-
소금쟁이 착안해 나노박막 물성 측정법 개발
-“수 nm 두께 나노박막의 기계적 물성도 손쉽게 측정할 수 있어”-- 네이처 커뮤니케이션즈 3일자 게재 -
우리 학교 기계공학과 김택수 교수와 한국기계연구원(원장 최태인) 나노역학연구실 현승민 박사 공동연구팀은 물 표면의 특성을 이용해 나노박막의 기계적 물성을 평가하는 새로운 방법을 개발했다.
연구결과는 세계적 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)" 3일자 온라인판에 게재됐다.
이번에 개발된 기술을 활용하면 직접 측정하기 어려운 나노박막의 강도, 탄성 등 기계적 물성을 직접 측정해 정확한 결과 값을 얻을 수 있다. 또 방법이 간단해 나노박막 기계적 물성 평가의 새로운 패러다임을 제시한 것으로 학계와 산업계는 평가하고 있다.
나노박막의 기계적 물성 평가는 반도체, 디스플레이 등의 신뢰성을 예측하는데 중요한 것은 물론 나노 세계의 새로운 현상을 발견하는데도 필요하다. 그러나 기계적 강도는 구조물이 바닥으로부터 떨어져 측정을 하는데 나노박막의 경우 쉽게 부서지는 문제점이 있어 시험이 어려웠다.
연구팀은 소금쟁이와 같은 곤충이 물의 표면 위를 자유로이 떠다니는 것에 착안했다.
연구팀은 표면 장력이 크고 낮은 점성을 갖는 물의 특성을 이용해 물 표면에 약 55nm(나노미터) 금나노박막을 띄워 놓고 손상 없이 기계적 물성을 정확하게 특정하는데 성공했다.
이 기술을 이용하면 다양한 종류의 나노박막 뿐만 아니라 두께가 수 나노미터에 이르는 박막의 기계적 물성까지도 측정할 수 있을 것으로 기대된다.
김택수 교수는 이번 연구에 대해 “물의 특성을 이용한 새로운 강도 시험 방법의 개발을 통해 기존에 접근하기 어려웠던 나노박막의 기계적 물성 평가를 효과적으로 수행할 수 있게 됐다”고 의의를 밝혔다.
또 “향후 기존의 강도 시험법으로는 측정이 불가능했던 그래핀과 같은 2차원 나노박막의 기계적 물성을 밝혀나갈 계획”이라고 말했다.
KAIST 기계공학전공 김재한 박사과정(제1저자) 학생이 KAIST 김택수 교수, 한국기계연구원 현승민 박사의 지도를 받아 수행한 이번 연구는 한국연구재단 신진연구지원사업, 한국기계연구원 주요연구 사업과 21세기 프론티어 사업의 지원으로 수행됐다.
<물 표면을 이용한 나노박막의 기계적 물성 평가 과정>
<왼쪽에서부터 현승민 박사, 김재한 박사과정생, 김택수 교수 (카이스트, 한국기계연구원 공동 연구팀)>
2013.10.14
조회수 16891
-
세계 최초로 미생물 이용 가솔린 생산
- 대장균의 지방산 대사회로를 대사공학적으로 개량하여 알코올, 디젤, 가솔린 생산 -
우리 학교 연구진이 세계 최초로 대사공학적으로 개발된 미생물을 이용하여 바이오매스로부터 가솔린(휘발유)을 생산하는 원천기술을 개발했다. 이 신기술은 나무 찌꺼기, 잡초 등 풍부한 비식용 바이오매스를 이용하여 가솔린, 디젤과 같은 바이오연료, 플라스틱과 같은 기존 석유화학제품을 생산할 수 있어 생명공학 등 관련 산업기술 발전에 크게 기여할 것으로 기대된다.
이번 연구는 미래창조과학부(장관 최문기) 글로벌프론티어사업의 차세대 바이오매스 연구단(양지원 단장)과 기후변화대응 기술개발사업의 지원으로 이상엽 특훈 교수팀이 진행하였으며, 연구결과는 네이처(Nature) 9월 30일(온라인판)에 게재되었다.
* 논문명 : Microbial production of short-chain alkanes
연구팀은 세포의 유전자를 조작하여 원하는 형태의 화합물을 대량으로 생산하도록 하는 기술인 대사공학을 이용하여 크래킹(cracking) 없이 세계 최초로 미생물에서 직접 사용가능한 가솔린을 생산하는데 성공했다.
* 크래킹 : 끓는점이 높은 중질유를 분해하여 원료유보다 끓는점이 낮은 경질유로 전환하는 방법
가솔린은 탄소수가 4~12개로 이루어진 사슬모양의 탄화수소 화합물로 그 동안 미생물을 이용하여 ‘짧은 사슬길이의 Bio-Alkane(가솔린)’을 생산하는 방법은 개발되지 않았다. 따라서 기존 기술은 추가적인 크래킹(cracking) 과정을 거치지 않고는 가솔린으로 전환할 수 없어 비용과 시간이 많이 소요되는 한계가 있었다.
* 2010년 미국에서 사이언스지에 발표한 미생물 이용 Bio-Alkane(배양액 1리터당 약 300mg)의 경우 탄소 사슬 길이가 13~17개인 바이오 디젤에 해당
연구팀은 대사공학기술을 미생물에 적용하여 지방산 합성을 저해하는 요소를 제거하고, 지방산의 길이를 원하는 목적에 맞게 조절할 수 있는 효소를 새롭게 발견하였으며, 개량된 효소를 도입하여 미생물에서 생산하기 어려운 길이가 짧은 길이의 지방산 생산에 성공하였다.
또한 세포내에 생산된 짧은 길이의 지방산 유도체로부터 가솔린을 생산할 수 있는 추가 대사반응과 생물체 내에 존재하지 않는 식물 유래의 신규 효소를 포함하는 합성대사경로를 도입하여 최종 대장균 생산균주를 개발하였다. 이렇게 개발된 대장균을 배양하여 배양액 1리터당 약 580mg의 가솔린을 생산하는데 성공했다.
개발된 기술은 바이오 연료, 생분해성 플라스틱 등과 같은 다양한 바이오 화합물을 생산할 수 있는 플랫폼 기술이 될 수 있을 것으로 전망된다.
