-
맞춤형 인산화 단백질 생합성 성공
- 사이언스誌 발표,“각종 질병원인 규명, 신약개발의 새로운 장을 열다”-
세포내 신호전달체계를 재설계하여 세균으로부터 맞춤형 인산화 단백질을 생산하는 기술이 세계 최초로 국내연구진에 의해 개발되었다.
이번 연구는 교육과학기술부의 “글로벌프론티어사업(탄소순환형 차세대 바이오매스 생산/전환 기술연구단)”의 지원을 받아 우리 학교 화학과 박희성 교수 주도로 수행되었다.
단백질 인산화는 생체 내에서 일어나는 단백질 변형의 일종으로, 세포내 신호전달과 그 결과 발생하는 세포의 생장․분열․사멸을 결정하는 중요한 역할을 한다.
예를들어, 성장세포가 성장호르몬 등 외부의 자극을 받으면 세포내 단백질에 인산이 첨가되고(단백질 인산화) 인산화된 단백질이 다른 단백질을 인산화 시키는 일련의 신호전달 과정을 거쳐 세포분열을 일으키게 된다.
인산화 과정에서 인산화 단백질에 돌연변이가 발생하면 세포의 정상적인 신호전달이 손상되고 세포의 무한 분열을 초래하여, 암을 포함한 각종 질병의 직접적인 원인이 된다.
이러한 인산화 과정은 매우 복잡하고 다이내믹하게 진행되므로, 세포내 신호전달의 극히 일부만 알려져 있고, 지금까지 단백질의 인산화를 조절할 수 없었다. 이 때문에 질병 원인 규명 연구와 신약개발에 많은 어려움을 겪고 있다.
박 교수는 예일대 Soll 교수팀과 공동연구를 통해 세균의 단백질 합성관련 인자들을 재설계하고, 진화방법으로 리모델링하여 인산화 아미노산(단백질 구성인자)을 단백질에 직접 첨가하는 기술을 개발하여 맞춤형 인산화 단백질을 생산하는데 성공했다.
연구팀은 이 기술을 이용하여 다양한 암을 유발시키는 단백질로 알려진 MEK1 인산화 단백질 합성에도 성공할 수 있었다.
박 교수는 “이번 연구를 통해서 단백질의 인산화 조절과 인산화 단백질의 대량 생산이 가능해 졌다.”며, “인산화 단백질을 통해 암을 포함한 각종 질병의 원인규명 연구와 차세대 암치료제 개발연구가 체계적이고 실질적으로 이루어질 것으로 기대된다.” 고 연구의 의의를 밝혔다.
연구결과는 생명과학분야 최고권위지인 사이언스誌 2011년 8월호 (8월26일자)에 게재됐다.
1. 세포의 단백질 생합성 기구 재설계 및 리모델링
○ 세균의 단백질 생합성 기구들(중합효소, 아미노산, tRNA)을 재설계하고, 자연계 모방 진화기술로 새로운 확장인자를 개발한 결과 얻어진 인공기능 세포의 그림이다. DNA로부터 단백질이 생합성 되는 과정이 보여주고 있으며, 특히 새롭게 설계된 단백질 합성기구와 자연계 모방 진화기술로 개발된 확장인자의 모식도가 나타나 있다.
2. 재설계된 세포를 이용한 맞춤형 인산화 단백질 생산
○ 그림1에서 제조된 재설계 인공기능 세포를 활용하여 복잡한 세포내 인산화과정 없이 인산화 아미노산을 단백질의 특정한 위치에 직접 첨가하는 방법으로 맞춤형 인산화 단백질을 생합성하는 그림이다. 세포내 신호전달에서 가장 중요한 역할을 하면서 돌연변이시 다양한 암을 유발시키는 인산화 단백질로 알려진 MEK1의 생합성을 보여주고 있다.
2011.08.26
조회수 12793
-
고성능 플렉시블 디스플레이 기술 개발
- 금속 나노입자 펨토초레이저 소결공정을 이용한 극미세 금속패턴 제작 -- 세계적 학술지 ‘어드밴스드 머티리얼즈’ 7월호 게재 -
국내 연구진이 플렉시블 디스플레이 전자소자 제작을 위한 차세대 금속 나노패터닝 기술개발에 성공했다.
우리 학교 기계공학과 고승환·양동열 교수팀이 공동으로 연구한 이번 성과는 기존의 광식각 증착공정을 이용하지 않고 수백나노의 고정밀도 금속 패턴을 펨토초레이저 스캐닝공정을 이용해 단일 디지털 공정으로 제작하는 기술을 개발했다.
이 기술을 이용하면 다양한 기판에서 고정밀 패터닝이 가능해져 유기 전자소자 기술 등과 결합하게 되면 성능과 집적도가 우수하면서도 자유자재로 휘어질 수 있는 고성능 플렉시블 전자소자나 디스플레이 등이 실현될 수 있을 것으로 기대된다.
일반적으로 집적도가 높은 전자소자 제작을 위해서는 고비용의 노광 혹은 광식각 공정이나 고진공 전자빔 공정을 통한 금속 패턴의 제작이 필수적이다. 최근에는 잉크젯 및 롤투롤(Roll to Roll) 프린팅 기술을 이용해 직접 금속 패턴 제작이 시도되고 있다. 그러나 공정 특성상 1㎛(마이크로미터, 100만분의 1미터) 이하의 정밀도 달성에는 한계가 있어 고집적·소형화에 불리했다.
