-
박찬범 교수팀, 나노크기의 광감응 소재를 이용한 인공광합성 원천기술개발
신소재공학과 박찬범(朴燦範, 41세) 교수팀이 나노소재를 이용해 자연계의 광합성을 모방한 ‘인공광합성’ 시스템 개발에 성공했다.
이러한 새로운 개념의 인공광합성 기술은 고부가가치의 각종 정밀의약품들을 태양 에너지를 이용해 생산하는 친환경 녹색생물공정 개발의 전기가 될 것으로 기대된다.
식물 등 자연계의 광합성 생물체들은 태양에너지를 이용해 환원력을 재생하여 보조인자(cofactor)라는 형태로 저장하고, 이렇게 재생된 보조인자 등을 빛이 없을 때 캘빈사이클 (calvin cycle)을 통해 생존에 필요한 탄수화물 등 각종 화학물질들을 합성하는데 이용한다.
[그림 1. 자연광합성을 모방한 인공광합성 공정을 이용한 정밀화학제품 생산 개념도]
박 교수팀은 이러한 자연광합성시스템을 모방하여 자연계의 광반응 (light reaction) 대신 태양전지 등에서 사용되는 양자점 (quantum dot) 등 수 나노크기의 광감응소재로 빛에너지를 전기에너지로 효율적으로 전환하고, 이를 이용하여 보조인자를 재생했다. 또한 자연계의 복잡한 캘빈 사이클 대신 산화환원 효소반응을 보조인자 재생에 연결시킴으로써 빛에너지로부터 시작하여 최종적으로 정밀화학물질 생산이 가능한 반응시스템을 개발했다.
인류가 지구 온난화와 화석 연료의 고갈이라는 문제를 안고 있는 가운데, 온난화의 원인인 이산화탄소를 배출하지 않고 또한 무제한으로 존재하는 태양 에너지를 이용하려는 노력이 계속되고있는데, 이번에 개발된 인공광합성기술은 에너지원으로 무한한 태양광을 사용한다는 장점 때문에 그 파급효과가 매우 클것이다.
특히 각종 정밀화학물질 합성에 있어서 산화환원효소들이 매우 뛰어난 응용가능성/다양성을 가졌음에도 불구하고 이들의 효율적 사용을 위하여 필수적으로 요구되는 보조인자의 재생에 대한 연구는 지난 20여년동안 수행되어 왔으나 현재까지도 성공적인 결과가 거의 없어 향후 생물공학분야에서 해결되어야 할 미해결 난제들 중의 하나였다.
박교수팀의 연구성과는 산화환원효소를 산업적으로 활용하기 위한 토대를 마련한 것이다.
[그림 2. 산화환원효소 기반 인공광합성을 통한 고부가가치 정밀화학제품 생산]
관련 연구결과는 독일에서 발간되는 나노분야 국제저명학술지인 Small지 최근호(4월 23일자 온라인판)에 게재됐으며, 최근 특허출원이 완료됐다.
이번 연구는 교육과학기술부 신기술융합형 성장동력사업(생물공정연구단) 등으로부터 지원을 받아 수행됐으며, 나노과학과 생명공학분야의 창의적인 융합을 통하여 새로운 공정기술을 개발하는데 크게 기여했다는 평가를 받았다.
2010.04.23
조회수 22798
-
정상권 교수 연구팀,극저온 냉동기 탑재형 초전도 모터 개발
- 세계최초로 회전하는 극저온 냉동기를 탑재한 ‘초전도 모터’ 개발
기계공학과 정상권 교수 연구팀이 회전하는 극저온 냉동기를 탑재해 영하 210도 이하로 냉각되는 초전도 모터를 세계 최초로 개발했다고 18일 밝혔다.
기존의 초전도 회전기기는 LTS(Low Temperature Superconductor; 저온 초전도체로서 주로 액체 헬륨으로 냉각) 또는 HTS(High Temperature Superconductor; 고온 초전도체로서 주로 액체 네온 또는 질소로 냉각)를 사용하는 경우, 정지된 극저온 냉동기로부터 차가운 냉각재를 회전하는 계자 코일에 공급하면서 초전도체를 임계온도 이하로 냉각하는 구조로 되어 있었다. 즉, 극저온 냉동기와 회전기기가 분리되어 초전도 모터가 작동했었다.
이러한 구조는 영하 210 도 이하의 차가운 유체를 진공으로 단열시키면서, 정지부에서 회전부 그리고 또한 정지부로 이송하는 극저온 구성품이 필요하며, 상온에서부터 극저온부로의 열침입이 필연적으로 증가하는 문제로 인하여 전체 극저온 냉동 시스템이 커져야 한다.
이번에 연구 개발한 극저온 냉동기를 탑재하는 초전도 모터의 경우에는, 극저온 냉각부를 초전도 코일과 매우 가깝게 위치시켜, 부가적인 열손실을 방지할 수 있는 장점이 있어서, 전체 시스템의 소형화가 가능한데, 지금까지는 극저온 냉동기의 특성과 초전도 코일의 설계/제작을 동시에 고려하여야 하기 때문에 쉽게 이루어지지 않았었다.
이번 연구에서는 고속으로 회전하는 상황에서도 냉각성능의 변화가 없는 축대칭 구조의 국내산 소형 스털링 냉동기가 사용됐다. 이번에 개발한 초전도 모터는 회전부와 고정부 사이에서 일어나던 극저온 유체의 이동을 철저하게 배재시키고, 유일하게 존재하는 에너지 전달 메커니즘은 전기 접촉을 통한 전기 에너지 및 온도차에 의한 열전달이다. 또한, 극저온 냉각부를 초전도 코일과 매우 가깝게 위치시켜 부가적인 열손실을 방지할 수 있는 장점이 있어서, 전체 시스템의 소형화가 가능하다. 초전도 계자코일은 차세대 유망 초전도 선재인 YBCO를 사용하여 제작했으며, 외부로 부터의 열침입 및 냉동 부하는 6W미만이고, 유도 모터의 고정자를 사용하여 90rpm 까지 회전 테스트를 수행하였다.
정 교수는 “이번에 개발된 ‘극저온 냉동기 탑재형 초전도 모터’는 소형화와 고신뢰성을 위한 초전도 회전기기의 새로운 냉각 방식으로 기술혁신적인 발상의 전환을 이루었으며, 다양한 에너지(수송, 플랜트 산업, 재생에너지) 분야에서의 응용이 기대된다”며 ”상용화를 위해 동적인 균형 문제, 초전도 선재 수급문제 해결하도록 연구를 진행중이다“고 말했다.
일반적으로 초전도 모터나 발전기는 극저온에서 전기 저항이 사라져 전류가 아무 장애없이 흐르는 초전도체의 현상을 이용한다. 따라서 전기 에너지의 효율 향상과, 동일한 용량에서는 소형화의 목적으로 차세대 전기기기로서 많은 연구가 진행되고 있다. 모터나 발전기의 구조를 보면 크게 회전자와 고정자로 구분할 수 있는데, 초전도 코일은 직류 전류가 흐르는 회전자에 적용됨으로써, 전체 에너지 변환 효율을 0.5 %내지 1% 정도 향상시킬 수 있다. 따라서, 현재까지 초전도 회전기기는 전체 효율 향상이 그에 수반되는 부가적인 극저온 냉동기의 요구 전력보다 더 큰 1 MW 급 이상의 대용량에서 매력적이다.
