로 깎아서 픽셀들을 형성하는데, 이 식각 과정에는 플라즈마 기반의 공정이 동반된다. 그러나, 이러한 플라즈마들은 픽셀 형성 과정에서 픽셀의 측면에 결함들을 발생시킨다. 따라서, 픽셀 사이즈가 작아지고 해상도가 높아질수록 픽셀의 표면적 대 부피의 비율이 상승해 공정 중 발생하는 소자 측면 결함이 마이크로 LED의 소자 효율을 더 크게 감소시킨다. 이에 따라, 측면 결함을 완화 혹은 제거하는 것에 많이 연구가 진행됐지만 이러한 방식은 에피택시 구조를 성장한 뒤 후공정으로 진행해야 하는 만큼 개선의 정도에 한계가 존재한다.
연구팀은 마이크로 LED 소자 동작 시 에피택시 구조에 따라 마이크로 LED의 측벽으로 이동하는 전류의 차이가 발생한다는 것을 규명했고, 이를 기반으로 측벽 결함에 민감하지 않는 구조를 설계하여 마이크로 LED 소자 소형화에 따른 효율 저하 문제를 해결하였다. 또한, 제시된 구조는 디스플레이 구동 시 발생하게 되는 열을 기존 대비 40% 정도 낮출 수 있어 초고해상도 마이크로 LED 디스플레이 상용화를 위한 연구로써 큰 의미를 갖는다.
우리 대학 전기및전자공학부 김상현 교수 연구팀의 백우진 박사과정이 제 1 저자로 주도하고 김상현 교수와 충북대학교 금대명 교수(KAIST 박사 후 연구원 재직 당시) 가 교신저자로 지도한 이번 연구는 국제학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’에 3월 17일 字 출판됐다 (논문명: Ultra-Low-Current Driven InGaN Blue Micro Light-Emitting Diodes for Electrically Efficient and Self-Heating Relaxed Microdisplay).
김상현 교수는 “이번 기술 개발은 마이크로LED의 소형화의 걸림돌이었던 효율 저하의 원인을 규명하고 이를 에피택시 구조의 설계로 해결한 데에 큰 의미가 있고 앞으로 초고해상도 디스플레이에 활용될 것이 기대된다”라고 말했다.
한편 이번 연구는 삼성미래기술육성센터의 지원을 받아 수행됐다.
2023.03.22
조회수 7491
-
인공지능으로 코로나19 치료제 팍스로비드와 기존 약물간 반응 예측 고도화
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 인공지능 기반 약물 상호작용 예측 기술을 고도화해, 코로나19 치료제로 사용되는 팍스로비드(PaxlovidTM) 성분과 기존 승인된 약물 간의 상호작용 분석 결과를 논문으로 발표했다고 16일 밝혔다. 이번 논문은 국제저명학술지인 「미국국립과학원회보 (PNAS)」誌’ 3월 13일자 온라인판에 게재됐다.
※ 논문명 : Computational prediction of interactions between Paxlovid and prescription drugs
※ 저자 정보 : 김예지(한국과학기술원, 공동 제1 저자), 류재용(덕성여자대학교, 공동 제1 저자), 김현욱(한국과학기술원, 공동 제1 저자), 이상엽(한국과학기술원, 교신저자) 포함 총 4명
연구팀은 이번 연구에서 2018년에 개발한 인공지능 기반의 약물 상호작용 예측 모델인 딥디디아이(DeepDDI)를 고도화한 딥디디아이2(DeepDDI2)를 개발했다. 딥디디아이2는 기존 딥디디아이가 예측하는 86가지 약물 상호작용 종류보다 더 많은, 총 113가지의 약물 상호작용 종류를 예측한다.
연구팀은 딥디디아이2를 이용하여 코로나19 치료제인 팍스로비드*의 성분(리토나비르, 니르마트렐비르)과 기존에 승인된 약물 간의 상호작용 가능성을 예측하였다. 연구팀은 코로나19 환자 중 고위험군인 고혈압, 당뇨병 등을 앓고 있는 만성질환자가 이미 약물을 복용하고 있어, 약물 상호작용 및 약물 이상 반응이 충분히 분석되지 않은 팍스로비드를 복용 시 문제가 될 수 있다는 점에 착안해 이번 연구를 수행했다.
* 팍스로비드 : 팍스로비드는 미국 제약사인 화이자가 개발한 코로나19 치료제로, 2021년 12월 미국 식품의약국(FDA)의 긴급사용승인을 받았다.
연구팀은 팍스로비드의 성분인 리토나비르와 니르마트렐비르가 2,248개의 승인된 약물과 어떤 상호작용을 하는지, 딥디디아이2를 이용해 예측했다. 예측 결과 리토나비르는 1,403개의 승인된 약물과, 니르마트렐비르는 673개의 승인된 약물과 상호작용이 있을 것으로 예측됐다.
또한, 연구팀은 예측 결과를 활용해, 약물 상호작용 가능성이 높은 승인 약물에 대해, 동일 기전을 갖되 약물 상호작용 가능성이 낮은 대체 약물들을 제안했다. 이에 따라, 리토나비르와의 약물 상호작용 가능성을 낮출 수 있는 대체 약물 124개와 니르마트렐비르와의 약물 상호작용 가능성을 낮출 수 있는 대체 약물 239개를 제안했다.
이번 연구 성과를 통해 약물 상호작용을 정확하게 예측할 수 있는 인공지능 모델을 활용하는 것이 가능해졌으며, 이는 신약 개발 및 약물 처방 시 유용한 정보를 제공함으로써, 디지털 헬스케어, 정밀의료 산업 및 제약 산업에서 중요한 역할을 할 것으로 기대된다.
이상엽 특훈교수는 "이번 연구 결과는 실험과 임상을 통해 검증된 것은 아니므로 100% 의존해서는 안된다“고 강조하면서 ”팬데믹과 같이 긴급한 상황에서 신속하게 개발된 약물을 사용할 때, 예측된 약물 상호작용 유래 약물 이상 반응결과를 전문의가 미리 검토하여 약을 처방할 때 도움을 줄 수 있다는 점에서 의미가 있다"고 말했다.
한편 이번 연구는 과기정통부가 지원하는 KAIST 코로나대응 과학기술 뉴딜사업과 바이오·의료기술개발사업의 지원을 받아 수행됐다.
2023.03.16
조회수 5753
-
노화된 뇌막 속 쌓인 당이 장애 유발 최초 규명
평균연령 증가로 인해 심각한 뇌 질환을 동반하지 않은 일반적인 노화로 인한 뇌의 변화에 관한 연구 역시 필요한 추세다. 노화 연구와 관련하여 노화가 진행될수록 몸속에 ‘당’이 축적되고 이렇게 축적된 당은 노화-연관 염증, 혈관질환 등 다양한 질환의 원인 물질이 된다. 결국‘남아도는 당 분자’는 몸속 다양한 단백질에 붙어 단백질의 기능을 방해한다.
우리 대학 바이오및뇌공학과 김필남 교수, 정용 교수 공동연구팀이 뇌를 감싸고 있는 뇌막(혹은 뇌수막; brain meninges)이 노화에 따른 `당' 축적이 되면서 뇌 피질을 감싸고 있는 ‘최전선 방어벽'으로의 기능에 장애가 일어남을 확인했다고 15일 밝혔다.