연구팀은 3~6nm(나노미터, 10억분의 1미터) 크기의 녹는점이 낮은 은 나노 입자와 열확산을 최소화할 수 있는 금속 나노입자 펨토초레이저 소결공정 (Femtosecond laser selective nanoparticle sintering, FLSNS)을 개발했다. 더불어 유리, 웨이퍼, 고분자 필름 등 다양한 기판위에 1㎛이하의 고정밀도 금속 패턴을 단일 공정으로 제작할 수 있는 기술도 개발해, 이 기술을 이용해 최소 정밀도 380nm 선폭의 극미세 금속패턴 제작에 성공했다.
연구팀은 개발된 금속 패터닝 기술을 KAIST 전기 및 전자공학과 유승협 교수팀과의 협력을 통해 유기 전계효과 트랜지스터 제작공정에 적용해, 차세대 플렉시블 전자소자 제작에 활용될 수 있는 가능성을 제시했다.
고승환 교수는 “고가의 진공 전자빔 공정을 통해서만 제작 가능했던 기존의 디지털 직접 나노패터닝 기술을 비진공, 저온 환경에서 구현함으로써 전자빔 공정을 대체할 수 있을 뿐만 아니라 향후 다양한 플렉시블 전자소자 제작으로 적용될 수 있을 것으로 기대된다”고 말했다.
이번 연구결과는 한국연구재단의 나노원천기술개발 및 신진연구 사업지원, 지식경제부의 협동사업지원을 받아 수행됐으며, 재료과학기술 분야의 세계적 권위의 학술지인 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 7월호에 게재됐다.
※ 용어설명금속 나노패터닝 : 고밀도로 집적된 전기/전자회로 구현을 위해서는 1㎛이하의 선폭을 갖는 고정밀도 금속패턴 구현 기술이 필요하다. 이에 따라 기존의 방법이 아닌 새로운 패터닝 공정에 관한 다양한 연구가 수행 중에 있다.
광식각 증착공정 : 미세 패턴 제작으로 널리 사용되어지고 있는 공정으로 빛에 반응하는 재료에 대해 선택적으로 빛을 조사하여 미세 패턴을 제작하고 원하는 물질을 고온, 진공 조건하에서 증착하는 공정으로 기존의 디스플레이, 반도체 제작 공정으로 이용되고 있다.
유기 전계효과 트랜지스터 : 전자기기 구동회로의 핵심소자인 트랜지스터는 전류의 흐름을 선택적으로 조절하는 역할을 한다. 트랜지스터의 구성에는 전류가 흐르는 채널로서 반도체가 필수적인데, 통상적으로는 고온처리가 필요한 실리콘 (Si)이 쓰이고 있다. 유기 전계효과 트랜지스터는 채널 물질로 박막의 유기반도체가 쓰이는 것으로서, 상대적으로 낮은 온도에서 플라스틱과 같은 다양한 기판에 제작 가능하여 유연한 전자 소자 제작에 이상적이며, 궁극적으로 소자 제작이 인쇄 방법으로 구현 될 경우 저비용 전자소자 제작에도 활용 가능할 것으로 예상되고 있다.
펨토초 레이저(femtosecond laser) : 긴 시간 동안 일정한 출력으로 레이저를 방출하는 연속형 레이저와는 달리 짧은 시간 동안만 레이저를 방출하는 것을 펄스형 레이저라고 한다. 이러한 펄스형 레이저의 방출 시간을 천조분의 1초, 즉 10-15초 까지 낮춘 것이 펨토초 레이저이다. 이러한 매우 짧은 펄스폭은 레이저가 조사되는 재료 내부에 열이 확산하는 시간(10-12s, 피코초)보다 짧기 때문에 가공시 열영향부가 작아 정밀 가공에 응용할 수 있다.
그림1. 선택적 금속 나노입자 펨토초 레이저 소결 공정
그림2. 극미세 금속 패턴
2011.08.02
조회수 20134
-
탄소나노튜브로 물이 스스로 빨려 들어가는 현상 원인 규명
- PNAS 발표, “효율성을 극대화한 차세대 해수 담수화막 활용 가능 기대”-
지금까지 현상만 알려졌을 뿐 그 원인이 정확히 설명되지 못했던, 물을 싫어하는 탄소나노튜브* 안으로 물이 스스로 빨려 들어가는 ‘반직관적 실험 현상’이 국내 연구진에 의해 규명되었다.
*) 탄소나노튜브 : 각 탄소가 3개의 다른 탄소와 결합되어 있는 흑연의 탄소 원자 배열과 같은 모양(6각형의 벌집모양)을 가지면서, 원통형으로 말아서 튜브 형태로 만든 나노(10억분의 1미터) 구조체
우리 학교 EEWS 대학원 정유성 교수가 주도하고, 캘리포니아공대 윌리엄 고다드 교수가 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 오세정)이 추진하는 WCU(세계수준의 연구중심대학)육성사업의 지원(지속가능한 에너지 공학기술사업단)을 받아 수행되었다.