이러한 기기의 적용 분야는 주로 플랜트 산업에서 사용되는 전동기를 비롯하여 발전소의 대형 발전기, KTX와 같은 고속 전철, 전기 추진 방식의 선박 등 에도 확장될 수 있다.
이번연구는 교육과학기술부의 국가지정연구실사업의 지원과 차세대초전도응용기술개발사업단을 통한 한국전기연구원의 도움으로 수행됐으며, 이번 연구결과는 2010년 8월에 열리는 응용초전도학회(ASC; Applied Superconductivity Conference)에서 발표할 예정이다.
논문제목: HTS (high temperature superconductor) motor cooled by on-board cryocooler (극저온 냉동기를 회전자에 탑재한 고온 초전도 모터)
<용어설명>
○ 초전도 : 어떤 종류의 금속이나 합금을 절대영도(0 K; -273.16℃)에 가까이 냉각할 때, 전기저항이 갑자기 소멸하여 전류가 아무런 장애 없이 흐르는 현상이다. 물질마다 이러한 현상이 일어나는 임계온도가 다르며, 액체 질소의 비등점 (77 K, -196℃) 이상에서 초전도 성질을 보이는 물질을 고온 초전도체라고 한다.
○ 이트륨 바륨 구리 산화물(Yttrium barium copper oxide, YBCO) : 고온 초전도체 물질 중 하나로 임계 온도는 93 K(-180℃)로 비교적 높아 경제적인 초전도 합금 중 하나이다.
○ ASC(Applied Superconductivity Conference, 국제 응용 초전도 학회):1966년부터 국제 전기전자공학회 (IEEE Council on Superconductivity) 주관으로 격년으로 미국에서 개최되는 이 분야 최고 권위의 학회임. 전 세계로부터 많은 학자와 연구원들이 참여한 가운데 우수한 연구 성과와 정보를 교환하고 미래의 초전도 산업과 기술을 논의하는 학회로서 2010 년에는 Washington D.C. Omni Shoreham Hotel에서 8월 1일부터 6일 까지 개최될 예정이다.
○ 계자코일(Field coil) : 초전도 모터의 회전자에서 일정한 자기장을 발생시키기 위하여 감은 코일로서, 일반 구리선을 초전도선으로 대치하였을 때 주어진 크기에서 더 강한 자기장을 발생시키게 할 수 있으므로, 전체 모터의 크기를 소형화할 수 있다.
2010.03.18
조회수 21366
-
새로운 혈액줄기세포 공급원으로 지방조직 이용가능성 규명
카이스트 생명과학과 고규영교수(및 연구원 한진아)팀, Blood지(IF=10.4)에 실려-
교육과학기술부(장관 안병만)의 21세기 프론티어연구개발사업 지원을 받는 세포응용연구사업단(단장:김동욱 연세대 교수)의 연구팀(책임자:고규영 카이스트 교수, 연구원:한진아)이 지방조직으로부터 백혈병 등 혈액계 난치병 치료에 이용가능한 혈액줄기세포를 분리해 낼 수 있음을 입증하였다. 이로써, 보다 적은 비용과 쉬운 방법으로 혈액줄기세포를 공급할 수 있는 길이 열릴 것으로 기대된다.
이번 연구 결과는 그 중요성을 인정받아 세계적인 학회지인 Blood의 2010년 2월 4일자 표지논문으로 선정되었으며, 이례적으로 학회지를 주관하는 미국 혈액학회 (American Society of Hematology, ASH)가 세계매체를 통해 일반인에게 홍보하기로 하였다.
혈액줄기세포는 다양한 종류의 혈액세포로 분화할 수 있는 분화능을 보유하고 있는 대표적인 성체 줄기세포로, 백혈병 등의 혈액계 난치병 치료에 이용된다. 혈액줄기세포는 주로 성체의 골수 내에 존재하는데, 그 양이 제한적이고 생체외 증식이 어려워 연구 및 치료목적으로의 사용에 걸림돌이 되어 왔다.
우리대학 생명과학과 고규영 교수 연구팀은 지방조직과 골수조직이 다양한 공통점을 갖는다는 점에 착안하여, 골수를 손상시킨 동물에게 지방 조직에 존재하는 비지방세포를 정맥주사한 후, 이 세포로부터 유래한 혈액세포가 장기간 동물의 혈액 내에 존재한다는 것을 입증함으로써, 주입한 지방조직의 비지방세포에 손상된 골수를 재생시킬 수 있는 능력을 가진 혈액줄기세포가 존재한다는 사실을 밝혔다.
김동욱 단장은 “혈액줄기세포를 골수나 혈액으로부터 분리할 수 있는 것은 이미 널리 알려진 방법이지만, 흔히 쓸모없는 조직으로 생각하는 지방조직을 혈액줄기세포의 공급원으로 규명한 것은 이번이 처음이다”라며 재생의학의 새로운 세포공급원으로서 지방조직 이용 가능성을 밝혔다. 이 연구는 혈액줄기세포의 자가이식에 있어 새로운 방법을 제공할 수 있을 것으로 기대된다.
1. 연구내용 요약
혈액줄기세포는 혈액계의 항상성을 유지하는 역할을 담당하는 대표적인 성체줄기세포의 일종으로, 대부분의 혈액줄기세포는 골수에 존재하고 있다. 그러나 소량의 혈액줄기세포는 혈액 내에 포함되어 체내를 순환하다가, 다시 골수로 되돌아오게 된다. 한진아 연구원, 김인준 교수, 고규영 교수 연구팀은 이 과정에서 혈액줄기세포가 골수조직 뿐만 아니라 골수와 비슷한 조건을 제공하여 적절한 환경이 조성되어 있는 조직으로, 골수와 다양한 특성을 공유하고 있는 지방조직을 연구하였다.
지방조직은 지방세포와 비지방세포로 구성되어 있는데, 우리는 생쥐의 지방조직으로부터 비지방세포를 분리하여 유세포분석기 (FACS), 세포배양 군체형성 등의 생체외 실험과 방사선 조사 후 골수이식 등의 생체실험을 실시하였다. 줄기세포를 세포치료 목적으로 이용하고자 할 때, 가장 중요한 것은 생체 내에서의 활동성이다. 우리는 방사선을 조사하여 골수를 손상시킨 동물에 비지방세포를 정맥주사하여, 이 세포로부터 유래한 혈액세포가 장기간 동물의 혈액 내에 존재한다는 사실을 입증하였다. 이는 주입된 세포군 내에 손상된 골수를 재생시킬 수 있는 능력을 가진 혈액줄기세포가 포함되어 있다는 것을 직접적으로 보여주는 증거이다. 더불어 비지방세포에 포함된 혈액줄기세포가 골수에서 유래한 것이며, 약물을 이용하여 골수 혈액줄기세포의 순환계로의 유출을 촉진시켰을 때, 보다 많은 양의 세포를 지방조직으로부터 얻을 수 있음을 입증하였다.
생쥐의 지방조직으로부터 혈액줄기세포를 얻을 수 있다는 사실을 입증함으로써 이용가능한 혈액줄기세포의 또 다른 원천을 밝혀낸 것이다. 이에 인간 지방조직에 대한 연구가 개발, 확립된다면, 연구 및 치료목적으로 응용 가능성이 매우 높을 것으로 기대된다.
이번 연구의 자세한 내용은 2010년 2월 4일자 Blood 저널에 표지논문으로 발표되며, 이례적으로 이 학회지를 주관하는 미국 혈액학회 (American Society of Hematology, ASH)가 세계매체를 통해 일반인에게 홍보하기로 하였다.