김 교수 연구팀은 고령자의 뇌막에서 당 분자의 과도한 축적을 확인하고, 생쥐 모델에서도 나이에 따른 당의 축적이 이뤄짐을 확인하였다. 뇌막은 뇌를 감싸고 있는 얇은 막으로 뇌척수액과 피질의 경계에 존재하며 뇌를 보호하는 중요한 기능을 하고 있다. 이번 연구에서는 이러한 뇌막이 노화로 인해 생기는 기능이상이 뇌 속 ‘남아도는’ 당에 의해서 유도됨을 밝혔다. 특히, 노화에 의해서 뇌막이 얇아지고 끈적해지면서 뇌척수액과 뇌피질과의 물질교환이 감소하는 것에 대한 원리 규명에 새로운 패러다임을 제공하게 되었다.
이번 연구는 KAIST 바이오및뇌공학과 김효민 박사과정 학생과 김신흔 박사가 공동 제1 저자로 참여해 국제 학술지 `노화하는 세포(Aging Cell)'에 지난 2월 28일 자 온라인판으로 게재됐다. (논문명: Glycation mediated tissue level remodeling of brain meningeal membrane by aging)
뇌척수액과 직접 맞닿아 있는 뇌막은 주로 콜라겐 (collagen)이라는 세포외기질 (Extracellular Matrix, ECM) 단백질로 구성되어 있으며 이 단백질을 생산하는 세포인 섬유아세포 (fibroblast) 로 이루어져 있다. 당이 흡착된 콜라겐 단백질과 부착된 세포는 콜라겐의 생산기능이 떨어지는 반면, 콜라겐의 분해 효소의 발현이 높아지면서 뇌막은 지속적으로 얇아지고 붕괴된다.
지속적인 당 섭취로 인해서 초과된 당 분자가 뇌에 쌓이면서 신경세포의 변성과 뇌 질환 간의 연구는 지속적으로 진행되어 왔다. 하지만 뇌를 감싸고 있는 뇌막 자체에 초점을 두어 당 축적으로 인한 뇌막 변성 및 기능 장애를 확인한 것은 이번 연구에서 최초로 제시되었으며, 이는 뇌 질환 연구에서의 새로운 치료접근을 제시할 것을 기대할 수 있다.
제1 저자인 김효민 연구원은 “인간의 뇌에서 시작해서 생체모사 뇌막 모델과 동물모델을 활용한 융합적 접근으로 노화로 인한 뇌 장벽 변화에 대해 규명한 흥미로운 연구ˮ 라고 연구 결과를 소개했다.
김필남 교수 연구팀은 이러한 뇌막을 비롯한 인체 전반적으로 쌓이는 당을 제거하기 위한 연구개발을 진행하고 있다. 인체에서 단백질과 당이 만나서 형성되는 찌꺼기인 최종당화산물(Advanced glycation end product)는 대식세포에 의해서 일부 제거된다. 하지만, 콜라겐과 같은 세포외기질 단백질과 결합한 당화산물은 자연적으로는 제거되기 어렵다. 본 연구진은 KAIST-세라젬 연구센터를 통해서 ‘몸 속 당 찌꺼기’ 제거를 위한 헬스케어 의료기기를 개발하고 있다.
이번 연구는 한국연구재단 집단연구지원을 받아 수행됐다.
2023.03.15
조회수 5047
-
KAIST, 암세포에만 약물 전달 가능한 클라트린 조립체 개발
암을 부작용 없이 효과적으로 치료하기 위해서는 약물을 암세포에 특이적으로 전달할 수 있는 기술이 필요하다. 단백질로 구성되어 있는 단백질 조립체는 암 치료를 위한 약물 전달에 널리 활용되고 있다. 단백질 조립체를 약물 전달에 이용하기 위해서는 암세포를 인식하는 단백질과 암세포를 사멸시키는 약물을 단백질 조립체에 효과적으로 접합시키는 기술, 즉 기능화(functionalization) 기술이 필수적이다. 그러나, 단백질 조립체의 경우 기능화 과정이 매우 복잡하고, 효율이 낮으며, 대부분 작은 크기의 화학 약물(chemical drug)의 적용에만 한정되어 실제 사용에 많은 제약이 있었다.
우리 대학 생명과학과 김학성 교수 연구팀이 암세포에 특이적으로 약물을 전달할 수 있는 클라트린 조립체를 개발했다고 14일 밝혔다.
생체 내 클라트린이라는 단백질 조립체는 세포 안에서 자가조립(self-assembly)되어 물질을 효율적으로 수송(endocytosis)한다. 클라트린 조립체는 먼저 3개의 중쇄(heavy chain)와 3개의 경쇄(light chain)가 결합하여 트리스켈리온(triskelion)이 만들어지고, 이후 트리스켈리온이 자가조립 되어 형성된다. 연구팀은 이에 착안하여, 암세포에 특이적으로 약물을 전달하기 위해 암세포 인식 단백질과 독소 단백질의 기능화가 용이하도록 클라트린 사슬을 설계하였고, 이를 이용하여 새로운 형태의 클라트린 조립체(clathrin assembly)를 얻었다. (그림 1)
개발된 클라트린 조립체는 원 포트 반응(one-pot reaction)으로 두 종류의 단백질(암세포 인식 단백질과 독소 단백질)을 동시에 높은 효율로 접합시킬 수 있어, 향후 약물 전달, 백신 개발 및 질병 진단 등을 포함한 생물 의학 분야에서 광범위하게 활용될 수 있을 것으로 기대된다.
이번 연구에서는 대표적인 종양 표지자인 상피세포성장인자수용체(EGFR)를 인식하는 단백질을 사용하여, 암세포에 특이적으로 약물을 전달할 수 있었다. EGFR을 인식하는 단백질로 기능화된 클라트린 조립체는 결합증대 효과(avidity effect)로 인해, 기존보다 무려 900배 이상 향상된 결합력을 보였다. 연구팀은 이를 기반으로, 독소 단백질을 연결한 클라트린 조립체를 세포에 처리했을 때, 정상 세포에는 영향이 없으나 암세포만 효과적으로 사멸시킨다는 것을 확인했다.
우리 대학 생명과학과 김홍식 박사가 제1 저자로 참여한 이번 연구는 국제 학술지 `스몰(Small)'에 지난 2월 22일 자 19권 8호에 출판됐으며, 표지 논문으로 선정됐다. (그림 2) (논문명 : Construction and Functionalization of a Clathrin Assembly for a Targeted Protein Delivery)
제1 저자인 김홍식 박사는 "클라트린은 기능화가 어렵고 포유류의 세포로부터 추출해서 얻었기 때문에 실질적인 적용이 제한되었다”라며 “이번 연구에서 새로 설계한 클라트린 조립체는 한 번의 반응으로 서로 다른 두 종류의 단백질로 기능화할 수 있고, 대장균에서 생산 가능하여, 생물 의학 분야에서 광범위하게 활용될 수 있는 단백질 조립체 응용 기술이 될 것이다”라고 말했다.