이번 연구결과는 자연과학분야의 권위 있는 학술지인 ‘미국립과학원회보(PNAS)’ 7월 19일자에 게재되었고, 한 주간에 흥미로운 연구결과들을 별도로 소개하는 "This Week in PNAS", ’C&EN News" 및 "Nature Materials"의 "Research Highlights"에 선정되는 영예를 얻었다. (논문명 : Entropy and the driving force for the filling of carbon nanotubes with water)
정유성 교수팀은 물을 싫어하는 탄소나노튜브 안으로 물이 스스로 빨려 들어가는 반직관적인 실험현상의 원인이 물 분자 간의 수소결합 때문으로, 나노채널과 같은 제한된 나노공간에서는 물의 무질서도가 증가하기 때문에 발생한다는 사실을 분자동력학 계산을 통해 밝혀냈다.
일반적으로 분자가 자유로운 액체 상태에서 제한된 나노 크기에 갇힐 경우, 무질서도와 화학결합이 감소되면서 불안정한 상태가 될 것으로 예상했지만, 연구팀은 탄소나노튜브에 갇힌 물의 경우 제한된 공간에서 물 분자 간의 수소결합이 약해지면서 밀도가 낮아지고, 오히려 무질서도가 증가하여 더욱 안정되는 특이한 현상을 나타낸다는 사실을 확인하였다.
특히 연구팀은 1.1과 1.2 나노미터의 지름을 갖는 나노튜브에서는 실온(섭씨 25도)임에도 불구하고 물이 얼음과 같은 구조를 띄는 현상도 관찰하였다.
정유성 교수는 “이번 연구는 계산과학이 실험측정만으로 설명하기 어려운 나노크기의 제한된 공간에서 나타나는 다양한 현상을 규명한 좋은 예”라고 정의하고, ‘’기존의 역삼투압 막에 비해 탄소나노튜브 내에서는 물의 수송속도가 현저히 빨라 에너지 효율적인 차세대 해수 담수화막을 효율적으로 설계하는데 기여할 것”이라고 연구의의를 밝혔다.
2011.07.27
조회수 15887
-
미래의 석유화학산업, 바이오 리파이너리 시대가 온다
- KAIST 이상엽 특훈교수팀, 생명공학동향지 표지논문 게재 -
“바이오리파이너리”란 석유화학산업에서 원유의 정제를 통해 여러가지 제품을 생산하는 것과 같이, 해조류나 비식용생물자원과 같은 바이오매스(biomass)를 원료로 이용하여 여러 제품을 생산하고자 하는 개념이다.
“시스템 대사공학”을 통해 바이오매스로부터 다양한 화학물질 및 제품을 효과적으로 생산할 수 있는 새로운 기법과 전망이 국내 연구진에 의해 제시되었다.
우리 학교 이상엽 특훈교수팀이 수행한 이번 연구는 교육과학기술부 글로벌프론티어사업 차세대 바이오매스연구단의 지원을 받아 수행되었다. ※ 특훈교수 : 한국과학기술원(KAIST)에서 세계적 수준의 연구업적과 교육성과를 이룬 교수에 부여하는 호칭
그동안 기후변화, 자원고갈 등의 문제를 해결하기 위한 방안으로 바이오리파이너리에 대한 연구가 학계를 중심으로 활발히 진행되어 왔다.
특히, 연구자들은 과거 20년간 발전되어온 대사공학을 중심으로 미생물을 활용한 바이오매스의 활용가능성을 높여왔다.
그러나 아직 바이오매스로부터 여러 가지 바이오화학물질 및 소재들을 생산하기 위해서는 이들을 생산하는 미생물의 성능을 획기적으로 개선해야하는데, 기존의 대사공학연구는 주로 직관적인 방법으로 진행되어 많은 노력과 시간이 필요한 한계가 있었다.
이교수팀은 이러한 한계를 극복하기 위해 대사공학을 중심으로 시스템생물학, 합성생물학, 진화공학을 융합한 “시스템 대사공학”이라는 새로운 기술체계를 확립했다.
시스템 대사공학은 세포 기반의 각종데이터를 통합하여 생리 상태를 다차원에서 규명하고, 이 정보를 바탕으로 맞춤형 대사조절을 함으로써 고효율 미생물 균주를 개발하는 기술이다.
시스템 대사공학을 활용할 경우, 미생물을 게놈수준에서 동시다발적으로 관찰 및 조작이 가능하여 미생물의 성능 개선을 위한 시간과 노력을 획기적으로 줄이고 그 활용 가능성을 극대화 할 수 있다.
본 논문의 제1저자인 이정욱 박사는 “시스템 대사공학을 통해 미생물의 성능을 획기적으로 향상시키는 기법을 최근의 연구흐름을 중심으로 전망하고 제시하였으며, 향후 바이오리파이너리 연구에 폭넓게 활용될 것으로 기대된다.“고 연구의 의의를 밝혔다.
연구 결과는 세계적 학술지인 ‘생명공학동향(Trends in Biotechnology)‘지 8월호 표지논문으로 선정되었다.
2011.07.27
조회수 14984
-
KAIST 무선충전전기자동차 본격 운행!