2. 용어설명
∙성체줄기세포 : 배아발달 단계 이후 체내에 존재하는 줄기세포로, 주로 손상된 조직을 재생, 성장시키는 역할을 담당하여 필요한 때에 특정한 조직의 세포로 분화하게 되는 미분화 상태의 세포이다. 배아줄기세포와 달리 윤리적 문제가 없고, 자가면역 반응을 일으키지 않는다는 장점이 있다.
∙비지방세포 : 지방조직에서 지방세포를 제외한 나머지 세포군을 말하며 면역세포, 혈관내피세포와 더불어 그 성격이 완전히 규명되지 않은 줄기세포들을 포함하고 있다. 지방, 연골, 근육 조직 등으로의 분화능을 보유하고 있는 등 골수 중간엽줄기세포 (mesenchymal stem cell)와 유사한 특성을 가지고 있다.
그림 1. Blood 학회지에 표지로 실린 사진. 지방조직에서 발견되는 혈액줄기세포 분포양상.(파란색 : 혈액 / 분홍색 : 혈액줄기세포)
그림 2. 생체외 세포군체형성. 배양된 비지방세포로부터 유래된 혈액세포군체.
그림 3. 약물투여 후 비지방세포에서 혈액줄기세포의 양이 증가함을 나타내는 결과.
2010.02.04
조회수 20206
-
매미와 개구리는 지휘자없이 어떻게 합창할까
나무위의 매미와 논두렁의 개구리는 지휘자 없이 어떻게 합창할까? 이와 관련해서, KAIST 바이오 및 뇌공학과의 조광현 교수는 생명체의 동기화된 주기적 진동신호의 생성원리를 최근 규명했다. 나무에 붙어있는 많은 반딧불들의 동시다발적인 깜빡임, 매미들의 조율된 울음소리, 뇌신경세포들간의 전기신호, 세포내 분자들의 농도변화에 이르기까지 생명체는 다양한 형태의 주기적 진동신호 교환을 통해 정보를 전달하는데, 이들은 놀랍게도 정확히 동일한 위상(phase)으로 동기화되곤 한다. 이는 마치 오케스트라에서 지휘자 없이도 모든 연주가 일정한 박자에 맞춰 이루어지는 것과 같다.
어떻게 생명체의 여러 주기적 진동신호들이 그러한 동기화를 이루는가?
우리학교 바이오및뇌공학과 조광현(曺光鉉) 교수 연구팀이 대규모 가상세포(virtual cell)실험을 통해 생명체의 다양한 주기적 진동(oscillation)신호들이 동기화(synchronization)되는 보편적인 원리를 규명했다.
曺교수팀은 이번 연구를 통해 여러 독립적인 주기적 진동신호들은 양성피드백(positive feedback)을 통해 서로의 위상에 영향을 줘 하나의 동일한 위상으로 수렴되는 현상을 밝혀냈다.
특히 양성피드백은 이중활성(double activation) 또는 이중억제(double inhibition)의 구조로 구현된다. 이중활성피드백은 연결시간지연이 짧을 때, 이중억제피드백은 연결시간지연이 길 때 보다 안정적인 신호동기화를 가능하게 했다.
또한, 노이즈(noise) 교란이 있을 때 이중활성피드백은 진동신호의 주기보다 진폭을 안정적으로 유지하는 반면 이중억제피드백은 연결강도에 불규칙한 변화가 주어졌을 때 일정한 주기와 진폭을 유지시켜줬다. 현존하는 대부분의 현상들이 이러한 원칙을 따르고 있었다.
이번에 규명된 원리는 생체내 주기적 진동신호의 동기화가 교란될 때 발생하는 뇌질환 등 여러 질병의 원인을 새롭게 조명하는 계기를 마련할 것으로 기대된다.
이번 연구는 기존 생명과학의 난제에 대해 IT융합기술인 시스템생물학(Systems Biology) 연구를 통해 해답을 제시할 수 있음을 보여줬으며, 향후 생명과학 연구에 있어서 가상세포실험의 무한한 가능성을 제시했다.
曺교수는 “생명체는 복잡하게 얽혀있는 것으로 보이는 네트워크속에 이와 같이 정교한 진화적 설계원리를 간직하고 있었다”며 “이러한 규칙들은 임의로 수많은 디지털 진동자들을 만들어 인공진화를 통해 신호의 동기화 현상을 관측하였을 때에도 마찬가지로 성립된다는 흥미로운 사실을 확인했다”고 말했다.
이 연구는 교육과학기술부가 지원하는 한국연구재단 연구사업의 일환으로 수행되었으며, 연구결과는 세포생물학 분야 권위지인 세포과학저널(Journal of Cell Science) 2010년 1월 26일자 온라인판에 게재됐다.
세포생물학 실험결과만을 출판하는 이 저널에 순수 컴퓨터시뮬레이션만으로 수행된 가상세포실험 연구결과가 게재된 것은 매우 이례적인 일이다.
인터넷주소: http://jcs.biologists.org/cgi/content/abstract/jcs.060061v1
<용어설명>◯ 양성피드백(positive feedback): 서로 연결되어 있는 두 요소 사이에 어느 하나의 변화가 결과적으로 스스로를 동일한 방향으로 더욱 변화시키는 형태의 연결구조.
<사진설명>◯ 설명: A: 서로 상호작용하는 두 생체신호 진동자(oscillator)들의 예시. B: 이중활성 양성피드백으로 연결된 진동자들. C: 이중억제 양성피드백으로 연결된 진동자들. D: 연결강도에 따라 진동신호 동기화에 소요되는 시간. E: 연결강도 증가에 따라 점차 진동신호 동기화가 되어가는 모습의 예시 (좌측의 비동기화 진동신호들이 점차 우측의 동기화된 진동신호들로 변화되어 가는 과정을 나타냄).
2010.02.02
조회수 20337
-
김봉수 교수팀, 초탄성 무결점 금속나노선 개발
화학과 김봉수 교수팀은 차세대 3차원 메모리 소자의 대량생산이 가능한 새로운 초탄성․무결점 금속 나노선(nanowire)을 개발했다. 이는 촉매없이 금속 나노선을 기판위에 손쉽게, 원하는 형태로 성장(epitaxial growth)시킬 수 있는 원천기술이다.
교육과학기술부(장관 안병만)는「21세기 프론티어연구개발사업」나노소재기술개발사업단(단장 서상희 박사)의 지원을 받은 KAIST 김봉수 교수 연구팀이 초탄성․무결점의 단결정 금속 나노선을 개발 하는데 성공했다고 18일 밝혔다.
지난 2004년 MIT 선정 10대 유망기술에 선정된 바 있는 나노선(nanowire)은 단면 지름이 수십에서 수 나노미터(1nm = 10억분의 1m) 정도인 극미세선으로, 트랜지스터, 메모리, 센서 등 첨단 전기전자 소자를 개발하는데 핵심적인 미래기술이다.
기존의 반도체 나노선은 정렬된 성장(epitaxial growth)이 가능했으나 금, 팔라듐 등 금속 나노선의 경우에는 적절한 촉매가 없어서 이러한 정렬된 성장을 실현하기 어려웠다.
KAIST 김봉수 교수 연구팀은 증기의 양, 온도, 압력 등을 최적으로 조절함으로써, 촉매 없이 금, 팔라듐, 및 금팔라듐 합금 나노선을 원하는 대로 방향성 있게 성장시키는 데 세계 최초로 성공하였다. 또한, 어떠한 물질이라도 기판 위에 씨앗 결정을 형성하기만 하면 잘 정렬된 나노선으로 성장시킬 수 있다는 사실을 밝혔다.