한편 이번 연구는 한국연구재단 글로벌박사양성사업과 중견연구자지원사업의 지원을 받아 수행됐다.
2023.03.14
조회수 5153
-
기존 대비 50배 이상 압축 가능한 뉴크론 개발
희소 행렬에 해당하는 2억 건의 비디오 시청 내역을 10킬로바이트(KB) 크기로 성공적으로 압축할 수 있으며 기존 기술을 이용해 1기가바이트(GB)로 압축한 것보다도 압축으로 인한 정보 손실이 적은 기술이 개발됐다.
우리 대학 김재철AI대학원 신기정 교수 연구팀은 기존 대비 50배 이상 우수한 압축률의 희소 행렬 압축 기술인 뉴크론(NeuKron)을 개발했다고 9일 밝혔다.
희소 행렬이란 높은 비율의 원소가 0인 행렬을 의미하며, 전자상거래 구매 내역, 소셜 네트워크에서의 친구 관계, 문서와 단어 간 포함 관계 등 다양한 종류의 데이터가 희소 행렬 형태로 저장 및 활용된다. 예를 들어, 전자상거래 구매 내역의 경우, 행렬의 각 행이 각 구매자에 해당하고, 각 열이 각 상품에 해당하며, 각 원소는 해당 구매자가 해당 상품을 구매한 수량을 의미한다. 예를 들어, i행 j열 원소는, i번째 구매자가, j번째 상품을 구매한 수량에 해당한다. 각 구매자는 전체 상품 중, 일부만을 구매하기 때문에, 해당 행렬은 원소 대부분이 0인 희소 행렬이다.
실세계 데이터로부터 얻어진 대규모 희소 행렬을 효율적으로 다루기 위해서는, 압축 기술이 필수적이다. 예를 들어, 1억 명의 구매자와 1억 개의 상품으로 구성된 전자상거래 구매 내역의 경우, 행렬은 전체 구매자 수와 전체 상품 수의 곱에 해당하는 1경 개의 원소를 갖는다. 또한, 희소 행렬 압축은 많은 응용문제에 활용되고 있다. 예를 들어, 많은 추천시스템은 희소 행렬을 손실 압축한 뒤, 복원하는 과정을 통해, 각 구매자가 각 상품을 구매하고자 하는 의향을 추론한다. 또한, 이때의 복원 오차를 기반으로 이상 데이터를 탐지하고 교정하기도 하며, 매개 변수 행렬 압축을 통해서 인공지능 모델을 경량화하기도 한다.
신기정 교수팀은 희소 행렬의 압축률을 크게 개선할 수 있는 손실 압축 기술인 뉴크론을 개발했다. 뉴크론은 실세계 데이터에서 흔하게 발견되는 자기 유사성에 착안했는데, 자기 유사성이란 대상의 일부분을 확대해 볼 때, 대상의 전체와 닮은 패턴이 나타나는 성질을 의미한다. 뉴크론은 크게 세 가지 단계로 구성된다. 첫 번째 단계는, 행렬이 자기 유사적인 구조를 가질 수 있도록 행과 열을 재배열하는 것이며, 두 번째 단계는, 재배열된 행렬을 재귀적으로 분해하는 과정을 통해, 행렬의 각 원소를 위치 수열로 인코딩하는 것이다. 마지막 단계는 각 위치 수열을 입력으로 행렬의 원소값을 추론하는 순환신경망을 학습하는 것이다. 이때, 순환신경망은 행렬의 자기 유사성을 기반으로 정확한 추론을 수행한다.
신기정 교수팀의 뉴크론 기술은 희소 행렬뿐 아니라, 희소 텐서의 압축에도 적용할 수 있다. 행렬이 행과 열로 구성된 2차원 데이터라면, 텐서는 행렬을 3차원 이상으로 일반화한 것이다. 예를 들어, 3차원 텐서는 행렬을 수직으로 쌓은 형태이다. 실제로 행렬과 텐서를 포함 10개의 실세계 데이터 세트를 사용해 검증한 결과, 동일 복원 오차 하에서, 뉴크론은 기존 기술 대비 50배 이상 우수한 압축률을 보였다.
우리 대학 김재철AI대학원 권태형 박사과정, 고지훈 석박사통합과정이 공동 제1저자, 전북대학교 정진홍 교수가 공동 저자로 참여한 이번 연구는 올해 5월에 미국 오스틴에서 열리는 미 컴퓨터협회 웹 학술대회(이하 ACM WWW)에서 발표될 예정이다. (논문 제목: NeuKron: Constant-Size Lossy Compression of Sparse Reorderable Matrices and Tensors) 올해 32회를 맞은 ACM WWW는, 웹 분야 최우수 학회로, 전 세계에서 해당 분야 전문가들이 참석해 최신 연구 성과를 공유한다.
신기정 교수는 "다양한 실세계 데이터 그리고 인공지능 모델의 매개 변수가 희소 행렬의 형태로 표현된다ˮ라며, "희소 행렬 압축 기술을 추천시스템, 이상 탐지, 인공지능 모델 경량화 등 다양한 분야에 활용 가능할 것으로 기대한다ˮ라고 설명했다.
한편 이번 연구는 정보통신기획평가원의 지원을 받은 강건하고 공정하며 확장 가능한 데이터 중심의 연속 학습 과제와 한국연구재단의 지원을 받은 부호화된 그래프 마이닝 과제의 성과다.
2023.03.09
조회수 4811
-
생생한 3차원 실사 이미지 구현하는 ‘메타브레인’ 개발
우리 대학 전기및전자공학부 유회준 교수 연구팀이 실사에 가까운 이미지를 렌더링할 수 있는 인공지능 기반 3D 렌더링을 모바일 기기에서 구현, 고속, 저전력 인공지능(AI: Artificial Intelligent) 반도체*인 메타브레인(MetaVRain)’을 세계 최초로 개발했다고 7일 밝혔다.
* 인공지능 반도체 : 인식·추론·학습·판단 등 인공지능 처리 기능을 탑재하고, 초지능·초저전력·초신뢰 기반의 최적화된 기술로 구현한 반도체
연구팀이 개발한 인공지능 반도체는 GPU로 구동되는 기존 레이 트레이싱 (ray-tracing)* 기반 3D 렌더링을 새로 제작된 AI 반도체 상에서 인공지능 기반 3차원으로 만들어, 기존의 막대한 비용이 들어가는 3차원 영상 캡쳐 스튜디오가 필요없게 되므로 3D 모델 제작에 드는 비용을 크게 줄이고, 사용되는 메모리를 180배 이상 줄일 수 있다. 특히 블렌더(Blender) 등의 복잡한 소프트웨어를 사용하던 기존 3D 그래픽 편집과 디자인을 간단한 인공지능 학습만으로 대체하여, 일반인도 손쉽게 원하는 스타일을 입히고 편집할 수 있다는 장점이 있다.