- 서울대공원 코끼리전기열차 3대 상용운행 시작 -
- ‘주행 중 무선충전방식’ 기술 세계 최초로 상용화, 관련 기술 선도 기대 -
우리 학교가 개발한 무선충전 전기자동차(Open Leading Electric Vehicle, OLEV)가 서울대공원에서 본격적인 상용운행에 들어갔다.
우리 대학은 지난 19일 오전 11시 서울대공원 동물원 입구에서 KAIST 서남표 총장, 주대준 대외부총장 등 주요 보직자들과 서울시의회 환경수자원위원회 서영갑 부위원장 등 서울시 관계자들이 참석한 가운데 ‘서울대공원 코끼리전기열차 개통식’을 가졌다.
이 열차에는 KAIST가 개발한 무선충전 기술이 적용됐다. 도로 하부 5cm 밑에 특수 전기선을 매설해 자기장을 발생시킨 후 발생된 자기력을 차량이 무선으로 공급받아 이를 전기로 변환, 동력원으로 사양하는 친환경 전기차다.
지난해 3월 KAIST는 서울시와의 시범사업으로 과천 서울대공원에서 디젤기관으로 운행되고 있는 무궤도 코끼리 열차를 무선충전 전기열차로 교체했다. 경유를 연료로 운행해 매연과 소음이 심각했던 코끼리 열차가 친환경 전기자동차로 탈바꿈한 것이다.
이후 시험운행을 실시해 시스템 안정성 및 효율성 등에 대한 검증을 완료하고, 서울시는 3대의 무선충전 전기열차를 추가 제작했다. 이로써 서울대공원을 방문하는 시민들 뿐만 아니라 동물원에 있는 동물들에게도 쾌적한 환경을 제공할 수 있게 됐다.
서울시와 추진한 시범사업 이후 KAIST는 ▲무선으로 대용량의 에너지를 안전하게 전달할 수 있는 자기장을 형상화하는 기술(SMFIR)의 원천기술을 상용수준으로 끌어올리고, ▲자기장이 인체에 미치는 전자기장(EMF) 안전성을 충분히 확보했으며, ▲주파수 배분, 전기안전 검증 등 신기술 상용운행에 대한 법제도 기반을 마련해 서울대공원 코끼리전기열차의 상용운행의 길을 열었다.
앞으로 서울대공원을 달릴 코끼리전기열차는 주행 및 정차 중 무선으로 대용량의 에너지를 실시간 전달받기 때문에 별도의 충전이 필요 없으며, 비접촉 무선충전으로 감전의 위험에서 자유롭다.
또한, 서울대공원 무궤도열차 순환구간 2.2km 중 약 16% 구간에 급전인프라를 구축해 무제한 운행하므로 경제성이 뛰어나며, 대기오염 물질을 전혀 배출하지 않는 친환경 전기열차다.
전자파 안전성 부분에서는 국내에서 규정하고 있는 기준(62.5mG)을 만족하고, 공인시험기관으로부터 성적서도 확보한 상태이다.
KAIST 조동호 온라인전기자동차사업단장은 “KAIST가 세계최초로 개발한 무선으로 대용량 에너지를 안전하게 전달하는 원천기술(SMFIR)은 다양한 분야에 적용가능하다”며 “서울대공원 코끼리전기열차 상용운행을 시작으로 버스에 이어, 철도 항만 등의 수송시스템에 우리 기술을 접목하는 연구를 진행할 계획이고, 앞으로는 가전이나 휴대기기에 대한 연구도 진행할 생각”이라고 말했다.
서울대공원 코끼리전기열차 상용운행은 냄새와 먼지 없는 아름답고 쾌적한 공원 환경을 조성한다. 더불어 국내 최대의 종합테마공원인 서울대공원을 방문하는 수많은 어린이 및 청소년에게 세계 최초로 KAIST가 개발한 전기자동차 기술을 직접 체험할 수 있는 기회를 제공함으로써 또 하나의 과학 체험 교육의 장을 마련했다는 의의도 갖게 된다.
한편, KAIST 무선충전전기자동차는 2010년 미국 시사주간지인 타임(Time)지가 꼽은 세계 50대 발명품 가운데 하나로 선정된 바 있다.
2011.07.21
조회수 18950
-
신속·간편한 유전자 진단 신기술 개발
- 독일‘스몰’지 표지논문 선정,“다양한 병원균 감염 여부 신속히 진단하는 새로운 원천기술”-
표적 DNA를 현장에서 신속, 간편하게 육안으로 진단할 수 있는 발색 진단 기술이 국내 연구자의 주도로 개발되었다.
우리 학교 박현규 교수가 주도한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 오세정)이 추진하는 중견연구자지원사업(도약연구)의 지원으로 수행되었다.
박현규 교수 연구팀은 자성 나노입자가 과산화효소 활성을 나타낸다는 최근 이론을 활용하여, PCR(중합효소 연쇄반응)에 의해 증폭된 DNA를 육안으로 쉽게 검출하는 발색 유전자 진단 신기술을 개발하였다.
이 기술은 진단하고자 하는 표적 DNA를 PCR 반응으로 증폭시키면, 증폭된 DNA가 자성 나노입자의 과산화효소 활성을 현저히 저해한다는 사실에 기반을 두고 있다.