※ 질병을 일으키는 병원균의 DNA 농도에 따라 금나노선에 부착되는 금입자의 갯수가 달라짐(이 금입자의 갯수로 부터 병원균의 갯수를 검출) (스케일바 : 20 nm)
KAIST 화학과 김봉수 교수는 “이 기술을 한 단계 더 발전시켜 기판 위에 씨앗을 원하는 위치에 놓을 수 있다면, 나노선의 위치 및 방향을 마음대로 제어할 수 있게 되기 때문에, 차세대 3차원 메모리 소자의 대량생산이 가능해져 세계 메모리 산업에서 선도적 위치를 차지할 수 있을 것으로 기대된다.”고 밝혔다.
한편 이번 연구결과는 나노 분야의 세계적 권위지인 나노레터스(Nano Letters)지 1월 6일자 온라인 속보판에 소개되었으며, 현재 미국 및 독일 등에 특허 출원중이다.
[그림 1] 사파이어 기판 위에 수직으로 성장한 완전 단결정 금 나노선
이번에 개발된 기술을 통해 성장된 나노선은 초탄성(超彈性)․무결점 뿐만 아니라 완벽히 깨끗한 표면을 가지고 있다는 특징이 있어, 나노크기의 탄성에너지 저장장치, 나노안테나, 질병진단용 메디컬 센서 등 새로운 기술분야에 다양하게 응용가능하다.
[그림 2] 금 나노선을 이용한 질병진단 센서 (예)
2010.01.18
조회수 21580
-
홍원희교수팀, 다양한 나노구조유도 기술개발
생명화학공학과 홍원희교수팀, 이온성액체를 이용한 다양한 나노구조 유도 기술 개발
-무기산화물, 탄소나노튜브, 그래펜, 유무기 하이브리드 등 다양한 재료의 나노구조를 유도--상용 산화철보다 10배 이상의 흡착 및 광촉매 효율 높여-
공과대학 생명화학공학과 홍원희 교수팀(62)은 이온성액체를 이용한 자기조립기술을 이용해 탄소나노튜브, 그래펜, 무기산화물, 유무기 복합체에 이르기까지 다양한 재료의 나노구조를 유도할 수 있는 기술을 최근 개발했다.
이 연구결과는 ‘광촉매 응용을 위한 이온성액체를 이용한 무기산화물 하이브리드의 에너지 전달(Energy Transfer in Ionic-Liquid-Functionalized Inorganic Nanorods for Highly Efficient Photocatalytic Applications)’이라는 제목으로 나노분야의 저명 학술지인 스몰(Small)지에 지난 11월 게재됐다.
이 기술은 이온성 액체의 구조 유도와 용매 기능을 이용한 무기산화물 하이브리드 나노재료를 제조할 수 있는 ‘청정 한 반응기 이온열 합성법(Green One-Pot Ionothermal Synthesis)’이다. 대기압하의 열린반응기내에서 제조된 무기산화물 나노재료는 쉽게 물이나 다양한 유기 용매에서 분산된다.
홍교수팀은 이 합성법을 산화철 계열의 무기산화물 나노재료에까지 적용해 0차원에서 1차원에 이르기까지 구조를 제어했고, 계면에서의 에너지 전이현상을 통해 상용 산화철보다 10배 이상의 흡착 및 광촉매 효율을 높였다.
이 기술을 바탕으로 제조된 나노재료는 유기물 산화 및 분해기능이 뛰어나 태양광만으로 폐수처리가 가능하다. 이로써 페수처리 과정에서 에너지 소비와 이산화탄소의 배출량을 줄일 수 있고, 광촉매가 가지는 우수한 항균 및 탈취기능은 건축재료 분야에 응용될 것으로 기대된다. 또한, 태양광을 이용한 물의 광분해로 수소 에너지원 생산도 가능하다.
홍교수는 “이번 연구는 이온성 액체의 청정용매로써의 기능을 이용해 나노기술이 가지는 인간과 환경에 대한 악영향을 감소시키고, 동시에 디자인된 나노재료에 새로운 기능을 부여해 기존 기술의 한계를 극복할 수 있는 새로운 대안을 마련했다”는데 의미가 있다고 말했다.
현재 홍교수팀은 친환경 합성법으로 제조된 무기산화물, 탄소나노튜브, 그래펜, 유.무기 하이브리등의 나노재료를 환경 및 에너지 분야에 적용하는 연구를 진행하고 있다.
※ 보충자료나노 스케일에서의 재료나 현상을 연구하고 구조나 구성 요소를 제어해서 새로운 소재‧소자‧시스템을 개발하는 나노 기술 역시, 환경 유해성이나 인체 독성에 대한 연구 결과가 발표되면서 친환경 기술에 대한 관심이 급증하고 있다.
이온성 액체는 소금과 같이 양이온과 음이온의 이온결합으로 이루어진 이온성 염 화합물로써 상온에서부터 넓은 온도에 걸쳐 액체로 존재할 수 있는 ‘청정용매(Green Solvent)’라고 불리면서 각광을 받고 있다. 특히, 이론적으로 1018가지 정도의 조합에 의해서 비휘발성, 비가연성, 열적 안정성, 높은 이온전도도, 전기화학적 안정성, 높은 끓는점 등의 물리화학적 특성을 쉽게 변화시킬 수 있어서 다기능성(multifunctional) ‘디자이너용매(Designer Solvent)’로 사용가능하다.
세계적으로 아직 초기단계이긴 하지만, 미국 국방관련 연구소 (US Air Force, US Naval Research Laboratory) 및 국가 연구소 (Argonne 연구소, Oak Ridge 연구소, Brookhaven 연구소), 독일의 Max Planck 연구소, 스위스 EPFL의 Gratzel 그룹, 일본의 도쿄대, G24i & BASF 등이 최근 이온성 액체를 이용한 나노기술 응용 분야에 주목하면서 집중 투자와 연구를 진행하고 있는 반면, 국내에서는 아직 시작 단계에 불과할 정도로 뒤쳐져 있다.
홍 교수 팀의 연구결과는 기존 산업뿐만 아니라, 전 세계적으로 주목 받고 있는 ‘녹색 성장기술’과 21세기를 선도할 ‘첨단 나노기술’을 융합한 ‘청정 나노기술(Green Nanotechnolgy)’의 원천기술로써 활용될 수 있으며 이 분야의 국제경쟁에서 우위를 확보할 수 있을 것으로 전망된다.
현재까지 이온성액체는 유기합성, 전기화학, 화학공학, 생물공학 및 분리공정 등을 포함하는 여러 분야에서 유기 용매를 대체하기 위한 ‘지속가능기술(sustainable technology)’로써 향후 산업 전 분야에 걸쳐서 엄청난 파급효과가 있을 것으로 기대되고 있다.
※ 용어설명 ○ 열린반응기 : 고압,저압의 용기가 아닌 대기압하의 일반용기 즉, 비이커 등.
<그림1> 대표적인 이미다졸륨계 이온성액체의 분자 구조
<그림2> Green One-Pot Ionothermal Synthesis에 의한 물에 분산되는 산화철 나노 막대기의 합성 과정 모식도.