또한 이 기술을 활용하면 재생 가능한 바이오매스를 전환하여 바이오 연료, 계면활성제, 윤활유 등으로 이용할 수 있는 알코올(Fatty alcolols) 및 바이오 디젤(Fatty ester)도 생산이 가능하다는 점에서 기존의 석유기반 화학산업을 바이오기반 화학산업으로 대체하는 기반이 될 수 있을 것으로 기대된다.이상엽 교수는 “비록 생산 효율은 아직 매우 낮지만 미생물을 대사공학적으로 개량하여 가솔린을 처음으로 생산하게 되어 매우 의미있는 결과라고 생각하며, 향후 가솔린의 생산성과 수율을 높이는 연구를 계속할 예정”이라고 밝혔다.
그림 1. 대장균을 이용한 바이오 매스로부터 short-chain alkane(가솔린)을 생산하는 대사회로
a) 지방산 분해 회로 차단, b) 바이오 매스로부터 짧은 길이의 지방산을 대량 생산, c) 지방산을 가솔린 생산의 중간체인 fatty acyl-CoA로의 전환 유도, d) fatty acyl-CoA의 가솔린의 직접적인 전구체인 fatty aldehyde로의 전환 유도, e) 최종 가솔린 생산
(보충설명) 미생물의 세포 내부를 들여다보면, 매우 복잡한 지방산 대사회로 네트워크가 존재 한다. 지방산은 세포 내부에서 합성되어, 미생물이 살아가는데 필요한 세포막을 형성하거나, 분해되어 에너지원으로 사용되기도 한다. 대부분의 미생물에서 지방산은 전체 세포의 1%도 되지 않을 만큼 소량 만들어지고, 지방산의 길이 또한 매우 길기 때문에, 이러한 지방산을 이용해서 우리가 원하는 화합물을 대량으로 만들거나, 새로운 화합물을 생산하는 것은 매우 어려웠다. 이를 극복하기 위하여, 이상엽 특훈교수 연구팀은 시스템 대사공학적 기법을 대장균에 도입하여 효소의 개량 및 지방산 합성을 저해하는 요소를 제거하여 짧은 길이의 지방산 과생산에 성공하였고, 생물체내에 존재 하지 않는 신규 회로를 도입하여 지방산을 가솔린으로 전환하는데 성공하였다.
그림 2. short chain alkane을 생산하는 발효 공정 시스템 (보충 설명) 위와 같은 cooling 장치가 연결된 발효기를 통하여 가솔린을 생산함
2013.10.01
조회수 23031
-
건강한 망막혈관 생성을 유도하는 치료방법 개발
- 향후 당뇨망막병증 치료방법으로 적용 기대
우리 학교 연구진이 실명으로 이어질 수 있는 망막혈관 질환치료의 실마리를 찾아냈다. 혈액공급이 잘되지 않는 망막 부위로 건강한 망막혈관이 생성되도록 하여 망막신경을 보호하는 혈관생성단백질을 찾아낸 것. 향후 당뇨망막병증*과 미숙아망막병증**의 치료방법 개선을 위한 연구의 단초가 될 것으로 기대된다.
이번 연구결과는 국내에서 전문적인 기초과학 교육을 받고 있는 안과 전문의 연구원에 의해 이루어진 대표적인 중개연구의 결과여서 더욱 주목받고 있다.
* 미숙아망막병증 : 망막 혈관의 발달이 완성되지 않은 시기에 출생한 미숙아에서 발생하는 망막 혈관질환으로 소아실명의 가장 흔한 원인 질환이다.
* 당뇨망막병증 : 당뇨병의 합병증으로 망막조직으로의 불충분한 혈액공급으로 생기는 망막 혈관질환으로 성인실명의 중요한 원인 질환이다.
우리 학교 의과학대학원 이준엽 연구원이(안과 전문의, 지도교수: 고규영,유욱준) 수행한 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 중견연구자지원사업(도약)의 지원으로 수행되었고, 연구결과는 사이언스 중개의학(Science Translational Medicine) 표지논문(9월 18일자)으로 소개되었다. 이 학술지는 임상의학과 기초과학을 연계하는 중개의학 분야 권위지로 사이언스지 자매지이다.
(논문명 : Angiopoietin-1 Guides Directional Angiogenesis Through Integrin αvβ5 Signaling for Recovery of Ischemic Retinopathy)
당뇨망막병증의 치료에는 망막조직을 파괴하는 레이저광응고술이나혈관증식과 혈액누출을 억제하는 항체치료제*가 적용되고 있다.
항체치료제는 망막신경을 파괴하지 않는 장점이 있지만 한시적으로 혈관증식을 억제할 뿐, 근본적인 해결이 아니어서 반복적인 치료가 필요하다는 한계가 있었다.
* 항체치료제 : 비정상적인 혈관증식과 혈액누출을 선택적으로 억제하기 위하여 개발된 항체로서, 현재 혈관내피세포성장인자 (VEGF)를 저해하는 아바스틴 (Avastin) 과 루센티스 (Lucentis) 가 대표적인 항체치료제이다.
연구팀은 개체의 발달과정에서 혈관의 생성과 안정화에 필수적이라고 알려진 안지오포이에틴-1* 단백질이 망막혈관의 생성과정에도 중요한 역할을 함을 동물실험을 통해 규명해냈다.
망막출혈에 의한 시력상실의 근본 원인이 되는 망막허혈**을 개선하고 망막신경을 보호하는 단백질을 알아낸 것이다.
망막조직으로 충분한 혈액을 공급해 망막신경의 기능을 보존하는 방식의 근본적인 치료방법 개발의 실마리가 될 것으로 기대된다.
* 망막허혈 : 망막 조직에 충분한 혈액 공급이 되지 않는 상태
* 안지오포이에틴-1(Angiopoietin-1) : 건강한 혈관의 생성을 유도하고 생성된 혈관의 안정화를 유지하는 데 중요한 성장인자.
실제 안지오포이에틴-1을 망막병증 생쥐모델의 안구에 투약한 결과 건강한 망막혈관의 생성이 촉진되어, 망막허혈에 따르는 비정상적인 혈관증식이나 망막출혈, 시력상실이 예방되었다.