즉, 표적 유전자가 없으면 자성 나노입자의 과산화효소 활성으로 특정한 발색 반응이 일어나 색 전이현상이 일어나지만, 표적 유전자가 있으면 PCR 반응에 의해 증폭되어 자성 나노입자의 과산화효소 활성을 막아 색 전이현상이 나타나지 않는다.
이러한 발색 반응 유무는 육안으로도 쉽게 식별할 수 있어, 기존의 복잡한 유전자 진단기술을 획기적으로 간편화시킨 새로운 유전자 진단기술로 평가된다.
경제성과 실용성을 갖춘 유전자 진단 기술 분야의 혁신적 원천기술로서, 임상적으로도 유용하게 활용될 수 있다는 것이 특징이다.
박 교수팀의 기술은 기존의 금 나노입자 기반 유전자 진단 기술과는 달리, 금 나노입자 표면에 DNA 분자를 결합하는 과정이나 색 전이 유도를 위해 염을 첨가하는 과정 등의 추가 처리가 불필요하기 때문에 값싸고 편리한 유전자 진단 기술 개발을 위한 새로운 원천기술로 기대하고 있다.
연구팀은 성병을 유발하는 병원균(클라미디아 트라코마티스)에 감염된 샘플을 대상으로 이 기술을 적용하여 원인균 감염 여부를 색 전이현상을 통해 육안으로 정확히 식별해냄으로써 임상 유용성을 훌륭하게 검증하였다.
박현규 교수는 “자성나노입자의 원리를 이용한 이 신기술은 다양한 병원균 감염을 신속히 진단하기 위한 새로운 원천기술로서, 각종 생체물질과 화학물질을 검출하는 기술로 확대되어 다각적으로 활용될 것으로 전망한다”고 연구의의를 밝혔다.
한편, 이번 연구결과는 나노과학 분야의 권위 있는 학술지인 독일의 ‘스몰(Small)’지 6월호(6월 6일자)에 표지논문으로 게재되는 영예를 얻었다.
2011.06.29
조회수 15010
-
생명의 기원과 진화의 비밀 풀 수 있는 열쇠(커널) 찾아내다
- Science 자매지 표지논문발표,“인간 세포의 주요기능 그대로 보존한 최소 핵심구조 규명”-
세포를 구성하는 복잡하고 거대한 분자네트워크의 주요기능을 그대로 보존한 최소 핵심구조(커널)가 국내 연구진에 의해 규명되었다.
특히 커널에는 진화적․유전적․임상적으로 매우 중요한 조절분자들이 대거 포함되어 있다는 사실이 밝혀짐에 따라, 향후 생명의 기원에 관한 기초연구와 신약 타겟 발굴 등에 큰 파급효과가 있을 것으로 기대된다.
우리 학교 조광현 교수 연구팀(김정래, 김준일, 권영근, 이황열, 팻헤슬롭해리슨)의 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 오세정)이 추진하는 중견연구자지원사업(도약연구), 기초연구실육성사업, 시스템인포메틱스사업(칼슘대사시스템생물학) 및 WCU육성사업의 지원으로 수행되었다.
이번 연구결과는 세계적인 학술지인 ‘사이언스’의 첫 번째 자매지로서 세포신호전달분야의 권위지인 ‘사이언스 시그널링(Science Signaling)’지(5월 31일자) 표지논문에 게재되는 영예를 얻었다.
(논문명 : Reduction of Complex Signaling Networks to a Representative Kernel)
생명체를 구성하는 다양한 분자들은 사람과 마찬가지로 복잡한 관계로 얽혀 거대한 네트워크를 형성한다.
현대 생물학의 화두로 떠오른 IT와 BT의 융합학문인 ‘시스템생물학’의 발전에 따라, 생명현상은 복잡한 네트워크로 연결된 수많은 분자들의 집단 조절작용으로 이루어진다는 사실이 점차 밝혀지고 있다. 즉, 특정기능을 담당하는 단일 유전자나 단백질의 관점에서 벗어나 생명체를 하나의 ‘시스템’으로 바라보게 된 것이다.
그러나 생명체 네트워크의 방대한 규모와 복잡성으로 근본적인 작동원리를 이해하는데 여전히 한계가 있다. 일례로, 세포의 다양한 정보처리를 위해 진화해 온 인간세포 신호전달 네트워크는 현재까지 약 2,000여개의 단백질과 8,000여 가지의 상호작용으로 이루어져 있다고 알려졌고, 아직 확인되지 않은 부분까지 고려하면 실제 더욱 복잡한 네트워크일 것으로 추정된다.
생명체의 조절네트워크는 태초에 어떻게 만들어졌고, 어떻게 진화되어 왔을까? 그 복잡한 네트워크의 기능을 그대로 보존하는 단순한 핵심구조가 존재하고 그것을 찾아낼 수 있다면, 인류는 복잡한 네트워크에 대한 수많은 수수께끼를 풀 수 있을 것이다.
조광현 KAIST지정석좌교수 연구팀은 이 수수께끼의 열쇠인 복잡하고 거대한 세포 신호전달 네트워크의 기능을 그대로 보존하는 최소 핵심구조인 커널을 찾아냈다.
연구팀은 새로운 알고리즘을 개발하고, 이를 대규모 컴퓨터시뮬레이션을 통해 대장균과 효모 및 인간의 신호전달 네트워크에 적용한 결과, 각각의 커널을 확인할 수 있었다.