2009.12.14
조회수 25495
-
생명화공 장호남 교수, 폐자원을 활용한 바이오 에탄올 생산 성공
- 페자원을 활용한 국내 녹색 에너지 자립화에 기여 -
생명화학공학과 장호남교수팀이 포도당 기반 공법과 휘발성 유기산 공법을 이용해 유기성 폐자원 및 해조류에서 연료용 알코올을 생산하는데 최근 성공했다.
포도당 기반 공법의 연구결과는 ‘바이오에탄올 생산을 위한 비식용 바이오메스 동시 당화 발효(Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid–acetone for bioethanol production)’ 라는 제목으로 생물자원공학 분야의 국제학술지인 생물자원기술(Bioresource Technology)에 지난 7월 게재됐다.
이 연구결과로 장교수팀은 포도당 기반 공법을 이용해 갈대로부터 56g/L, 잔디에서 50g/L, 유채줄기에서 20g/L의 에탄올을 얻었다. 특히 갈대를 이용한 유가배양연구에서는 69g/L을 얻었다.
이 연구를 응용하여 지금까지 에탄올 생산이 거의 불가능하다고 생각했던 다시마(갈조류)에서 29g/L의 에탄올을 생산했다. 이 기술은 지난 9월 특허로 등록됐다.
또한, 포도당 기반 공법을 개선한 저비용 고효율의 휘발성 유기산공법 (Volatile Fatty Acid, VFA공법)을 통해 국내 유기성 폐자원(음식물쓰레기, 해조류 쓰레기)을 건조 폐기물 톤당 약 500L의 에탄올을 얻을 수 있는 연구 성과를 내놨다.
VFA공법은 포도당 기반 공법의 효소처리 비용을 자연발효를 통해 없앴고 바이오메스 일부가 아닌 전체를 발효시켜 효율을 높인 기술이다.
장교수는 “음식물 쓰레기와 유기성 폐기물은 값이 싸서 제품의 원가에 크게 부담을 주지 않아 경제성이 있으며 폐기물을 활용할 경우 상당한 양의 친환경 에너지 자립이 가능하다”라고 말했다. 또한 “국내에서 해양투기, 매립 등 버려지는 음식물 쓰레기 400만톤(건조 중량 80만톤)의 50%를 VFA공법으로 처리하면 연산 10만톤 공장2기에서 연간 20만톤 규모의 에탄올을 생산할 수 있어 국내의 녹색에너지 자립화에 많은 기여를 할 수 있을 것”이라고 밝혔다.
이러한 연구 성과를 기반으로 장교수는 최근 국내특허(국제특허 출원중)를 취득한 MSC-HCDC (다단계 고농도 세포배양)공법을 활용하여 VFA 생산 및 정제, 수소첨가 반응연구를 수행하여 최근 실험실 규모의 연료용 알코올 생산에 성공했다.
현재 2010년 약 1톤 정도의 연료용 알코올 파이로트 공장 건설을 위한 준비를 하고 있으며 수건의 관련 특허도 출원 중에 있다.
※ 용어설명 :
○포도당 기반 공법: 셀루로즈를 당화효소로 분해하여 포도당을 만든 후 이를 효모로 알콜 발효하는 공법이다. 바이오매스 톤당 최고 300-L의 에탄올을 생산하는 것으로 알려져 있다.
○VFA 공법: 지구상의 모든 바이오매스는 혐기성 자연상태에서 초산, 프로피온산, 부칠산의 휘발산 유기산으로 분해되어 최종적으로 메탄가스와 탄산가스로 대기 중으로 방출된다. VFA-공법은 메탄가스로 가는 공정을 막고 이를 연료용 알코올 및 각종 화합물로 보내는 공법으로 에탄올 생산량은 유기물 톤당 500-L에 달한다.
2009.12.09
조회수 16531
-
누설전류의 원천적 차단 가능한 ‘20nm갭 기계식 나노집적소자’ 세계 최초 개발
- CPU, 메모리 적용 시 에너지 절감 年 7,480억원․329만톤의 CO2배출저감 효과 기대 -
고가의 반도체 기판 대신 저렴한 유리기판이나 플렉서블(flexible) 플라스틱 기판에도 적용이 가능하고, 3低(초저가․초저전력․초 저탄소) CPU를 실현할 수 있는 나노집적소자 원천 기술이 국내연구진에 의해 세계 최초로 개발되었다.
우리대학 전기 및 전자 공학과 윤준보 교수팀과 부설 나노종합팹센터(소장 이희철)는 공동연구를 통하여 세계 에서 가장 작은 이격거리를 가지는 “20nm갭 기계식 나노집적소자(3단자 나노전자 기계스위칭소자)”를 세계 최초로 개발하는데 성공했다고 밝혔다.
반도체로 만들어진 기존의 CPU는 반도체 특성을 활용하여 전기신호의 차폐를 제어함으로써 PC내에서 평균적으로 3.2W의 대기전력을 소모하고 있다. 업무용 PC 보급대수와 대기시간을 각각 1000만 대와 14시간으로 가정하면 대기전력은 년 163,520 MWh로 계산된다. 고리원자력발전소 1호기의 발전량(2007년 총 발전량 2,254,988 MWh) 7%에 해당하는 전력량이다.
이에 윤준보 교수팀은 나노종합팹의 첨단 장비․시설 등 인프라와 나노 전자기계 기술(Nano Electro Mechanical System, NEMS)을 적용하여, 트렌지스터와 동일한 역할을 수행하면서도 누설전류를 원천적으로 차단한 新개념 전자소자인 ‘기계식 나노집적 소자’를 개발했다.
본 소자의 핵심원리는 질화티타늄(TiN)으로 만든 3차원 나노구조물의 기계적인 움직임을 통해 기계적인 이격정도의 차이로 전기신호를 제어한다는 것이다. 대기 상태에서 누설전류를 원천적으로 차단하는 원리를 가지기 때문에, 이를 CPU에 적용하면 1W 미만의 대기전력을 가지는 CPU개발이 앞당겨 질 것으로 기대를 하고 있다.
사진설명: 20nm갭 기계식 나노집적 소자의 단면 사진
좌측- TEM (투사 전자 현미경) , 우측 - SEM (주사 전자 현미경)
또한, 저온 공정이 가능하기 때문에 기존의 반도체 회로 상부에 3차원으로 적층형 집적이 가능하고, 기존의 반도체를 만들던 단결정 실리콘보다 훨씬 저렴한 유리 기판이나 휘어지는 플라스틱 기판에서도 전자 스위치 소자를 형성할 수 있어, 초저가․초고성능․초저전력의 전자 회로를 만들 수 있다는 데 특징이 있다.
그리고, 무엇보다도 세계 최고 수준의 나노종합팹센터의 첨단 반도체 설비와 공정을 그대로 활용하여 본 소자의 핵심인 초미세 나노패턴 형성과 희생박막 형성 기술을 연구․실증했기 때문에, 상용화 실현 가능성이 매우 높다는 데 의의가 크다.
개발된 기계식 나노집적소자를 활용하여 대기전력 1W이하의 저전력 PC가 실현함으로써 기대되는 에너지 절감효과는 2010년 1,100GWh/年(1,210억원), 2020년 6,800GWh/年(7,480억원)에 이르고 각각 53만톤, 329만톤의 이산화탄소 배출량 억제효과를 가져올 수 있을 것으로 보인다.