이준엽 연구원은 “이번 연구는 안지오포이에틴-1이 망막혈관의 생성과 안정화에 중요한 인자라는 사실을 새롭게 규명함으로써 혈관생성을 억제하는 현재의 치료법에서 건강한 혈관을 생성하고 혈관의 기능을 강화하는 방식의 치료법으로 패러다임이 전환될 것을 기대한다”고 연구 의의를 밝혔다.
그림 1. 망막병증 생쥐모델에서의 안구 내 투여한 Angiopoietin-1의 역할 대조군에 비해 VEGF-Trap 치료군과 Angiopoietin-1 (Ang1) 치료군은 병적인 혈관의 증식을 유의하게 억제함 (아래), 추가적으로 Ang1 치료군은 망막 중심부의 무혈관부위(망막허혈)를 향하여 혈관이 생성되었고, 이러한 현상은 VEGF-Trap 치료군에서는 관찰되지 않음 (위).
그림 2. Angiopoietin-1에 의한 망막허혈과 망막 출혈의 감소 및 혈관의 정상화 (좌) 대조군에 비해 Angiopoietin-1 (Ang1) 치료군은 망막허혈부위 면적(화살표)을 유의하게 감소시켰으며, 망막 출혈의 양도 Ang1 치료에 의해 감소함. (우) Ang1 에 의해 새롭게 형성된 혈관은 정상 망막 혈관과 같이 혈관주위세포에 의한 지지를 받는 구조적으로 안정된 혈관임.
그림 3. Angiopoietin-1에 의한 망막 신경 보호 효과 (위) 대조군에 비해 Angiopoietin-1 (Ang1) 치료군은 망막 중앙부 와 주변부의 신경세포의 세포자멸사를 유의하게 억제함. (아래) 이러한 Ang1에 의한 망막 신경 보호 효과는 전기 생리학적 검사인 망막전위도 검사를 통해 확인됨.
그림 4. Angiopoietin-1 이 망막 혈관 생성을 유도하는 기전 Angiopoietin-1은 망막 혈관의 내피세포 (Endothelial cell) 에 작용하여 혈관의 안정성 유지에 중요한 역할을 할 뿐만 아니라 망막의 별아교세포 (Astrocyte) 의 integrin 수용체를 통하여 fibronectin 이라는 세포외기질의 생성을 증가시켜 망막 조직 내로의 혈관 생성의 경로를 안내하는 역할을 함.
2013.09.22
조회수 19077
-
다양한 물질로 만든 나노선 상용화 가능성 열려
- 산·학·연 2년간 공동연구 끝에 나노선 상용화 가능한 기술 개발 -- 폭 50nm, 길이 20cm 나노선 2시간이면 200만 가닥 대량생산 가능해 -
폭이 수십 나노미터 정도로 매우 얇은 나노선의 상용화를 앞당길 혁신적인 기술이 국내 산·학·연 공동연구진에 의해 개발됐다. 향후 나노선을 이용한 반도체, 고성능 센서, 생체소자 등 다양한 분야에 활용될 것으로 전망된다.
우리 학교 전기및전자공학과 윤준보 교수 연구팀은 (주)LG이노텍(대표 이웅범), 나노종합기술원(원장 이재영)과 공동으로 첨단 과학 분야에서 핵심적인 소재로 쓰이고 있는 나노선을 다양한 소재로 필요한 길이만큼 대량 생산할 수 있는 기술을 개발했다.
연구결과는 나노 과학 분야의 권위 있는 학술지인 ‘나노 레터스(Nano Letters)’ 7월 30일자 온라인판에 게재됐다.
나노선은 폭이 최대 100나노미터 정도에 불과한 긴 선 모양의 구조체로 기존에 발견되지 않았던 다양한 열적, 전기적, 기계적 특성을 보이는 다기능성 나노 소재다. 나노 세계에서만 보이는 특성을 활용하기 위해 나노선은 반도체, 에너지, 생체소자, 광학소자 등 다양한 분야에 활용될 수 있는 첨단 소재로 각광 받고 있다.
그러나 수 밀리미터를 성장시키는데 3~4일이 소요될 만큼 합성 속도가 매우 느리고 대량 생산이 어려운 것은 물론 원하는 물질을 자유자재로 나노선으로 제작할 수 있는 기술이 개발되지 않았다.
또 제작된 나노선을 실제로 적용하기 위해서는 가지런히 정렬시켜야 하는데 기존 기술은 정렬을 위해 복잡한 후처리를 해야 하고 정렬 상태도 완벽하지 못해 상용화에 커다란 걸림돌이었다.
연구팀은 이러한 종래의 문제점을 극복하기 위해 기존의 화학적 합성법을 사용하지 않고 반도체공정을 적용했다.
연구팀은 직경 20센티미터의 실리콘 웨이퍼 기판에 광식각 공정을 이용해 목표하는 주기보다 큰 패턴을 형성한 뒤 이 주기를 반복적으로 줄여가는 방법을 이용해 100나노미터 초미세 선격자 패턴을 제작했다.
이 패턴을 기반으로 반도체 제조과정에서 널리 쓰이는 박막증착공정을 활용해 폭 50nm(나노미터), 최대 길이 20cm(센티미터)의 나노선을 완벽한 형태로 대량 제조하는데 성공했다.
개발된 기술은 장시간의 합성 공정을 거칠 필요가 없으며 별도의 후처리를 하지 않아도 완벽하게 정렬된 상태로 만들 수 있어 상용화 가능성이 높은 것으로 학계와 산업계는 평가하고 있다.
윤준보 교수는 이번 연구에 대해 “낮은 생산성, 긴 제조시간, 물질합성의 제약, 나노선 정렬 등과 같은 기존 기술의 문제점을 해결했다는 데 의미가 있다”면서 “그동안 나노선을 산업적으로 널리 활용하지 못했지만 개발된 기술을 활용하면 나노선을 사용한 고성능의 반도체, 광학, 바이오 소자 등의 상용화를 앞당길 수 있을 것”이라고 밝혔다.
KAIST 전기및전자공학과 연정호 박사과정 학생, LG이노텍 이영재 책임연구원 나노종합기술원 유동은 선임연구원이 참여한 이번 연구는 미래창조과학부(장관 최문기)와 한국연구재단(이사장 이승종)이 추진하는 중견연구자지원사업(도약연구)의 지원으로 수행됐다.