매우 흥미로운 사실은 이번에 찾아낸 커널이 진화적으로 가장 먼저 형성된 네트워크의 뼈대구조임이 밝혀진 것이다. 또한 커널에는 생명유지에 반드시 필요한 필수유전자뿐만 아니라 질병발생과 관련된 유전자들이 대거 포함되어 있었다.
이번 연구를 주도한 조광현 교수는 “특히 이번에 찾은 커널에는 현재까지 FDA(미국식품의양국)에서 승인한 약물의 타겟 단백질이 대량 포함되어 있어, 커널 내의 단백질들을 대상으로 향후 새로운 신약 타겟이 발굴될 가능성이 높아, 산업적으로도 큰 파급효과가 있을 것으로 기대한다”고 연구의의를 밝혔다.
<세포내 신호전달네트워크에 존재하는 최소 핵심구조 "커널">
<논문표지>
2011.06.22
조회수 17801
-
빛을 이용해 뇌로 약물을 전달한다
KAIST 최철희 교수팀, 신경약물전달 신기술 세계 최초 개발
뇌혈관은 혈뇌장벽이라는 특수한 구조로 이루어져 있는데, 레이저로 혈뇌장벽의 투과성을 조절하여 투여된 약물을 뇌로 안전하게 전달하는 기술이 국내 연구진에 의해 세계 최초로 개발됐다.
이번 연구는 교육과학기술부의 ‘21세기 프론티어 뇌기능활용 및 뇌질환 치료기술개발사업단’(단장 김경진)의 지원을 받아 우리학교 최철희(바이오 및 뇌공학과․43) 교수팀 주도로 수행되었다.
혈뇌장벽은 대사와 관련된 물질은 통과시키고 그 밖의 물질은 통과시키지 않는 기능을 함으로써 약물이 뇌로 전달되는 것이 어려웠다.
이런 기능 때문에 우수한 효능을 가진 약물조차 대부분 차단되어 실제로 환자에게 적용할 수 없는 경우가 많아, 약물의 효능을 최대한 유지하면서 혈뇌장벽을 어떻게 통과시키느냐가 이 분야 연구의 핵심과제였다.
원활한 약물 전달을 위해 약물의 구조를 변경하거나 머리에 작은 구멍을 내고 약물을 주사하는 방법도 시도되었지만 고비용과 위험성으로 널리 응용되지 못하고 있었다.
최 교수팀은 기존 기술의 한계를 극복하기 위해 극초단파 레이저빔을 1000분의 1초 동안 뇌혈관벽에 쬐어주는 방법으로 혈뇌장벽의 기능을 일시적으로 차단함으로써 약물을 원하는 부위에 안전하게 도달할 수 있게 하는 신개념 약물전달기술을 개발했다.
레이저 빔을 약물이 들어있는 혈관에 쬐이면 혈뇌장벽이 일시적으로 자극을 받아 수도관이 새는 것 같은 현상을 일으켜 약물이 혈관 밖으로 흘러나와 뇌신경계 등으로 전달된다. 정지된 기능은 몇 분 뒤 다시 제 기능을 되찾는다.
최 교수는 “이번 연구는 새로운 신경약물전달의 원천기술을 확립하였다는 점과, 레이저를 이용한 안정적인 생체 기능 조절 기반기술을 구축하였다는 점에서 커다란 의미가 있다”며, “앞으로 이 기술을 세포 수준으로 영역을 확대하는 한편 후속 임상 연구를 통해 실용화할 계획”이라고 밝혔다.
연구 결과는 신경약물전달 원천기술로서 특허 출원 중이며 세계적 저명 학술지인 미국 국립과학원 회보(2011.05.16자)에 게재됐다.
레이저를 이용하여 뇌혈관의 기능을 조절함으로써 원하는 뇌 부위에 안정적으로 약물을 전달할 수 있는 원천기술
2011.05.26
조회수 15632
-
생체모방 탄소나노튜브 섬유 합성기술 개발
- 재료분야 저명 국제학술지 ‘어드밴스드 머티리얼스’ 표지 논문 게재- 강도가 3배 이상 향상된 차세대 초경량 초고강도 전도성 신소재 개발
홍합을 지지하고 있는 섬유형태의 족사는 강한 파도가 치는 해안가와 같은 다른 생물이 살기 어려운 환경에서도 바위에 단단히 붙어서 생존한다. 이러한 특성은 홍합 족사의 독특한 구조와 고강도 접착성 때문이다.
우리학교 신소재공학과 홍순형 교수와 화학과 이해신 교수, 생명과학과 故 박태관 교수로 구성된 공동연구팀이 자연계의 홍합 족사 구조를 모방해 탄소나노튜브를 기반으로 한 초고강도 전도성 섬유 제조 원천기술개발에 성공했다.
탄소나노튜브는 1991년 일본의 이지마 교수(현 성균나노과학기술원장)에 의해 발견된 이후 우수한 전기적, 열적, 그리고 기계적 특성으로 차세대 신소재로 각광 받았으나 길이가 수 나노미터 수준으로 미세해 산업용 제품으로 응용하는 데 한계가 있었다.
KAIST 연구팀은 이러한 난제를 자연계의 홍합 족사 구조에 착안해 해결했다.