*레이 트레이싱 (ray-tracing): 광원, 물체의 형태, 질감에 따라 바뀌는 모든 광선의 궤적을 추적함으로써 실사에 가까운 이미지를 얻도록 하는 기술
한동현 박사과정이 제1 저자로 참여한 이번 연구는 지난 2월 18일부터 22일까지 전 세계 반도체 연구자들이 미국 샌프란시스코에 모여 개최한 국제고체회로설계학회(ISSCC)에서 발표됐다. (논문번호 2.7, 논문명: 메타브레인: A 133mW Real-time Hyper-realistic 3D NeRF Processor with 1D-2D Hybrid Neural Engines for Metaverse on Mobile Devices (저자: 한동현, 류준하, 김상엽, 김상진, 유회준))
유 교수팀은 인공지능을 통해 3D 렌더링을 구현할 때 발생하는 비효율적인 연산들을 발견하고 이를 줄이기 위해 사람의 시각적 인식 방식을 결합한 새로운 컨셉의 반도체를 개발했다. 사람은 사물을 기억할 때, 대략적인 윤곽에서 시작하여, 점점 그 형태를 구체화하는 과정과 바로 직전에 보았던 물체라면 이를 토대로 현재의 물체가 어떻게 생겼는지 바로 추측하는 인지능을 가지고 있다. 이러한 사람의 인지 과정을 모방하여, 새롭게 개발한 반도체는 저해상도 복셀을 통해 미리 사물의 대략적인 형태를 파악하고, 과거 렌더링했던 결과를 토대로, 현재 렌더링할 때 필요한 연산량을 최소화하는 연산 방식을 채택하였다.
유 교수팀이 개발한 메타브레인은 사람의 시각적 인식 과정을 모방한 하드웨어 아키텍처뿐만 아니라 최첨단 CMOS 칩을 함께 개발하여, 세계 최고의 성능을 달성하였다. 메타브레인은 인공지능 기반 3D 렌더링 기술에 최적화되어, 최대 100 FPS 이상의 렌더링 속도를 달성하였으며, 이는 기존 GPU보다 911배 빠른 속도다. 뿐만아니라, 1개 영상화면 처리 당 소모에너지를 나타내는 에너지효율 역시 GPU 대비 26,400배 높인 연구 결과로 VR/AR 헤드셋, 모바일 기기에서도 인공지능 기반 실시간 렌더링의 가능성을 열었다.
연구팀은 메타브레인의 활용 예시를 보여주고자, 스마트 3D 렌더링 응용시스템을 함께 개발하였으며, 사용자가 선호하는 스타일에 맞춰, 3D 모델의 스타일을 바꾸는 예제를 보여주었다. 인공지능에게 원하는 스타일의 이미지를 주고 재학습만 수행하면 되기 때문에, 복잡한 소프트웨어의 도움 없이도 손쉽게 3D 모델의 스타일을 손쉽게 바꿀 수 있다. 유 교수팀이 구현한 응용시스템의 예시 이외에도, 사용자의 얼굴을 본떠 만든 실제에 가까운 3D 아바타를 만들거나, 각종 구조물들의 3D 모델을 만들고 영화 제작 환경에 맞춰 날씨를 바꾸는 등 다양한 응용 예시가 가능할 것으로 기대된다.
연구팀은 메타브레인을 시작으로, 앞으로의 3D 그래픽스 분야 역시 인공지능으로 대체되기 시작할 것으로 기대한다며, 인공지능과 3D 그래픽스의 결합은 메타버스 실현을 위한 큰 기술적 혁신이라는 점을 밝혔다.
연구를 주도한 KAIST 전기및전자공학부 유회준 교수는 “현재 3D 그래픽스는 사람이 사물을 어떻게 보고 있는지가 아니라, 사물이 어떻게 생겼는지를 묘사하는데 집중하고 있다”라며 “이번 연구는 인공지능이 사람의 공간 인지 능력을 모방하여 사람이 사물을 인식하고 표현하는 방법을 차용함으로써 효율적인 3D 그래픽스를 가능케 한 연구”라고 본 연구의 의의를 밝혔다. 또한 “메타버스의 실현은 본 연구에서 보인 것처럼 인공지능 기술의 혁신과 인공지능 반도체의 혁신이 함께 이루어질 것”이라 미래를 전망하였다.
데모 동영상 유튜브 주소: https://www.youtube.com/watch?v=m-aqnZhALv0
2023.03.07
조회수 6117
-
표적단백질 시캠1 발굴로 새로운 암 면역치료법 제시
우리 몸에는 면역반응의 과도한 유도를 조절하고 자가면역질환의 발생을 억제하는 역할을 하는 조절 T세포가 있는데, 종양 내에 존재하여 면역세포의 암세포 제거 능력을 저해하는 조절 T세포만을 골라서 제거할 수 있는 암 면역치료법이 개발됐다.
우리 대학 의과학대학원 박수형 교수 연구팀이 우리 대학 의과학대학원 신의철 교수, 삼성서울병원 서성일, 강민용 교수팀과 공동연구를 통해 종양 내 조절 T세포의 선택적 제거를 통한 신규 면역항암 전략을 제시했다고 6일 밝혔다.
이번 연구는 우리 몸에 존재하는 조절 T세포에는 영향을 주지 않으면서 종양 내에 존재하는 조절 T세포를 선택적으로 제거하는 것을 가능케 하는 새로운 표적 단백질인 시캠1(이후 CEACAM1)을 발굴하고, 이를 타겟으로 종양 내 조절 T세포를 선택적으로 제거했을 때, 최근 암 환자에게 널리 쓰이는 기존 면역항암제의 효능을 월등히 증가시킬 수 있음을 증명하였다.
암 환자의 종양 내 조절 T세포를 선택적으로 제거하는 치료의 개발은 많은 암 연구자들의 관심사다. 종양 내 조절 T세포를 선택적으로 제거하기 위해서는 해당 세포에만 특이적으로 높게 발현하는 이른바 표적 단백질을 발굴해야 한다.
KAIST-삼성서울병원 공동연구진은 이번 연구에서 신장암 환자로부터 얻은 조직과 혈액을 분석해서 CEACAM1이 혈액에 존재하는 조절 T세포에는 발현되지 않지만, 종양 내 조절 T세포에서만 선택적으로 발현된다는 것을 발견했다. 연구진은 또한 단일세포 전사체 데이터를 분석해 그러한 양상이 신장암에 국한되지 않고 다양한 암종에서 나타남을 확인했다.
연구진은 신장암 환자의 종양 내 면역세포에서 CEACAM1을 발현하는 종양 내 조절 T세포를 제거했을 때 면역항암 작용을 하는 면역세포의 종양 제거 능력이 월등히 증가되는 현상을 관찰했다. 더불어, CEACAM1을 발현하는 면역세포를 제거함으로써 대표적인 면역항암제인 면역관문억제제(Immune Checkpoint Inhibitor)의 면역항암 기능이 월등히 증가됨을 확인했다.
연구진은 이 결과를 토대로 CEACAM1을 발현하는 종양 내 조절 T세포가 항종양 면역반응을 억제하는 주된 세포임을 밝혔고, 이 세포의 세부적인 특성을 파악하고 선택적으로 제거하거나 이를 표적으로 하는 치료 전략이 매우 효과적인 항암치료 및 면역치료제 개발에도 활용이 될 것으로 전망한다고 설명했다.