2013.08.22
조회수 15724
-
명현 교수, 해파리 퇴치용 군집 로봇 개발
- 3대의 군집 로봇으로 현장 시연 완료 -
우리 학교 건설 및 환경공학과 명현 교수 연구팀이 해파리 퇴치용 로봇 제로스 (JEROS)를 이용한 협업 군집 로봇 개발을 완료하고 이를 현장에서 시험했다.
최근 우리나라 연근해에 해파리 떼가 출몰하면서 해파리로 인한 인명 사고와 조업 손실(연간 3,000억원 정도 추산됨)이 큰 문제가 되고 있는 가운데, 명현 교수 연구팀은 4년 전 해파리를 제거할 수 있는 무인 자동화 시스템인 ‘제로스’ 개발에 착수했으며, 작년에 1대로 현장 시험을 완료한 바 있다.
올해에는 제로스의 속도 및 퇴치 성능을 향상시키고 3대를 제작하여, 편대를 지으며 협동으로 해파리를 퇴치하는 군집 로봇을 개발, 현장에서 시험을 진행했다.
무인 수상 로봇의 일종인 ‘제로스’는 길이 1.5m, 폭 1m, 높이 1m이고, 폭 1.2m, 높이 1.2m 크기의 분쇄부를 탈부착 가능하다. 원기둥 형태의 두 개의 동체가 부력을 유지하며, 동체에 붙어 있는 두 개의 추진 모터를 이용해서 전・후진 및 회전이 가능하다. 또한 GIS (지리정보시스템) 기반 맵 데이터를 이용하여 해파리 퇴치 작업 영역을 지정하면 작업 경로를 자동으로 계산을 하며 GPS(위성항법장치) 수신기 및 IMU(관성항법장치)를 이용하여 자율 운항을 한다.
군집 로봇은 삼각 편대, 일렬 편대와 같이 정해진 패턴을 유지하는 동시에, 계산된 경로를 따라가며 해파리 퇴치 작업을 수행하게 된다. 이때 선도(리더) 로봇만 주어진 경로를 알면 되고, 다른 로봇들은 무선통신(지그비 방식) 을 이용하여 서로의 위치를 주고 받으며 편대를 유지하게 되므로, 개별적인 제어가 필요하지 않다는 장점이 있다.
제로스는 무인 항법을 통해 스스로 이동하며, 추진 속도를 이용하여 아래에 부착된 분쇄부 쪽으로 해파리가 미끄러져 들어오게 하고, 분쇄부 중앙의 고속 회전하는 프로펠러가 흡입하여 해파리를 완전 분쇄하게 된다.
현장 시험 결과에 따르면, 3대의 군집 로봇이 4노트(시속 7.2km) 의 속도로 진행하였을 때 처리 용량은 시간당 약 900kg인 것으로 나타났다.
연구팀은 현재 경남 마산만에서 보름달물해파리 제거 시험을 완료하였으며, 추후 다양한 장소 및 환경에서 성능 보완을 완료할 예정이다.
군집 제로스 기술은 해파리 제거 외에도 해양 순찰 및 경계, 원유 유출 방지, 부유 쓰레기 제거 등 다양한 목적으로도 활용될 수 있다.
한편, 이번 연구는 미래창조과학부의 ‘신진연구지원사업’ 및 산업통상자원부의 ‘융복합 로봇 전문인력 양성 사업’을 통해 수행됐다.
2013.08.19
조회수 15180
-
순수한 그래핀의 양자점 개발 성공
- 수 나노미터 직경의 완전히 순수한 그래핀 양자점 개발 -- “바이오센서, 광센서, 바이오 이미징 등 다양한 분야로 응용 가능” -
우리 학교 생명화학공학과 서태석(42) 교수와 물리학과 조용훈(48) 교수 공동 연구팀은 흑연 나노입자를 이용해 순수한 그래핀 양자점을 개발하는데 성공하고 그래핀 양자점에서의 방출되는 형광 빛의 원인을 밝혔다.
연구결과는 나노분야의 권위 있는 학술지 ‘어드밴스드 머티리얼스(Advanced Materials)’ 7월 19일자 표지논문(Back Cover)으로 게재됐다.
이번에 개발된 그래핀 양자점은 흑연으로 제작돼 인체에 무해한 친환경 소재라는 점에서 바이오센서, 광센서, 바이오 이미징 등 다양한 응용 분야에 적용할 수 있을 것으로 기대된다.
그래핀 양자점은 수 나노미터 이하의 직경을 갖고 있으며, 가시광 영역의 형광을 방출하는 특징이 있다.
기존 그래핀 양자점은 대부분 산화된 그래핀 양자점을 다시 환원하는 방식으로 제작했다. 따라서 그래핀 양자점 구조에 존재하는 순수한 탄소 결합과 산소 결합에 의한 형광 특성이 혼합돼 있어 발광의 근원을 정확하게 구분하기 어려웠다. 또 복잡한 화학적 방법으로 제작해 생산성이 떨어졌다.
연구팀은 그래핀 양자점의 정확한 발광 원인을 규명하기 위해 수 나노미터 크기의 흑연 나노입자를 이용해 순수한 그래핀 양자점을 산화반응 과정 없이 제작했다. 또 일반적으로 사용되고 있는 산화 과정을 흑연 나노입자에 적용해 산화 그래핀 양자점을 간단하게 제작하는 방법도 개발했다.
연구팀은 개발된 순수한 그래핀 양자점과 산화 그래핀 양자점으로부터 각각 파란색과 녹색 형광의 빛을 방출하는 것을 확인했는데, 이 두 종류의 양자점들은 산소 결합의 유무에 근본적 차이가 있다는 것을 밝혔다.
이와 함께 다양한 광분석 기법을 이용해 순수한 그래핀 양자점의 파란색 형광 현상이 벤젠 형태의 탄소 결합에 의한 것임을 규명하고, 산화 그래핀 양자점의 녹색 발광이 그래핀에 결합된 다양한 산소 기능기에 의한 것임을 규명했다.