홍합 족사에는 콜라겐 섬유와 Mefp-1 단백질이 가교 구조(cross-linking structure)로 결합되어 있다. 이 Mefp-1 단백질속에는 카테콜아민이라는 성분이 있어 콜라겐 섬유끼리 강하게 결합한다.
연구팀은 고강도 탄소나노튜브 섬유가 콜라겐 섬유 역할을, 고분자 구조 접착제가 카테콜아민과 같은 역할을 하도록 했다. 그 결과 길이가 길고 가벼우면서도 끊어지지 않는 초경량 초고강도 탄소나노튜브 섬유를 개발했다.
KAIST 홍순형 교수는 “개발된 탄소나노튜브 섬유는 기존의 구조용 탄소강에 비해 강도가 3배 이상 향상된 차세대 초경량 초고강도 고전도성 신소재”라며 “향후 방탄소재, 인공근육소재, 방열소재, 전자파 차폐소재, 스텔스소재 및 스페이스 엘리베이터 케이블 등 다양한 산업계에 응용이 가능하다”고 말했다. 아울러 “새로운 나노융합 소재 산업의 기술혁신을 이룰 수 있을 것”이라고 홍 교수는 덧붙였다.
이번 연구결과는 독일에서 발간되는 재료분야 국제저명학술지인 어드밴스드 머티리얼스(Advanced Materials) 5월 3일자 표지 논문으로 선정됐으며, 최근 국내 및 국외에 4건의 특허 출원 및 등록이 결정됐다.
한편, 이번 연구는 교육과학기술부 21세기 프론티어 연구개발 사업단, 세계수준의 연구중심대학(WCU) 육성사업, KAIST 나노융합연구소 등으로부터 지원받아 수행됐다.
2011.05.11
조회수 24258
-
신개념 심혈관질환 진단시스템 개발
- 심혈관질환 진단을 위한 호모시스테인 분석법 개발 연구에 큰 진보- 분석화학분야 세계적 학술지‘어널리티컬 케미스트리誌’4월호 표지논문 선정
신속하고 간편한 신개념 심혈관질환 진단시스템이 국내연구진에의해 개발됐다.
우리학교 생명화학공학과 박현규 교수는 대장균을 이용해 심혈관질환을 유발하는 혈액 속 호모시스테인(Homocysteine)의 농도를 분석하는 기술을 개발했다.
연구팀은 유전자 재조합을 통해 서로 다른 두 개의 생물발광 대장균 영양요구주를 만들어 호모시스테인에 대한 두 균주의 성장차이를 생물발광 신호로 분석했다.
이 기술은 많은 수의 혈액 샘플을 대량으로 동시에 분석할 수 있어 매우 경제적이기 때문에 최근 급성장하는 호모시스테인 정량검사 분야의 상업화에 커다란 진보를 일궈낸 것으로 평가받고 있다.
기존의 효소반응 또는 고성능 액체크로마토그래피(High Performance Liquid Chromatography)를 이용하는 방법은 비교적 긴 시간이 소요되며 가격이 비싼 단점이 있었다.
연구팀은 이를 극복해 아무런 추가 조작 없이 유전자 재조합 대장균을 배양하고 이에 따라 자동적으로 생성되는 발광신호를 측정함으로써 호모시스테인을 매우 신속하고 간편하게 측정할 수 있었다.
박현규 교수는 “이 기술은 심혈관질환을 유발하는 호모시스테인을 유전자 재조합 대장균을 이용해 정확하게 분석하는 신개념 분석법으로 학계에서 최초로 발표된 신기술이다”라고 말했다.
이번 연구는 그 중요성을 인정받아 분석화학 분야의 세계적인 학술지인 ‘어낼리티컬 케미스트리(Analytical Chemistry)’ 4월호(4월 15일자) 표지논문으로 선정됐다.
한편, 생명화학공학과 박현규 교수와 우민아 박사과정 학생이 주도한 이번 연구는 한국연구재단(이사장 오세정)이 시행하는 ‘중견연구자지원사업(도약연구)’의 지원을 받아 수행됐다.
2011.04.27
조회수 16010
-
태양전지 소재 이용, 인공광합성 기술개발
- 국제저명학술지 어드밴스드 머티어리얼스 최근호 게재- 이종 분야 (생명과학, 태양전지)간 융합연구 성공사례로 주목
인류는 지금 지구온난화와 화석 연료의 고갈이라는 문제점을 갖고 있다. 이를 해결하기 위해 온난화의 원인인 이산화탄소를 배출하지 않고 무제한으로 존재하는 태양 에너지를 이용하려는 노력이 계속되고 있다.
이러한 가운데 우리학교 신소재공학과 박찬범 교수와 류정기 박사팀이 태양전지 기술을 이용해 자연계의 광합성을 모방한 인공광합성 시스템 개발에 성공했다.
이 기술은 정밀화학 물질들을 태양에너지를 이용해 생산해 내는 ‘친환경 녹색생물공정’ 개발의 중요한 전기가 될 전망이다.
광합성은 생물체가 태양광을 에너지원으로 사용해 일련의 물리화학적 반응들을 통해 탄수화물과 같은 화학물질을 생산하는 자연현상이다.