이번 연구의 공동 제1 저자인 KAIST 전승혁 박사와 삼성서울병원 강민용 교수는 "이번 연구 결과는 새로운 표적 단백질을 발굴함과 동시에 종양 내 조절 T세포의 생물학적 특징에 대한 이해를 높였다는 측면에서 중요한 연구이며, 이번 연구의 결과가 궁극적으로 면역항암제에 대한 저항성을 극복하는 해결책이 될 것으로 기대한다ˮ고 설명했다.
삼성서울병원 서성일 교수는 “이번 연구는 임상 샘플을 사용해 종양 내 조절 T세포 제거 치료의 단서를 발견했다는 점에서 의의가 있다”며 “CEACAM1의 발현이 종양의 성장과도 밀접한 연관이 있어 바이오마커로써 응용될 가능성도 있다”고 말했다.
박수형 교수는 “종양 내 조절 T세포를 제어하는 치료는 많은 연구자가 관심을 가지는 분야이지만 아직 이를 이용한 치료법은 개발되지 않은 실정”이라며 “이번 연구에서 발굴한 CEACAM1이 종양 내 조절 T세포의 제거 치료제 개발에 실마리를 제공할 수 있을 것ˮ이라고 덧붙였다.
과학기술정보통신부 중견연구자지원사업과 기초연구실지원사업을 받아 수행한 이번 연구 결과는 미국암학회 (American Association for Cancer Research)에서 발행하는 종양 분야 저명 학술지인 Clinical Cancer Research에 최근 게재됐다 (논문명: CEACAM1 marks highly suppressive intratumoral regulatory T cells for targeted depletion therapy).
2023.03.06
조회수 5014
-
천조분의 일 안정성 가진 6G 테라헤르츠파 생성 기술 개발
차세대 6G 무선통신, 양자 분광 기술, 나아가 군용 레이더 기술을 실현하고, 6G 통신 기기 간 주파수 표준으로 이용될 수 있는 넓은 대역의 테라헤르츠파* 응용 기술이 개발되어 획기적인 성능 향상을 가져올 것으로 예상된다.
*테라헤르츠파(THz): 밀리미터파와 광파 사이(100기가헤르츠(GHz) ~ 3테라헤르츠(THz))에 해당하는 전자기파
우리 대학 기계공학과 김승우, 김영진 교수 공동연구팀이 차세대 6G 이동통신 대역으로 알려진 테라헤르츠 대역에서 세계 최고 수준의 안정도를 가지는 초안정 테라헤르츠파 생성 원천기술을 개발했다고 3일 밝혔다.
차세대 테라헤르츠파 기술을 선점/선도하기 위해서는, 핵심 테라헤르츠 소자들에 대한 개발, 평가 및 선점이 필수적이다. 하지만, 테라헤르츠 전송, 변조 및 검출 소자들에 대한 평가를 수행할 수 있는, 초안정 표준급 테라헤르츠 신호 생성에 어려움이 있어, 이러한 핵심 소자들에 대한 접근에 지금까지 제한이 존재해 왔다.
기존의 테라헤르츠파 생성 방식은 상대적으로 낮은 주파수 안정도를 가지는 마이크로파 원자시계에 기반한 것으로, 최근 개발된 광 시계와 비교하여서는 수천 배 이상 낮은 안정도를 보여 왔다.
이를 극복하기 위해, 연구팀에서는 천조분의 일(1/1,000,000,000,000,000)의 안정도를 가지는 매우 정밀한 광주파수 대역의 시간 표준을 안정화하는 펨토초 레이저 광빗*으로부터 두 개의 레이저를 추출/합성해 테라헤르츠파를 생성했다. 이 과정에서 연구팀은 다양한 잡음을 면밀히 분석하고, 광빗의 우수한 안정도를 유지하기 위해 잡음 보상/제어 기술을 개발했다. 이후, 광빗의 넓은 대역폭 특성을 활용하여 테라헤르츠파를 생성했으며, 전대역에서 시간 표준 수준의 안정도(천조분의 일)를 가지는 것을 실험적으로 검증했다. 이는 세계 최고 수준의 광 시계 안정도를 테라헤르츠 대역에서도 새로이 실현할 수 있음을 의미한다.
*펨토초 레이저 광 빗: 시간/주파수 표준으로 활용할 수 있는 광대역(수백만 개의 주파수의 중첩) 레이저, 빛의 스펙트럼이 머리빗과 닮았다 하여 붙여진 이름이다.
우리 대학 기계공학과 졸업생 신동철 박사가 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)'에 2월 11일 게재됐다. (논문명: Photonic comb-rooted synthesis of ultra-stable terahertz frequencies)
이 기술은 광 시간 표준에 기반한 세계 최고 수준의 초안정 테라헤르츠파를 생성할 수 있어, 차세대 6G 통신 대역에서 초고속 통신을 실현하고, 6G 통신 기기 간 주파수 표준으로 이용될 수 있다. 또한, 생성한 테라헤르츠파는 밀리헤르츠(mHz) 수준의 정확도로 실시간 변조 가능하다는 것을 검증했다.
주저자인 신동철 박사는 "펨토초 레이저 광빗을 매개로 한 테라헤르츠 생성 기술 개발을 통해 세계 최고 수준의 광 시계 안정도를 테라헤르츠 영역으로 확장할 수 있음을 실험적으로 검증했다ˮ며 "차세대 6G 무선통신 대역에서 가장 우수한 안정도를 선점한 것에 의미가 있고 테라헤르츠 핵심 소자 평가 등에 응용돼 테라헤르츠 대역 표준 확립에 도움될 것이다ˮ라고 말했다.
한편 이번 연구는 한국연구재단의 과학기술분야 기초연구사업-개인연구사업- 리더연구(국가과학자)지원을 받아 수행됐다.
2023.03.03
조회수 5627
-
왼쪽 눈이 본 것을 오른쪽 뇌가 알게 하라
인간을 비롯한 대부분 동물의 신체 기관들은 대칭적 구조를 가지고 있다. 이를 통해 몸의 좌우 균형을 맞추고, 움직이고, 반응을 할 수 있게 된다. 동물의 시각이 시작되는 안구 역시 머리의 양쪽에 하나씩 위치하며 한쪽 눈으로 볼 때 보다 더 넓은 영역의 물체를 인식할 수 있게 된다. 사람이나 고양이 같은 경우는 양쪽 눈이 정면을 향하고 있고, 개나 쥐 같은 동물은 눈이 사람보다 측면부를 향해 있고, 많은 물고기의 경우는 두 눈이 완전히 반대쪽을 향하고 있다. 이로 인해 좌우측 눈이 받아들이는 이미지 역시 차이를 보이게 된다. 인간의 경우 좌측과 우측 눈이 인식하는 이미지의 50%에 가까운 영역이 겹치는 반면, 생쥐의 경우는 5% 이하의 영역이 중복이 되며, 물고기는 중복된 영역이 거의 없다. 이들 겹치는 시각 영역 이미지의 위상차를 뇌가 인식해 동물은 물체의 입체감을 느낄 수 있다. 또, 물체가 움직이는 경우에는 좌측 눈과 우측 눈에 감지된 물체의 이미지의 시간차 정보가 뇌에서 처리되어 물체의 이동 경로를 감지하고 예측할 수 있게 된다. 결국, 중복된 시각 영역이 넓을수록 외부 물체의 입체감과 이동을 더 잘 감지할 수 있게 되어, 대부분 포식 동물들이 넓은 중복 영역을 확보하기 위해 안구를 정면에 위치하는 경우가 많다.