서태석 교수는 “순수한 그래핀 양자점의 개발과 발광 특성 분석을 통해 기존에 뚜렷하게 설명되지 않았던 그래핀 양자점에서의 파란색 형광 빛의 원인을 밝혀냈다”고 이번 연구의 의의를 밝혔다.
KAIST 생명화학공학과 페이 리우(Fei Liu), 물리학과 장민호(제1저자) 박사과정 학생이 서태석, 조용훈 교수의 지도를 받아 수행한 이번 연구는 환경융합 신기술개발사업과 KAIST 나노융합연구소의 그래핀 연구센터 지원으로 수행됐다.
서태석 교수(왼쪽), 조용훈 교수(오른쪽)
2013.08.07
조회수 14850
-
양자점 기반 단파장 초고속 양자 광원 개발
- 나노 오벨리스크 구조 위에 양자점을 형성해 고효율 단광자 광원 개발 -- 단파장 가시광선 대역에서 작동하는 초고속 반도체 양자 광원 연구 -
우리 학교 물리학과 조용훈 교수팀은 오벨리스크 모양의 나노 구조물을 만들고 꼭대기 부분에 높은 신뢰도를 갖는 반도체 단일 양자점을 형성해 초고속 고효율 단광자 방출을 구현하는데 성공했다.
연구결과는 네이처(Nature)가 발행하는 "사이언티픽 리포트(Scientific Reports)" 7월 5일자 온라인판에 게재됐다.
반도체 양자점은 전자를 수 나노미터 크기에 3차원적으로 구속해 불연속적인 에너지 준위를 갖는 원자와 유사한 특성을 나타낸다. 이 성질을 이용하면 차세대 양자정보 통신, 양자 암호의 핵심 구성 요소인 양자광원을 개발할 수 있다.
특히, 반도체 양자점의 경우 높은 구동 온도, 안정성, 빠른 광자 방출, 전류 구동 가능성과 같은 많은 장점을 가지고 있어 차세대 핵심 기술 중 하나로 꼽히고 있다.
그러나 기존의 자발 형성 양자점의 경우, 평면 구조 안에 양자점들이 높은 밀도로 묻혀 있어 단일 양자점 하나의 특성을 파악하기 어렵고 광자 방출 효율이 매우 제한돼 있는 한계가 있다. 또 구성하는 층 사이의 응력으로 인한 내부 전기장 효과 때문에 전자와 정공 사이의 재결합이 어려워 내부 양자 효율이 낮은 문제가 있었다.조 교수 연구팀은 단파장의 빛을 내는 넓은 띠구조를 갖는 질화물 반도체를 이용해 오벨리스크 형태(뾰족한 팁 모양)의 나노 구조를 제작했다. 그 위에 얇은 활성층 구조를 다시 성장해 나노 팁 끝에 단일 양자점을 위치시키는데 성공해 스펙트럼 폭이 매우 작은 에너지 준위에서 발생하는 초고속 단광자 특성을 확인했다.
이 같은 독특한 나노 구조를 활용하면, 패터닝 등의 공정 없이도 단일 양자구조를 얻기가 쉽고, 양자점에서 생성된 빛이 외부로 쉽게 빠져나올 수 있다는 장점이 있다.
이와 함께 연구팀은 박막 형태와는 달리 오벨리스크 형태의 나노구조의 경우 응력을 크게 감소시켜 내부 전기장 효과도 상쇄돼 내부 양자 효율이 크게 증가하는 현상을 밝혔다.
이번에 개발된 양자광원은 발광파장이 기존 장파장 적외선 대역이 아닌 단파장 가시광(400nm) 대역이기 때문에 자유 공간에서의 통신에 사용이 가능하고 광자 검출 효율이 높은 가시광 대역의 검출기를 사용할 수 있다.
조용훈 교수는 “기존의 양자점 성장 방식과는 달리 비교적 쉽게 단일 양자점을 형성하여 제어할 수 있고, 이를 통해 매우 빠른 단일 광자 생성이 가능해 실용적인 양자광원 개발에 기여할 수 있을 것으로 기대된다”며 “오벨리스크 형태 나노구조의 특성 상 손쉽게 분리 및 다른 기판과의 결합이 가능해 단일 칩 양자 광소자 제작에도 활용될 수 있다”고 말했다.
KAIST 물리학과 조용훈 교수 지도아래 김제형(제1저자), 고영호(제2저자) 박사과정 학생이 주도적으로 수행한 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 중견연구자지원사업 및 WCU 사업의 지원으로 수행됐다.
그림1. (왼쪽) 프랑스 파리에 위치한 오벨리스크 사진. (오른쪽) 제작된 오벨리스크형 나노 구조의 전자현미경 이미지.
그림2. (왼쪽) 오벨리스크형 나노구조와 기존 평면 박막 구조에 내재된 양자점을 비교한 개념도. (오른쪽) 오벨리스크 나노구조 끝에 형성된 단일 양자점에서 방출되는 좁은 선폭의 스펙트럼과 광원의 양자화 정도와 빠른 단광자 방출 속도를 나타내는 2차 광자 상관 관계 그래프.
2013.07.22
조회수 16719
-
레이저 이용한 초고속 나노물질 생산 공정 개발
- 레이저를 원하는 위치에 쪼여 나노물질 성장 세계 최초 성공 -- “획기적 공정 단축을 통해 나노소자 상용화에 기여할 것” -
우리 학교 기계공학과 여준엽 박사와 고승환 교수 공동연구팀은 집광된 레이저를 이용해 나노물질을 원하는 위치에 초고속으로 만드는 기술을 개발했다.
연구결과는 신소재 응용분야 세계적 학술지 ‘어드밴스드 펑셔널 머티리얼스(Advanced Functional Materials)" 7월 9일자 표지논문(frontispiece)에 실렸다.
이번에 개발된 기술을 활용하면 기존에 수 시간에 걸쳐 만들었던 나노와이어를 단 5분 만에 성장시킬 수 있어 소요시간이 약 1/10로 단축됐다. 또 이미 발표된 수많은 나노물질 합성법과는 달리 공정이 매우 단순해 나노소자 대량생산과 상용화 가능성을 제시한 것으로 학계와 산업계는 평가하고 있다.