박 교수팀은 이 같은 자연광합성 현상을 모방해 빛에너지로부터 정밀화학 물질 생산이 가능한 신개념 ‘생체촉매기반 인공광합성 기술’을 개발했다.
이번 연구에서 연구팀은 자연현상 모방을 통해 개발된 염료감응 태양전지의 전극구조를 이용해 다시 자연광합성 기술을 모방해 발전시킬 수 있다는 것을 증명해냈다.
박찬범 교수는 “지난해 양자점을 이용한 인공광합성 원천기술을 개발해 한국과학기술단체 총연합회가 선정한 10대 과학기술뉴스로 선정된 바 있다”며 “이번 연구 결과는 광합성효율을 획기적으로 향상시킴으로써 인공광합성 기술의 산업화에 한 걸음 더 다가선 것으로 평가된다”고 강조했다.
이번 연구는 독일에서 발간되는 재료분야 국제저명학술지인 어드밴스드 머티리얼스(Advanced Materials) 4월 26일자에 게재됐으며 특허출원이 완료됐다.
한편, 연구결과는 재료공학과 생명과학분야의 창의적인 융합을 통해 새로운 공정기술을 개발하는 데 크게 기여했다는 평가를 받았으며, 교육과학기술부 신기술융합형 성장동력사업(분자생물공정 융합기술연구단), 국가지정연구실, KAIST EEWS 프로그램 등으로부터 지원받아 수행됐다.
2011.04.26
조회수 20056
-
간단하고 저렴한 유전자 진단 기술 개발
- “유전자 진단의 시간과 비용을 획기적으로 절감할 수 있어”- 분석화학분야 세계적 학술지‘아날리스트’4월호 표지논문 선정
우리학교 박현규 생명화학공학과 교수가 전기화학적 활성을 가진 핵산 결합 분자인 메틸렌 블루(Methylene Blue)를 이용해 전기화학적 실시간 중합효소 연쇄 반응(Real-Time PCR) 기술을 개발했다.
현재 유전자 분석 분야에서 가장 널리 사용되고 있는 Real-Time PCR(Polymerase Chain Reaction) 방법은 형광 신호를 이용하기 때문에 고가의 장비와 시약이 사용되는 분석 기술이다.
이에 반해 전기화학적 방법은 사용이 간편하고 가격이 저렴하며, 무엇보다 분석 장치를 소형화 할 수 있는 이점이 있다.
박 교수 연구팀은 산화/환원을 통해 전기화학적인 신호를 발생하는 물질인 메틸렌 블루가 핵산과 결합하면 전기화학적 신호가 감소하는 현상에 착안, 이를 PCR에 적용해 핵산의 증폭 과정을 전기화학적 신호를 통해 실시간으로 검출할 수 있는 전기화학적 Real-Time PCR을 구현하는 데 성공했다.
또한, 이 신호 변화 현상이 메틸렌 블루의 확산 계수와 관련된 것임을 규명해 향후 다양한 방법으로 응용될 수 있는 신호 발생을 기반으로 한 기술도 확립했다.
연구팀은 이를 기반으로 전극이 인쇄된 작은 칩을 제작해 성병 유발 병원균인 클라미디아 트라코마티스(Chlamydia trachomatis)의 유전자를 대상으로 연구를 수행했다.
그 결과 기존 형광 기반의 Real-Time PCR과 거의 동일한 성능을 보였다. 따라서 다양한 질병 진단을 비롯해 다양한 유전자 연구 분야에 적용할 수 있음을 입증했다.
박현규 교수는 “Real-Time PCR 기술이 현재 유전자 진단 분야에서 가장 확실한 분석 방법임에도 불구하고 형광 기반의 분석 방법이다 보니 고가의 검출 장비 및 분석 시약을 필요로 한다”며 “이번 연구 결과로 유전자 진단에 소요되는 시간과 비용을 획기적으로 절감할 수 있다”라고 설명했다.
한편, 이번 연구는 한국연구재단(이사장 오세정)이 시행하는 ‘중견연구자 지원 사업(도약연구)’으로 수행됐으며, 연구의 중요성을 인정받아 분석화학 분야의 세계적인 학술지인 ‘아날리스트(The Analyst)’ 4월호(4월 21일자) 표지논문으로 선정됐다.(끝)
<그림설명>신호 분자 결합에 의한 전기화학적 Real-Time PCR 모식도 (아날리스트 표지)
<용어설명>○ Real-Time PCR (실시간 중합효소연쇄반응): 중합효소연쇄 반응을 통해 증폭되는 핵산을 실시간으로 모니터링을 하고 해석하는 기술
○ PCR: (Polymerase Chain Reaction, 중합효소 연쇄 반응): 현재 유전물질을 조작해 실험하는 거의 모든 과정에 사용되는 검사법으로, 검출을 원하는 특정 표적 유전물질을 증폭하는 방법이다. 1985년에 캐리 멀리스(Kary B. Mullis)에 의해 개발됐다.
○ Chlamydia Trachomatis: 클라미디아 트라코마티스(chlamydia trachomatis)라는 병원균에 의한 성병으로 성적 접촉으로 점염되어 비뇨생식계에 질병을 일으키는 감염증의 가장 흔한 원인균.
2011.04.21
조회수 16841