또한, 기계식 나노집적소자의 시장 점유율을 전체 반도체 시장의 0.1%로만 잡더라도 시장규모가 2015년 3천 6백억원에 이를 것으로 전망하고 있다. 우주항공 장비와 통신용 소자 및 바이오소자 응용 등 관련 산업에 미치는 파급효과까지 고려하는 경우 그 경제적 부가가치는 매우 클 것으로 기대된다.
이번 연구결과는 12월 7일 미국 볼티모어에서 개막되는 국제 학술 회의인 “국제전자소자회의(International Electron Device Meeting, IEDM)”에서 발표될 예정으로 지난 50년간 반도체 소자를 이용하여 만들어 오던 초고집적회로(VLSI)에서 CMOS 반도체 소자가 극복 할 수 없었던 재료와 성능의 한계들을 극복할 수 있는 새로운 가능성을 제시했다는 것에 의미가 있다.
한편, 해당 기술과 관련하여 미국에 1건이 특허 등록되었으며 미국, 중국, 유럽, 일본 등에 4건의 후속 특허가 출원되어 있다. 국내에는 8건의 관련 특허 등록과 2건의 특허가 출원되어 있다.
나노종합팹센터 이희철 소장은 “나노전자 기계소자를 이용한 집적회로 기술은 2008년에서야 ITRS(세계반도체협회) 로드맵에 등재될 정도로 차세대 기술이며, 우리 기술진의 개발수준이 미국의 스탠포드대, UC버클리대학의 연구수준을 뛰어넘는 결과로 이번 기술 개발이 포스트-반도체 기술력을 선점할 수 있는 중요한 디딤돌이 될 것”이라고 내다보고 있다.
또, 연구개발에 주도적으로 참여한 이정언 박사과정은 “공동연구 개발을 통하여 얻은 기술은 실용화와 상용화를 목적으로 하고 있으며, 기술정보, 연구인력, 노하우 등 연구결과를 산업체에 제공하여 향후에 우리나라가 세계 차세대 반도체 시장에서 유리한 입지를 확보하는데 기여하고 싶다”고 앞으로의 계획을 밝혔다.
용어설명
○ 스위칭소자 : 전류를 on/off 시키는 장치, 스위치 장치를 조합하여 논리회로, 마이크로프로세서등 을 만들 수 있음.
○ 기계식 나노집적 소자 : 반도체 공정을 이용하여 만든 나노 크기의 기계장치로 전기신호에 의하여 제어되는 소자.
○ 3단자 스위칭 소자 : 3개의 단자로 구성된 전자 부품으로 1개의 단자에 인가된 전기신호로 나머지 2개의 단자의 단락 여부를 제어하는 전자 장치
○ 패키징 : 전자소자의 제품화를 위하여 기판상태에서 제작된 소자를 외부의 환경에 안정적인 상태가 되도록 최종적으로 마무리 하는 단계
○ 트랜지스터 : 규소나 저마늄으로 만들어진 반도체를 세 겹으로 접합하여 만든 전자회로로 전류나 전압흐름을 조절하여 증폭, 스위치 역할을 한다.
사진설명: 개발된 기계식 집적 소자를 활용한 미래형 전자 기판의 개념도
2009.12.07
조회수 20548
-
대사공학적으로 개량된 박테리아로 범용 플라스틱 생산기술 개발
- 이상엽 교수팀과 LG 화학 연구팀 공동개발
- 바이오테크놀로지 바이오엔지니어링(Biotechnology and Bioengineering)지 게재예정
생명화학공학과 이상엽(李相燁, 45세, LG화학 석좌교수, 생명과학기술대학 학장) 특훈교수팀과 LG화학 기술연구원(원장 유진녕) 박시재, 양택호박사팀이 4년여 간의 공동연구를 통해 박테리아를 이용하여 재생 가능한 바이오매스로부터 플라스틱을 생산하는 기술을 최근 개발했다.
교육과학기술부 시스템생물학 연구개발 사업과 LG화학 석좌교수 연구비로 지원된 이번 연구에서는 시스템 대사공학과 효소공학 기법을 접목, 자연적으로는 생성되지 않는 플라스틱(unnatural polymer)의 일종으로 최근 각광을 받고 있는 폴리유산(Polylactic acid, PLA)을 효율적으로 생산할 수 있는 대장균을 개발한 것이다.
이번 연구 결과는 바이오공학 분야 최고 전통의 바이오테크놀로지 바이오엔지니어링(Biotechnology and Bioengineering)지에 게재 승인됐으며 스포트라이트 논문(Spotlight paper)으로 선정돼 2010년 1월호에 두 편의 연속 논문으로 게재될 예정이다.
두 논문의 제목은 ‘개량된 프로피오네이트 코엔자임 에이 트랜스퍼레이즈와 폴리하이드록시알카노에이트 중합효소를 이용한 폴리유산과 그의 공중합체의 생합성(Biosynthesis of Polylactic acid and its Copolymers Using Evolved Propionate CoA Transferase and PHA Synthase)’과 ‘폴리유산과 그의 공중합체의 생산을 위한 대장균의 대사공학(Metabolic Engineering of Escherichia coli for the Production of Polylactic Acid and its Copolymers)’이다. 19건의 특허가 전 세계 출원 중이다.
기존의 복잡한 2단계 공정을 통해 생산되던 폴리유산을 재생가능한 원료로부터 미생물의 직접 발효에 의해 생산이 가능하도록 한 혁신적인 본 연구 전략은 앞으로 석유 유래 플라스틱을 대체할 수 있는 다양한 비자연 고분자(unnatural polymer)들의 생산에 활용될 획기적인 기술로 평가되고 있다.
폴리유산 (Polylactic acid, PLA)은 많은 바이오매스 유래 고분자들 중에서도 생분해성, 생체적합성, 구조적 안정성, 그리고 낮은 독성과 같은 뛰어난 물성으로 인해 석유 유래 플라스틱의 대체물로서 대두되고 있다.
그러나, 폴리유산은 현재 두 단계 공정으로 합성된다. 우선, 미생물 발효를 통해 유산(락트산, Lactic acid)을 생산, 정제한 후 여러 가지 시약, 용매 및 촉매가 첨가되는 복잡한 공정의 화학적 중합반응에 의해 폴리유산이 합성된다.
또한, 폴리유산의 물성을 다양하게 개선하기 위해 폴리하이드록시알카노에이트 (Polyhydroxyalkanoate, PHA)와 같은 다른 고분자들과의 공중합이나 혼합반응 등의 연구가 이루어지고 있다.
이러한 노력에도 불구하고, 공중합 반응에 사용되는 락톤계 모노머들의 가용성과 비용을 고려했을 때, 기존의 화학적 합성 방법은 효과적이지 않다. 이에, 미생물 유래 고분자인 폴리하이드록시알카노에이트의 생합성 시스템을 기반으로, 폴리유산과 그의 공중합체들의 생합성이 가능할 수 있는 대사경로를 효소공학을 통해 구축했다.
그러나, 외래 대사경로의 도입 및 조작만으로는 폴리유산 단일 중합체와 유산의 함량이 높은 공중합체의 생산이 효율적이지 않아, 시스템 수준으로 세포 내 대사흐름을 증가시킬 필요성을 인지했다. 이에, 대장균 균주의 인실리코 게놈 수준의 시뮬레이션을 이용한 대사흐름분석 기법을 활용하여 고분자 생산을 위한 주요 전구체의 대사 흐름을 논리적으로 강화시킴으로써, 세포성장과 함께 목적 고분자의 효율적 생산이 가능하도록 했다.