기존에 나노물질을 합성 및 성장시키기 위해서는 900~1000°C의 높은 온도에서 폭발성 혹은 독성이 있는 위험한 기체를 사용해왔다. 이를 전자 소자나 전자기기로 응용하기 위해서는 합성 후 분리, 집적, 패터닝 등 복잡한 공정을 거쳐야하는 단점이 있었다.
따라서 다단계의 공정과 고비용, 비환경적인 특성 때문에 나노소자의 대량생산과 상용화에 커다란 걸림돌이 되고 있었다.
연구팀은 기판위에 나노물질 전구체(어떤 물질이 되기 전단계의 물질)를 올려놓은 후 집광된 녹색파장 대역의 연속파형 레이저를 조명해 원하는 위치에 나노와이어를 합성하는데 세계 최초로 성공했다.
이 기술을 이용하면 나노물질의 집적 및 패터닝은 물론 단 한 번의 공정으로 기능성 나노소자 제작이 가능하다.
이와 함께 기판의 종류에 상관없이 공정이 가능해 유연한 플라스틱 기판에도 적용 가능하다. 또 3차원 구조물 위에서도 자유롭게 원하는 위치에 단순 레이저 조명만으로도 나노 물질을 합성, 패터닝 할 수 있다.
여준엽 박사는 이번 연구에 대해 “빛에너지를 이용해 나노물질을 합성, 집적, 패턴, 소자제작을 한 번에 가능케 하는 새로운 공정을 세계 최초로 개발했다”며 “향후 기능성 전자 소자 개발에 드는 시간을 기존의 10분의 1도 채 안되는 수준으로 단축할 수 있다”고 말했다.
여 박사는 향후 다양한 나노물질의 조합을 통해 다기능 전자 소자의 개발의 상용화와 대량생산 공정을 개발할 계획이다.
여준엽 박사와 고승환 교수팀이 주도한 이번 연구는 KAIST 기계공학과 성형진 교수, 홍석준 박사과정, 강현욱 박사과정, 미국 UC Berkeley 그리고로폴로스 교수, 이대호 박사가 참여했으며, 한국연구재단 중견도약사업과 지식경제부 협동사업, 글로벌프런티어사업, KAIST EEWS 연구단의 지원을 받았다.
붙임 : 그림설명
그림1. 레이저 조명을 쪼여 원하는 위치에 합성된 나노 물질
그림2. 개발된 공정을 이용해 3차원 구조물 위에 합성된 나노 물질
그림3. 합성된 나노 물질을 통해 제작된 기능성 전자 소자
그림4. 어드밴스트 펑셔널 머티리얼스 프런티스피스 표지 사진
2013.07.17
조회수 18297
-
손상된 DNA의 돌연변이 유발 메커니즘 규명
- DNA 손상을 용인하는 특수 복제효소 Rev1의 조절 메커니즘 밝혀 -- “암 치료 및 예방에 크게 기여할 것” -
우리 학교 화학과 최병석 교수는 생체정보를 저장하는 DNA가 손상돼 회복하고 복제하는 과정에서 돌연변이가 발생하는 메커니즘을 규명했다.
연구결과는 분자세포생물학분야 세계적 학술지 ‘분자세포생물학(Journal of Molecular Cell Biology)’ 6월호 표지논문으로 실렸다.
산업의 급격한 발전으로 현대인들의 유전자는 예전에 비해 훨씬 다양하게 위협받고 있다. 오존층의 파괴로 인해 자외선에 그대로 노출되는 것은 물론 담배연기를 비롯한 수많은 발암물질의 공격은 우리 몸속의 DNA를 손상시킨다.
하루에도 수 만 번 끊임없이 일어나는 DNA의 손상을 효과적으로 회복시켜주지 못하면 암 등 치명적인 질병이 발생한다.
손상된 DNA가 회복반응에 의해 복구되지 않은 상태에서 자기복제가 일어나면 정상적인 복제를 담당하는 폴리머라제는 손상부위에 도달하면 DNA 합성을 정지하게 되고 세포의 죽음을 초래 한다.
인체는 이 같은 비상사태를 맞이해 복제담당 폴리머라제를 잠깐 쉬게 하고 손상된 DNA 부위를 그냥 지나치는 능력이 있는 특수한 복구담당 폴리머라제들을 동원해 손상부위를 통과하고 DNA 합성을 다시 시작한다.
이때 DNA는 많은 오류가 발생돼 심각한 돌연변이를 유발시킨다. 즉, 열악한 상황에 놓인 세포가 복제를 진행하지 못해 죽음을 맞기 보다는 생존을 위해 매우 부정확한 DNA 복제일지라도 선수를 교체하면서까지 복제를 진행하게 된다.
지금까지 학계에서는 Rev1 단백질이 이러한 과정을 조절할 것이라고 추정해 왔지만 그 구조와 기능은 명확하게 밝혀내지 못했다.
연구팀은 핵자기공명 분광법(NMR)과 X-ray를 이용해 DNA 복제과정에서 중추적인 역할을 하는 단백질(Polκ과 Rev1, Rev1과 Rev3/Rev7) 각각의 복합구조를 밝혀냈다.
이를 통해 ▲DNA가 손상 시 돌연변이가 유발되는 메커니즘 ▲DNA 복제효소간의 상호작용 ▲손상부위를 통과한 합성된 DNA가 더 연장되는 메커니즘을 분자수준에서 규명했다.
암의 직접적인 발병 원인이 DNA의 손상인 만큼 이에 대한 메커니즘을 밝혀내고 응용하면 개인별로 암의 원인을 제거할 수 있어 부작용 없는 맞춤형 항암제를 개발할 수 있을 것으로 전망된다.
최병석 교수는 이번 연구에 대해 “판코니 빈혈 환자들에게 암이 많이 발생되는 문제를 조사해보니 DNA복제 시 회복 기능이 고장 나 있더라”며 “손상된 DNA의 회복과 복제 과정에 대한 메커니즘 규명을 통해 암을 예방하고 치료하는데 크게 기여할 것”이라고 말했다.
이번 연구는 KAIST 화학과 최병석 교수와 류디난 박사의 주도로 수행됐고, KAIST 화학과 이지오 교수, 고준상 박사, 임경은 박사과정, 기초과학지원연구원 류경석 박사와 황정미 박사가 참여했다.