이렇게 좌우 안구에서 인식된 이미지를 뇌의 특정 영역에 전달하기 위해 눈에서 나온 시신경은 뇌의 좌우 반구에 모두 연결이 되어 있다. 흥미롭게 좌우 반구로 연결되는 시신경 비율은 좌우 안구 이미지의 중복 비율에 역비례해서, 인간의 경우 50% 시신경이 반대쪽 뇌로 연결되고, 생쥐의 경우 95% 내외, 물고기는 100% 반대쪽으로 연결된다. 시신경이 좌측 또는 우측 중 어느 쪽 뇌로 뻗어 나갈 것인지를 결정하는 과정은 시신경이 눈에서 출발해 시상하부 영역에 도달할 때 시상하부 중간선에 존재하는 경로 결정자(pathway selection cue)에 의해 일어난다고 알려져 있다. 오랜 동안 이러한 동물의 양안 시각계 (binocular visual system)의 핵심인 시상하부 중간선에서 경로 결정에 관련된 메커니즘을 이해하려는 시도가 있어 왔고 일부 경로 결정 인자들이 밝혀진 바도 있다. 하지만, 핵심인자의 부재로 이 과정에 대한 명확한 이해는 부족한 상황이었다.
생명과학과 김진우 교수 연구실에서는 시신경 및 시상하부 중간선에 많이 발현되는 VAX1 유전자에 대한 연구를 수행해 오고 있다. 이 유전자가 결핍된 생쥐와 사람은 시신경이 제대로 성장하지 못하고 시신경이 시상하부에서 교차하지 못하는 발달 이상을 보였다. VAX1이 호메오도메인을 가지는 전사인자의 특성을 가지고 있기 때문에 당연히 시상하부에서 경로 결정자의 유전자 발현을 조절해 시신경 교차(optic chiasm)를 생성할 것이라고 추정하였으나, 김교수 연구팀에서는 VAX1이 시상하부 세포에서 전사인자로 기능하기 보다는 눈의 망막신경절세포에서 뻗어 나온 시신경 축삭(axon)에서 mRNA 번역인자로 작용하여 시신경의 성장을 유도한다는 놀라운 사실을 발견하여 2014년 발표한 바 있다. 하지만, VAX1이 전혀 없는 동물은 두개골 기형 때문에 생존하기 어려워 이러한 VAX1 이상으로 인해 시신경 교차가 없는 동물의 시각 반응 및 행동에 대한 이해는 이루어지지 못하고 있었다.
김 교수 연구실에서 VAX1의 전사인자 기능은 유지한 채 시신경 축삭에 작용하지 못하는 VAX1(AA) 생쥐를 제작하였고, 이 생쥐는 외형적 이상이 전혀 없이 정상적으로 태어나 성장하였다. 다만, VAX1(AA) 생쥐는 모든 시신경이 안구와 같은 쪽 뇌에만 연결되는 시신경 교차 결핍증(agenesis of optic chiasm, AOC)을 나타냈다. 이 생쥐의 시각을 다양한 방법을 통해 검증한 결과, 눈 속의 신경 조직인 망막이 빛을 감지하는 기능은 정상이나 입체 시각이 전혀 없었고, 시력 역시 저하되어 있었다.
흥미로운 점은 VAX1(AA) 생쥐의 눈이 아무런 자극이 없는 상태에서도 지속적으로 상하궤도 운동을 하는 시소안구진탕증(Seesaw Nystagmus)를 보인다는 것이었다. 이러한 시소안구진탕증은 시신경 교차에 이상이 있는 사람과 벨지안쉽도그(Belgian sheepdog)에서도 관찰이 된 바 있어서 시신경 교차 결여가 VAX1(AA) 생쥐의 안구 운동 이상의 원인임을 알 수 있었다.
더욱 흥미로운 점은 VAX1(AA) 생쥐의 시각 운동 반응이 반전되어 있다는 점이었다. 왼쪽 눈에 빛을 주면 오른쪽 동공이 먼저 축소되고, 물체 이동을 감지한 후에는 움직이던 눈이 오히려 정면을 응시하는 등, 시각 정보와 반대되는 안구의 움직임을 보였다. VAX1(AA) 생쥐는 시신경 교차에만 이상이 있고 시각을 처리하는 뇌 부위는 정상적으로 형성이 되어 있기 때문에, 이 결과는 우측 눈에서 오는 신호를 처리해 우측 눈으로 운동 정보를 보내야 할 좌측뇌가 정작 좌측 눈에서 오는 신호를 받아 우측 눈을 자극하는 입력-출력 반전(input-output inversion) 현상 때문으로 해석되었다. 하지만, 아직 VAX1(AA) 생쥐의 좌측 눈에서 들어 온 시각 신호가 어떤 뇌 부위를 안구로 다시 전달되는지에 대한 정보가 거의 전무하기 때문에 이러한 반전된 시각-운동 신경망에 대한 이해는 부족한 상황이다. 이를 해결하기 위해 김교수팀은 시각 자극을 받은 VAX1(AA) 생쥐의 뇌를 자기 공명 영상 분석하는 공동 연구를 시작하였다. 이 연구를 통해 동물의 시각 정보가 어떤 경로로 뇌에서 처리되어 운동 신경을 활성화 할 수 있는지에 대한 이해를 심화할 수 있을 것으로 기대한다.
이번 연구는 국제학술지인 Experimental & Molecular Medicine (https://doi.org/10.1038/s12276-023-00930-4) 2월3일자로 발표됐다. KAIST 생명과학과 김진우 교수 연구팀 민광욱 박사가 제1저자로 연구를 주도하였고, 생명과학과 이승희 교수 연구팀, 바이오및뇌공학과 박영균 교수 연구팀, 연세대학교 이한웅 교수 연구팀, 한국뇌연구원 김남석 박사, 기초과학연구원 이창준 박사 연구팀이 함께 참여하였다. 본 연구는 과학기술정보통신부 중견연구자연구지원사업과 선도연구센터사업, 그리고 KAIST 국제공동연구지원사업의 지원을 받아 수행됐다.
2023.03.02
조회수 5935
-
반도체 소자 내의 복잡한 움직임을 관측할 수 있는 초고속 카메라 개발
우리 대학 김정원 교수 연구팀이 반도체 소자 내의 미세 구조와 동적 특성을 고해상도로 측정할 수 있는 초고속 카메라 기술을 개발하였다고 밝혔다.
기존에는 볼 수 없었던 반도체 소자 내에서의 빠르고 불규칙적인 복잡한 움직임을 이제 초고속 카메라로 관측할 수 있게 되었다.