따라서, 효소공학을 통한 고분자 합성 경로의 직접적 조작 및 강화 뿐 아니라, 시스템 대사공학을 통한 논리적 접근으로 조작된 대사흐름을 바탕으로 다양한 폴리유산 플라스틱을 보다 효율적으로 생산할 수 있었다.
이는 시스템 대사공학과 효소공학을 접목시킨 고기술 전략으로 비자연 고분자를 효율적으로 생산한 최초의 성공적인 예로서, 재생가능한 자원으로부터 폴리유산뿐 아니라 석유유래 플라스틱을 대체할 수 있는 다른 비자연 고분자들의 일단계 생산을 위한 기반 기술을 마련해줌으로써, 플라스틱 생산 공정에 있어 새로운 전략을 제시했다.
李 교수는 “자연계에 없는 고분자를 미생물로 생산하는 것이 과연 될까? 라는 의문을 갖고 시작했다. 우리 KAIST 연구실의 정유경박사와 LG화학 기술연구원 연구팀원 10여명이 4년간의 끈질긴 노력 끝에 성공했다”며, “이번 연구는 대장균의 가상세포 시뮬레이션을 통해 세포 내 대사흐름을 목적한 고분자 생산에 유리하도록 논리적으로 조작하고, 고분자 생합성 경로를 구성하는 외래 효소들을 새롭게 만들어 도입함으로써, 강화된 대사흐름을 이용해 보다 효율적으로 목적 고분자를 생산할 수 있는 균주를 개발하는데 성공한 세계 첫 번째 케이스다. 특히, 유산이 단량체로 함유된 공중합체의 경우에는 세계최초로 만든 것이 되어 물질특허들로 출원중이다”라고 밝혔다.
한편, 이 혁신적인 연구 성과는 22일 미국 CNN 홈페이지의 Top기사 등 해외언론의 주요기사로 소개됐다. 주요내용은 한국의 KAIST 이상엽 교수팀과 LG화학 연구팀이 전 세계적으로 석유고갈, 지구온난화 및 환경오염 문제로 재생가능한 자원을 이용한 바이오매스 기반 기술의 개발이 시급한 현 시대의 흐름에 부응하면서, 재생가능한 자원으로부터 효율적으로 바이오공학을 통한 플라스틱 (Bioengineered plastics) 폴리유산의 생산이 가능한 대장균 균주를 개발했다는 내용이다.
2009.11.24
조회수 22352
-
온라인 전기자동차 개발에 민간기업 큰 관심
- 관련 기술개발에 16개 기업에서 적극적인 참여의사 밝혀
우리대학 온라인 전기자동차 사업이 민간기업의 큰 관심을 사고 있다. 온라인전기자동차 사업단(단장 조동호 교수)은 지난 9월 1일 국내 기업 20개 업체가 참여한 가운데 관련사업 컨소시엄 구성을 위한 사업설명회를 문지캠퍼스에서 가졌다.
그 결과로 16개 업체가 컨소시엄 참여의향서를 접수했다. 대표적 기업은 전장품 분야의 현대중공업과 LS산전, 전선분야의 LS전선, 버스분야의 대우버스(주), (주)한국화이바, 운행 및 운영분야의 KT 등이다.
민간기업의 적극적인 관심표명에 따라, KAIST는 온라인전기자동차 개발에 필요한 산학협력 체제를 구축하고, 관련기업의 기술 및 자본과의 적극적인 상호교류와 투자를 통해 국책사업인 온라인전기자동차의 원천기술개발이 탄력을 받게 됐다.
배터리 및 충전문제를 비롯한 전기자동차가 가지는 문제를 해결함과 동시에 대한민국의 융합신산업을 창출하고 세계 자동차 산업의 미래를 선도할 온라인전기자동차(OLEV)를 개발하고 있다.
미국에서는 부시행정부 시절의 수소관련연구에서, 오바마 행정부로 바뀌면서 전기차 분야와 배터리 연구로 과학기술 분야의 연구기조가 바뀌었다. 일본에서도 전기차 연구에 대대적으로 투자하고 있다.
이러한 국제적인 연구환경 속에서 대한민국의 온라인전기자동차 개발이 성공적으로 수행되어 본격적으로 상용화될 경우, 우리나라가 급집전 플랫폼/ 동력관리 플랫폼 분야에서 국제표준을 주도하고 미래 세계 자동차시장에서 선도적인 역할을 수행할 수 있을 것으로 기대된다.
온라인전기자동차(OLEV)는 정차 및 주행 중에 도로에 매설된 전력선으로부터 무선으로 전력을 전송받아 구동에너지로 사용하거나 배터리를 충전하는 신개념의 전기자동차로써 전기자동차의 상용화를 크게 앞당길 수 있는 기술이다.
온라인전기자동차(OLEV) 연구팀은 도로 표면과의 충분한 이격거리에서 실용화수준의 효율성 확보, 전자파 안전성 보장, 운행 중 좌우 위치 오차 극복 등 상용화에 필요한 핵심원천기술을 확보하여 국제적으로 가장 앞서고 있다는 평가를 받고 있다.
또한 정부와 지방자치단체의 지원으로 이미 2009년에 서울시와 제주도에서 온라인전기버스 시험사업을 진행할 예정이고 2010년에는 서울시의 특정버스 노선에 온라인 전기버스를 시범 투입하기로 결정하여 본격적인 온라인 전기버스의 대중교통 시대를 맞이하게 되었다.
2009.10.12
조회수 13687
-
양승만 교수, 액체 방울을 이용한 초소형 인조곤충눈 구조 제조
- 초정밀 극미량 물질 인식센서로 활용 - 네이처 포토닉스에서‘미세패턴기술-광자돔’이라는 제목의 하이라이트로 소개
곤충 및 갑각류 등의 눈은 포유류의 눈과는 달리 수백~수만개의 홑눈(또는 낱눈)이 모여 생긴 겹눈 구조를 갖고 있다. 각각의 홑눈은 투명한 볼록렌즈로서 빛을 모아 명암, 색깔(파장)과 같은 빛 정보를 뇌에 전해 주며 뇌에서 전달된 정보를 재조합하여 사물을 감지한다. 각 홑눈은 육방밀집구조로 서로 빈틈없이 배열되어 돔 형태의 겹눈 표면을 메우고 있다. (파리와 잠자리의 눈 사진참조)
생명화학공학과 양승만 교수의 광자유체집적소자 창의연구단은 다양한 기능을 갖는 나노입자를 제조하고 이들 입자들이 스스로 조립되는 자기조립 원리를 규명하는 연구를 수행하여 실제 곤충눈의 수백분의 일 크기의 초소형 인조겹눈구조를 실용적으로 제조할 수 있는 방법을 최근 개발했다.
이 연구결과는 최근 국제적 저명학술지인 어드밴스드 머티리얼스(Advanced Materials) 誌 10월호 표지논문(cover paper)으로 게재 됐으며 인조곤충눈 구조의 실용성을 구현하는데 크게 기여한다고 인정받아 특별히 주목해야할 논문(Advances in Advance)으로 선정됐다.
특히, 네이처 포토닉스(Nature Photonics)지는 10월호에서 양 교수팀 연구의 중요성과 응용성에 주목하여 이 연구결과를 "미세패턴기술-광자돔(Micropatterning–Photonic domes)"이라는 제목으로 "뉴스와 논평(News & Views)"란에 하이라이트로 선정하여 비중있게 게재했다.