그림1. Polκ/Rev1/Rev7/Rev3 단백질 복합체 구조
그림2. Rev1, Polκ와 Rev7와 Rev3를 상호형질 주입된 세포의 공초점 현미경 영상
그림3. 논문표지
2013.06.03
조회수 16670
-
호흡 분석해 질병 진단한다!
- 나노섬유 형상 120ppb급 당뇨병 진단센서 개발 -- 음주 측정하듯 후~ 불면 질병 진단할 수 있어 -
우리 학교 신소재공학과 김일두 교수 연구팀이 인간이 호흡하면서 배출하는 아세톤 가스를 분석해 당뇨병 여부를 파악할 수 있는 날숨진단센서를 개발했다.
연구 결과는 신소재 응용분야 세계적 학술지 ‘어드밴스드 펑셔널 머티리얼스(Advanced Functional Materials)’ 5월 20일자 표지논문으로 게재됐다.
인간이 숨을 쉬면서 내뿜는 아세톤, 톨루엔, 일산화질소 및 암모니아와 같은 휘발성 유기화합물 가스는 각각 당뇨병, 폐암, 천식 및 신장병의 생체표식인자(바이오마커)로 알려져 있다.
당뇨병의 경우 일반적으로 정상인은 900ppb(parts per billion), 당뇨환자는 1800ppb의 아세톤 가스를 날숨으로 내뿜는다. 따라서 날숨 속 아세톤 가스의 농도 차이를 정밀하게 분석하면 당뇨병을 조기에 진단할 수 있고 발병 후 관리를 쉽게 할 수 있다.
연구팀은 얇은 껍질이 겹겹이 둘러싸인 다공성 산화주석(SnO2) 센서소재에 백금 나노입자 촉매가 균일하게 도포된 1차원 나노섬유를 대량 제조하는 기술을 개발했다. 이 소재의 표면에 아세톤 가스가 흡착될 때 전기저항 값이 변화하는 120ppb급 아세톤 농도 검출용 센서에 적용해 날숨진단센서를 개발했다. 개발한 나노섬유 센서는 1000ppb급 아세톤 농도에서 소재의 저항 값이 최대 6배 증가해 당뇨병을 진단할 수 있음이 입증됐다.
이와 함께 7.6초의 매우 빠른 아세톤 센서 반응속도를 나타내 실시간 모니터링이 가능해져 상용화에 대한 기대를 높였으며, 전기방사 기술로 제조해 나노섬유형상을 쉽게 빠르게 대량생산할 수 있는 게 큰 장점이다.
연구팀이 개발한 날숨진단센서는 사람의 호흡가스 속에 포함된 다양한 휘발성 유기화합물의 농도를 정밀하게 분석할 수 있다. 따라서 당뇨병은 물론 향후 폐암, 신장병 등의 질병을 조기에 진단하는데 활용될 수 있을 것으로 기대된다.
김일두 교수는 이번 연구에 대해 “ppb급 농도의 날숨 휘발성 유기화합물 가스를 실시간으로 정밀하게 진단하는 나노섬유 센서를 당뇨병 또는 폐암 진단용 감지소재로 이용하면 다양한 질병을 조기에 검출하고 관리하는 일이 가능해질 것”이라고 말했다.
김 교수는 향후 다양한 촉매와 금속산화물 나노섬유의 조합을 통해 많은 종류의 날숨가스를 동시에 정확하게 진단하는 센서 어레이(array)를 개발해 상용화를 앞당길 계획이다.
미래창조과학부 글로벌프린티어사업 스마트 IT 융합시스템 연구단의 지원을 받은 이번 연구는 KAIST 신소재공학과 신정우 학부생(2월 졸업), 최선진 박사과정 학생, 박종욱 교수, 고려대학교 신소재공학과 이종흔 교수가 참여했다.
그림1. 날숨진단센서 어레이(우측)와 날숨진단센서 크기 비교(좌측 상단)
그림2. 나노섬유 센서들이 어레이로 구성된 당뇨진단 센서 이미지
그림3. 날숨 가스들을 분석하는 질병진단 분석기의 소형화 및 실시간 분석
그림4. 주석산화물 나노섬유를 이용한 당뇨진단 센서 이미지
2013.05.30
조회수 20702
-
메탄올 하이드레이트의 새로운 발견
- 가스 하이드레이트 생성 억제 물질인 메탄올의 새로운 역할 규명 -- 원유, 천연가스 수송에서 타이탄 등 태양계 천체 연구까지 다양한 분야에 파급효과 기대 -
원유, 천연가스 등을 심해에서 끌어올릴 때 고압, 저온 조건에서 발생하는 가스 하이드레이트 때문에 송유관이 막힐 수 있다. 이를 방지하기 위해 주입하는 메탄올을 주입하는데 오히려 메탄올 때문에 가스 하이드레이트가 더욱 잘 발생한다는 기존의 가설을 뒤집는 연구결과가 나왔다.
우리 학교 해양시스템공학전공 서유택 교수와 신규철 박사가 공동으로 대표적인 가스 하이드레이트 생성 억제제인 메탄올이 조건에 따라 하이드레이트 형성의 촉매 역할을 하는 메커니즘을 규명했다.
연구 결과는 세계적 학술지 ‘미국 국립과학원 회보(PNAS, Proceedings of the National Academy of Sciences of the United States of America)’ 5월 21일자에 발표됐다.
가스 하이드레이트는 고압, 저온 조건에서 가스 분자가 물 분자와 결합해 얼음 형태로 존재하는 고체화합물로 원유와 천연가스의 이송 파이프라인 안에서 막히는 현상을 유발해 심각한 사고를 일으킬 수 있다.
이를 방지하기 위해 메탄올은 수송관 내 원유에 약 20~30% 만큼 주입해 가스 하이드레이트 생성을 억제하기 위해 사용된다.
연구팀은 원유를 생산할 때 메탄올에 사용되는 비용을 줄이기 위해 원유대비 메탄올의 주입 비율을 바꿔가며 가스 하이드레이트의 억제 효과를 알아보기 위해 저온 기상증착법 등 다양한 실험을 수행했다.