기계공학과 나용진 박사가 제 1저자로 참여하고 기계공학과 유홍기, 이정철 교수팀 및 한국표준과학연구원(KRISS) 서준호, 강주식 박사팀이 참여한 공동연구팀의 이번 논문은 국제학술지 ‘빛: 과학과 응용(Light: Science & Applications)’ [IF=20.257] 2월 15일 字에 게재됐다. (논문명: Massively parallel electro-optic sampling of space-encoded optical pulses for ultrafast multi-dimensional imaging)
최근 마이크로 및 나노 소자들의 복잡도와 기능성이 급격하게 향상됨에 따라 이들 소자 내의 미세 구조와 동적인 움직임을 실시간으로 정확하게 측정해야 할 필요성이 급증하고 있다. 미세 구조 측정 측면에서는 다양한 3차원 집적회로와 소자들의 발전으로 더 큰 웨이퍼 영역에 대해 더 높은 분해능 및 측정속도를 가지는 계측 기술이 반도체 산업에서 중요해지고 있다. 한편 동적 특성의 측정은 마이크로 및 나노 소자 내에서의 물리현상들을 이해하고 다양한 응용 분야들로 발전시키는 데 중요하다. 특히 다양한 역학 현상의 관측을 위해서는 더 높은 해상도, 더 빠른 측정속도 및 더 큰 측정범위를 필요로 하지만 기존의 측정 기술들은 여러가지 한계들을 가지고 있었다.
이번 연구는 기존의 한계를 극복한 새로운 초고속 카메라 기술을 개발하였다. 100펨토초(10조분이 1초) 정도의 매우 짧은 펄스폭을 가지는 빛 펄스를 1000개 이상의 다른 색을 가지는 펄스들로 쪼갠 후, 각기 다른 색을 가진 펄스들을 이용하여 서로 다른 공간적 위치에서의 높낮이를 정밀하게 측정할 수 있는 기술이다. 구현한 기술은 초당 2.6억개의 픽셀들에 대한 높낮이의 차이를 최고 330피코미터(30억분의 1미터) 수준까지 측정할 수 있을 정도로 빠르고 정밀하다. 연구팀은 이를 이용하여 복잡한 3차원 형상을 고속으로 정밀하고 정확하게 측정할 수 있는 초고속 카메라 기능을 선보였고, 기존의 측정 기술로는 관측하기 어렵던 복잡하고 비반복적인 고속의 동역학 현상들을 성공적으로 관측할 수 있었다.
이번에 개발한 초고속 카메라 기술의 고속 형상 이미징 속도와 높은 공간 분해능을 이용하면 반도체 공정이나 3D 프린팅 과정을 실시간으로 모니터링하며 공정을 제어할 수 있어 점점 고도화 및 집적화 되는 공정의 수율을 크게 향상시킬 수 있을 것으로 기대된다. 또한 다양한 진폭이 존재하면서 동시에 매우 빠른 순간 속도를 갖는 미세 구조의 움직임을 포착할 수 있음을 보여, 기존에 관찰하지 못했던 복잡한 비선형(nonlinear) 및 과도(transient)의 물리 현상들을 탐구하는 차세대 계측 기술로 발전할 수 있을 것으로 기대된다.
김정원 교수는 “이번 연구에서는 1차원적인 선 모양의 빛을 스캔해서 움직이는 방식으로 2차원 표면의 높낮이를 측정하였으나, 향후에는 2차원 표면의 높낮이를 스캔 없이 한번에 측정할 수 있는 방식으로 기술을 발전시킬 예정”이라고 밝혔다.
한편 이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 중견후속연구, 선도연구센터, 기초연구실 및 중견연구 사업의 지원을 받아 수행됐다.
2023.03.02
조회수 5701
-
암세포만 공략하는 스마트 면역세포 시스템 개발
우리 대학 바이오및뇌공학과 최정균 교수와 의과학대학원 박종은 교수 공동연구팀이 인공지능과 빅데이터 분석을 기반으로 스마트 면역세포를 통한 암 치료의 핵심 기술을 개발했다고 밝혔다. 이 기술은 키메라 항원 수용체(Chimeric antigen receptor, CAR)가 논리회로를 통해 작동하게 함으로써 정확하게 암세포만 공략할 수 있도록 하는 차세대 면역항암 치료법으로 기대가 모아진다. 이번 연구는 분당차병원 안희정 교수와 가톨릭의대 이혜옥 교수가 공동연구로 참여했다.
최정균 교수 연구팀은 수백만개의 세포에 대한 유전자 발현 데이터베이스를 구축하고 이를 이용해 종양세포와 정상세포 간의 유전자 발현 양상 차이를 논리회로 기반으로 찾아낼 수 있는 딥러닝 알고리즘을 개발하고 검증하는 데 성공했다. 이 방법론으로 찾아진 논리회로를 장착한 CAR 면역세포는 마치 컴퓨터처럼 암과 정상 세포를 구별하여 작동함으로써 부작용없이 암세포만 정확하게 공략하는 것이 가능하다.
바이오및뇌공학과 권준하 박사, 의과학대학원 강준호 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 '네이처 바이오테크놀로지(Nature Biotechnology)'에 지난 2월 16일 출판됐다. (논문명: Single-cell mapping of combinatorial target antigens for CAR switches using logic gates)
최근의 암 연구에서 가장 많은 시도와 진전이 있었던 분야는 바로 면역항암치료이다. 암환자가 갖고 있는 면역체계를 활용하여 암을 극복하는 이 치료 분야에는 몇 가지 방법이 있는데, 면역관문억제제 및 암백신과 더불어 세포치료 또한 해당된다. 특히, 키메라 항원 수용체를 장착한 CAR-T 혹은 CAR-NK라고 하는 면역세포들은 암항원을 인식하여 암세포를 직접 파괴할 수 있다.
CAR 세포치료는 현재 혈액암에서의 성공을 시작으로 고형암으로 그 적용 범위를 넓히고자 하는 중인데, 혈액암과 달리 고형암에서는 부작용을 최소화하면서 효과적인 암 살상 능력을 보유하는 CAR 세포 개발에 어려움이 있었다. 이에 따라 최근에는 한 단계 진보된 CAR 엔지니어링 기술, 즉 AND, OR, NOT 과 같은 컴퓨터 연산 논리회로를 활용해 효과적으로 암세포를 공략할 수 있는 스마트 면역세포 개발이 활발히 진행되고 있다.
이러한 시점에서, 연구진은 세포 단위에서 정확히 암세포들에서만 발현하는 유전자들을 발굴하기 위해 대규모 암 및 정상 단일세포 데이터베이스를 구축했다. 이어서 연구진은 암세포들과 정상세포들을 가장 잘 구별할 수 있는 유전자 조합을 검색하는 인공지능 알고리즘을 개발했다. 특히 이 알고리즘은, 모든 유전자 조합에 대한 세포 단위 시뮬레이션을 통해 암세포만을 특이적으로 공략할 수 있는 논리회로를 찾아내는데 사용되었다. 이 방법론으로 찾아진 논리회로를 장착한 CAR 면역세포는 마치 컴퓨터처럼 암과 정상 세포를 구별하여 작동함으로써 부작용은 최소화하면서도 항암치료의 효과는 극대화시킬 수 있을 것으로 기대된다.