이번 연구는 메탄올이 가스 하이드레이트 형성을 억제한다는 기존의 연구결과를 기반으로 수행한 것이다. 그러나 메탄올이 메탄 등 다른 가스들과 함께 물과 결합해 가스 하이드레이트가 형성되는 것을 세계 최초로 밝혀냈다.
게다가 메탄올이 오히려 원유대비 5~20% 만큼 주입되면 가스 하이드레이트 형성 속도를 급격히 증가시켜 파이프 이송라인이 더욱 쉽게 막힐 수 있다는 사실도 함께 밝혀냈다.
실제로 2006년 멕시코 만에서 운영 중이던 유전에서는 메탄올 주입량이 20% 미만으로 떨어져 파이프라인이 막혔다. 수 일 동안 생산이 중단되어 회사는 수백만 달러 이상의 손실을 입었지만 과학적으로 원인을 밝혀내지는 못했다. 이렇게 원인이 밝혀지지 않았던 가스 하이드레이트 사고 사례에 대해서도 과학적으로 입증한 것으로 향후 산업계에 미치는 파급효과가 매우 클 것으로 기대된다.
서유택 교수는 “이번 결과는 원유, 천연가스 등의 이송 과정에서 기존의 가설을 뒤집는 결과로 얼음, 메탄, 메탄올, 암모니아 등이 공존하는 태양계 천체들의 표면 성분을 밝히는 데도 응용될 수 있다”며 “다양한 분야에 미치는 파급효과가 클 것으로 예상돼 이에 대한 후속 연구를 진행할 계획”이라고 밝혔다.
한편, 이번 연구는 해양시스템공학전공 서유택 교수와 신규철 연구원이 캐나다 정부출연연구기관(National Research Council)과 공동으로 수행했다.
그림1. 단결정 X-선 회절 분석을 통해 밝힌 하이드레이트 얼음 격자 안의 메탄올 분자 (右)
그림2. 심해 파이프라인에서 발생한 하이드레이트 막힘 현상
2013.05.23
조회수 15044
-
깨지지 않는 스마트폰 화면 나온다!
- 유리섬유직물 적용한 고강도 플라스틱 디스플레이 기판 개발 -
- “기존 유리 기판 대체 가능해 일대 혁신 가져올 것” -
깨지지 않는 핸드폰 화면을 구현하고, 대화면 TV의 무거운 유리 기판 대신 가벼운 플라스틱 필름을 사용할 수 있는 길이 열렸다.
KAIST IT융합연구소 윤춘섭 교수(물리학과) 연구팀이 깨지기 쉬운 디스플레이 유리 기판을 대체할 수 있는 고강도 플라스틱 기판 원천기술을 개발했다.
윤 교수팀이 유리섬유직물을 무색투명 폴리이미드 필름에 함침시켜 만든 플라스틱 기판은 고내열, 고투명, 고유연, 고내화학, 고인장강도 특성을 갖고 있다. 소재는 플라스틱 필름의 장점인 유연성을 갖고 있으면서도 인장강도는 일반 유리보다 세 배 크고 강화유리와 비슷하다. 또 유리처럼 무색투명하고, 450℃까지 내열성을 가지며, 열팽창률은 기존 플라스틱 열팽창률의 10∼20%에 불과하다.
유리 기판은 표면이 매끄러울 뿐만 아니라 디스플레이 기판의 조건인 고내열, 고투명, 고내화학, 고인장강도 특성을 모두 가지고 있어 지금까지 핸드폰 화면, TV, 컴퓨터 모니터 등 거의 모든 디스플레이에 사용돼 왔다. 그러나 유리 기판은 무겁고 깨지기 쉬운 단점이 있어 최근 유리 기판을 대체할 목적으로 열적, 화학적 안정성이 우수한 플라스틱 재질의 무색투명 폴리이미드 필름이 활발하게 연구되고 있다.
그러나 무색투명 폴리이미드 필름은 내열성 및 기계적 강도가 충분하지 못하기 때문에 이를 보강하기 위해 유리섬유직물을 폴리이미드 필름에 함침시키면 필름의 표면 거칠기 및 광 투과도 조건이 악화되는 문제가 발생해 실용화되지 못하고 있다. 이는 유리섬유직물을 폴리이미드 전구체 용액에 함침시킬 때 용매가 증발하며 0.4µm(마이크로미터) 내외의 표면 거칠기가 발생하고, 무색투명 폴리이미드 필름과 유리섬유직물의 굴절률 불일치로 인한 광 산란이 심하게 발생하기 때문이다.
윤 교수팀은 투명 폴리이미드 필름의 굴절률을 유리섬유직물의 굴절률과 소수 네 자리까지 일치시키는 방법과, 필름의 표면 거칠기를 수 nm 수준으로 평탄화 시키는 핵심기술을 개발해 이 문제를 해결했다. 그 결과 110µm 두께의 유리섬유직물 함침 무색투명 폴리이미드 필름 기판에서 11ppm/℃의 열팽창률, 0.9nm의 표면 거칠기, 250MPa의 인장강도, 2mm의 굽힘곡률반경, 90%의 광 투과도를 달성했다.
윤춘섭 교수는 “개발된 기판은 기존 디스플레이의 유리 기판을 대체할 수 있고, 플렉서블 디스플레이 기판으로도 사용할 수 있다”며 “핸드폰 화면이 깨지는 문제점을 근본적으로 해결하고, 대면적 TV의 무게 및 두께를 획기적으로 줄일 수 있으며, 디스플레이 생산에 롤투롤 공정을 적용할 수 있어 디스플레이 산업에 일대 혁신을 가져올 수 있을 것”이라고 전망했다.
한편, 2008년부터 5년간 지식경제부의 ‘모바일 플렉시블 입출력 플랫폼 개발사업’의 지원으로 개발된 이 기술은 총 3건의 특허출원을 마치고 관련기업과 기술 이전을 협의 중이다.
그림1. 유리섬유직물의 굴절률이 무색투명 폴리이미드 필름의 굴절률과 일치된 경우의 필름 투명도(좌측)와 일치되지 않는 경우(우측). 좌측의 글자는 선명하게 보이는 반면 우측의 글자는 뿌옇게 보인다.
그림2. 개발한 유리직물섬유 사진
2013.05.14
조회수 16846