제1 저자인 권준하 박사는 "이번 연구는 이전에 시도된 적이 없는 방법론을 제시했는데, 특히 주목할 점은 수백만개의 개별 암세포 및 정상세포들에 대한 시뮬레이션을 통해 최적의 CAR 세포용 회로들을 찾아낸 과정이다ˮ라며 "인공지능과 컴퓨터 논리회로를 면역세포 엔지니어링에 적용하는 획기적인 기술로서 혈액암에서 성공적으로 사용되고 있는 CAR 세포치료가 고형암으로 확대되는데 중요한 역할을 할 것으로 기대된다"고 설명했다.ᅠ
이번 연구는 한국연구재단 원천기술개발사업-차세대응용오믹스사업의 지원을 받아 수행됐다.
2023.03.02
조회수 8085
-
새로운 세포핵 단백질의 이동 루트 발견
인간의 생명 정보를 담고 있는 DNA는 세포핵(nucleus) 내에 존재하며 이 정보는 전령 RNA(messenger RNA, mRNA)에 담겨 세포질로 이동 후 단백질 생성의 기초가 된다는 것이 소위 유전자 발현의 센트럴 도그마(central dogma of eukaryotic gene expression)다. 이 과정이 온전히 이루어지기 위해서는 유전자 발현의 최종 산물인 단백질 중 DNA 정보를 유지 및 활용하는 단백질들이 다시 세포핵으로 이동하여 작용하는 순환의 과정이 필요하다.
세포핵은 단백질의 투과가 불가능한 이중의 지질막(double-layered lipid membrane)으로 둘러싸인 구조이기 때문에 세포질에서 생성된 단백질이 핵으로 이동하기 위해서는 핵공(nuclear pore)라는 작은 구멍을 통과해야만 가능한 것으로 알려져 있다. 그리고, 핵공을 통해 세포핵으로 이동이 가능한 단백질들은 핵 이동 신호(nuclear localization signal, NLS)라는 부위를 포함하고 있는 것으로 잘 알려져 있다. 이 단백질 이동 신호 발견의 공로로 군터 블로벨 (Gunter Blobel)교수가 1999년에 노벨 생리의학상을 수상한 바도 있다.
다만, 세포핵은 특정한 크기로 유지가 되고 있기 때문에 세포질에서 생성된 단백질들이 지속적으로 핵으로 운송이 되기만 해서는 안 되고, 기능을 완수한 단백질들은 핵공을 통해 다시 세포질로 이동하거나 핵 내에서 분해되어 핵 내에 특정 농도 이상 단백질이 쌓이는 것을 방지해야 한다. 문제는 핵 이동 신호는 대부분 핵단백질들에 공통적으로 존재하지만 핵 탈출 신호(nuclear export signal)는 일부 핵단백질에만 존재하기 때문에 세포핵에서 세포질로 단백질 방출에 대해서는 명확한 설명이 어려운 상황이었다.
우리 대학 생명과학과 김진우 교수 연구실에서는 특정 DNA 정보를 인식해 유전자 발현을 유도 또는 억제하는 전사인자의 한 종류인 호메오단백질의 기능에 대한 연구를 수행하고 있다. 인간에 200여 종이나 있는 호메오단백질은 동물 배아의 특정한 부분에서만 집중적으로 작용하여 머리, 몸통, 팔, 다리 등 다양한 신체 기관과 조직들을 생성하는데 핵심적인 역할을 한다. 따라서 특정 호메오단백질이 정상적 기능을 하지 못하면 여러 신체 기관들이 정상적으로 만들어지지 못하는 심각한 발달 이상이 나타난다.
호메오단백질들은 세포핵 내에서 전형적 전사인자 기능을 하는 것 외에도 세포와 세포 사이를 이동하여 작용하는 세포 간 신호전달자의 기능도 있다는 것을 김진우 교수 연구실이 규명한 바 있다. 김 교수 연구팀은 호메오단백질들의 세포 외부로의 분비는 이들 단백질 생성되는 세포질이 아니라 기능을 수행하는 세포핵에서 시작된다는 점을 확인했다. 또, 이 과정은 핵공을 통한 세포핵-세포질 경로가 아니라 세포막 구조를 매개할 것이라는 간접 증거도 확인했다. 결국, OTX2라는 호메오단백질이 세포핵 내부에서 이중층 핵막 돌기(double-layered nuclear membrane bud)에 포집되는 모습을 전자현미경 분석을 통해 확인했다. 별첨한 모식도에서 설명되어 있듯이, OTX2가 핵막 돌기에 포집되는 과정은 여러 분자의 OTX2 단백질이 핵막 이중층의 내막에 있는 SUN1이라는 단백질에 직접 결합을 하는 것에서부터 시작이 되는데, SUN1은 핵막 외막의 SYNE2라는 단백질과 연결이 되어 있기 때문에 핵막의 변형이 이중층에 걸쳐 이루어지게 된다. 그 후 OTX2가 포집된 핵막 돌기의 내막을 TORSINA1(TOR1A)이라는 세포막 절단 단백질이 한번 자르고 DYNAMIN(DNM)이라는 또다른 세포막 절단 단백질이 외막을 잘라서 이중층의 세포 소낭(double-layered membrane vesicle)으로 만들어 세포질에 방출하는 새로운 방식의 핵단백질의 세포질 운송 방식을 증명하였다.
더 나아가 김 교수팀은 이렇게 만들어진 OTX2 포집 세포소낭의 외막은 세포의 물질 소각 공장이라고 할 수 있는 리소좀(lysosome) 막과 융합되어 리소좀 내부의 지질 분해효소와 단백질 분해효소가 남은 소낭의 내막과 OTX2 단백질을 순차적으로 분해하도록 하는 기존의 핵단백질 분해 과정과 완전히 다른 방식의 핵단백질 분해 루트를 증명했다. 이러한 일련의 세포핵 탈출 과정 중 일부에 문제가 생기면 핵 내부에 과도하게 쌓인 OTX2가 응집체를 만들어 해당 세포의 핵 내 기능에 문제를 일으키는 한편 주변 세포로 이동도 되지 않아 이를 필요로 하는 동물의 시각 기능 발달에 문제가 생기는 것을 증명했다.
이 연구를 통해 김 교수팀은 세포핵과 세포질 사이의 단백질 이동 과정이 기존 알려진 핵공을 통한 루트보다 훨씬 다양한 방식으로 이루어질 수 있음을 제시하였고, 이 논문에서 예시로 증명한 OTX2 이외에도 많은 핵단백질들이 핵막 소포를 통해 이동할 가능성이 있어 이에 대한 추가 연구를 진행할 예정이다. 특히 핵막 소포를 통한 핵단백질의 방출이 원활하지 않을 때 암이나 퇴행성질환 등이 유발될 수 있어서, 이와 관련된 질병 연구도 병행할 예정이다.
이번 연구는 국제학술지인 Nature Communcations(https://doi.org/10.1038/s41467-023-36697-5)에 2월 27일자로 발표됐다. KAIST 생명과학과 김진우 교수 연구팀 박준우 박사가 제1 저자로 연구를 주도하였고, 한국기초과학지원연구원 권희석 박사 연구팀과 가톨릭의과대학 김인범 교수 연구팀이 함께 참여했다. 본 연구는 과학기술정보통신부 중견연구자연구지원사업과 선도연구센터사업, 그리고 KAIST 국제공동연구지원사업의 지원을 받아 수행됐다.
2023.02.28
조회수 5796