지난 20여 년 동안 곤충눈, 오팔, 나비날개 등 빛정보를 처리할 수 있는 자연계에 존재하는 구조를 인공적으로 제조하기 위한 연구가 많은 과학자들에 의하여 시도되어 왔으나, 실용적인 구조를 얻는 데에는 한계가 있었다. 양 교수팀은 2006년부터 교육과학기술부의 ‘창의적연구진흥사업’으로부터 지원을 받아 초소형 인조곤충눈 구조를 실용적으로 제조할 수 있는 기술을 확보하기 위한 연구를 수행해 왔다.
Nature Photonics지 10월호가 하이라이트로 선정하여 주목한 양 교수팀의 이번연구에서는 실제 곤충눈 크기의 수백분의 일 정도로 초소형이며 균일한 크기와 모양을 갖는 인조곤충눈 구조를, 크기가 수십 마이크로미터인 균일한 기름방울을 이용하여 성공적으로 제조하여 규칙적으로 배열하였다. 특히 주목할 것은 제조공정이 손쉽고 빠른 나노구슬의 자기조립 원리를 이용한 점이다.
우선 크기가 수백 나노미터인 균일한 유리구슬(낱눈렌즈)을 물속에 분산시킨 후, 크기가 수십 마이크로미터인 균일한 기름방울을 주입하고 물-기름-유리구슬 사이의 표면화학적 힘의 균형을 유지시키면 유리구슬이 물과 기름방울 사이의 경계면으로 이동한다. 그 후 물-유리-기름방울의 혼합물을 기판 위에 뿌리면 기름방울이 반구의 돔 모양으로 변형되고 유리구슬렌즈는 저절로 기름방울 표면 위에 촘촘히 육방밀집구조로 배열하게 된다 (전자현미경사진 참조). 이 때 자외선을 기름방울에 쪼여서 고형화시킴으로써 종래에 수십 시간이 소요되는 인조곤충눈 조립공정을 불과 수분 만에 제조할 수 있다.
수 천개의 미세렌즈가 장착된 돔 구조의 초소형 인조곤충눈은 인간의 눈에 비해 시야각이 넓고 빛을 모으는 능력도 매우 높다. 따라서, 환경의 미세한 변화를 감지할 수 있는 능력을 보유하므로 신약개발을 비롯하여 극미량의 물질을 인식할 수 있는 초고감도 감지소자를 요구하는 다양한 분야에 응용될 수 있다.
특히 최근에 신약개발 등 바이오 산업의 실용화에 사용되고 있는 극미량의 시료를 처리할 수 있는 반도체칩 규모의 실험실인 랩언어칩(Lab on a Chip)에 초소형 인조곤충눈을 도입할 경우 높은 정밀도를 갖는 물질 감지소자로 활용될 수 있다.
이러한 인조곤충눈 구조는 세계적인 연구그룹들이 활발히 개발 중이며 최근에 수 밀리미터 크기의 실제 곤충눈 크기의 인조곤충눈은 보고된 바 있다. 그러나, 본 연구의 결과는 초소형 인공곤충눈 구조를 자기조립법으로 만든 최초의 사례로서 이 분야의 국제경쟁에서 우위를 확보하는데 필요한 핵심요소다.
2009.10.06
조회수 25150
-
유룡 교수, 나노판상 제올라이트 촉매 물질 합성 성공
화학과 유룡(54)교수가 특수한 계면활성제 분자와 실리카를 조립하는 새로운 방법으로 세계 최초로 2나노미터(nm) 극미세 두께의 나노판상형 제올라이트 촉매 물질을 합성하는데 성공했다.
이 연구결과는 세계 최고 권위의 과학저널인 ‘네이처(Nature)지’ 10일자에 게재됐으며, 이 논문은 세계 과학계에서 저자의 위상과 연구결과의 과학적 중요성을 인정받아 네이처 인터뷰 기사로 소개되는 영예를 얻었다.
이번에 합성된 제올라이트는 2nm두께의 판상으로, 제올라이트 물질에 대해 이론적으로 예상할 수 있는 최소 두께다. 또한 이렇게 얇은 두께임에도 불구하고, 이 물질은 섭씨 700도의 고온에서도 높은 안정성을 나타냈다.
연구를 주도한 유교수는 “이처럼 극미세 두께의 제올라이트 물질은 분자가 얇은 층을 뚫고 쉽게 확산할 수 있기 때문에 석유화학공정에서 중질유 성분처럼 부피가 큰 분자를 반응시키는 촉매로 사용될 수 있다. 특히 이 제올라이트 촉매는 메탄올을 가솔린으로 전환시키는 화학공정에서 기존의 제올라이트 촉매에 비해 수명이 5배 이상 길어, 촉매 교체 주기를 연장시킬 수 있기 때문에 경제효과가 매우 높다.”라고 연구의의를 설명했다.
이번 연구결과는 앞으로 대체에너지 자원개발과 녹색성장에 적합한 친환경 고성능 촉매 개발연구에 직접적으로 활용될 수 있을 것으로 기대된다.
유교수팀이 독창적으로 설계한 계면활성제 분자는 머리 부분에 제올라이트 마이크로 기공(micropore)유도체를 포함하여 제올라이트 골격의 형성을 유도하고, 꼬리 부분에 긴 알킬(alkyl) 그룹이 연결되어 제올라이트의 마이크로 기공보다 더 큰 메조 기공(mesopore)을 규칙적으로 배열할 수 있도록 했다.
이러한 독창적인 물질 설계는 제올라이트 합성 메커니즘에 대한 과학적 지식을 넓히는 획기적인 연구 결과로서, 향후 다양한 구조의 다른 물질을 합성하는 새로운 분야를 개척한 선구적인 성과라고 평가할 수 있다.
유교수는 2000, 2001년에 국내 최초로 2년 연속 ‘Nature’지에 메조다공성 실리카와 메조다공성 탄소에 대한 논문을 게재했고, 2003년과 2006년에 ‘Nature Materials"지에 고분자-탄소 복합물질과 메조다공성 제올라이트에 관한 논문을 게재한 후, 이번에 세 번째로 ’Nature"지에 책임저자(교신저자)로 논문을 게재하는 쾌거를 올렸다. 이것은 국내 과학자도 세계 과학을 선도하는 그룹의 반열에 올랐다는 것을 의미하며, 우리나라 과학의 우수성을 전 세계에 알리는 기회가 됐다.
이 연구는 교육과학기술부(장관 안병만)와 한국연구재단(이사장 박찬모)이 추진하는 ‘국가과학자지원사업’의 지원을 받아 이뤄졌다. 또한 교육과학기술부와 한국연구재단이 추진하는 ‘세계수준의 연구중심대학(WCU, World Class University)육성사업’과 나노기술육성사업(나노팹사업)에 따른 결실이다. 이번 연구에서 유 교수팀은 KAIST 부설 나노팹센터와 테라사키교수 연구팀의 협조로, 전자현미경을 통해 물질의 세부구조를 분석하였다. 특히 나노팹의 높은 기술력은 연구시간을 최대로 단축시켜 단시간에 훌륭한 연구 성과를 도출할 수 있도록 했다.
2007년 국가과학자로 임명된 유교수의 주도 하에, KAIST 최민기 박사, 나경수연구원(화학과 박사과정), 김정남연구원(화학과 박사과정)이 연구를 수행하고, 분해능이 높은 현미경 사진으로 구조를 확인하기 위해 스웨덴 스톡홀름대학교의 오사무 테라사키 교수와 야수히로 사카모토 박사가 추가로 참여했다. 테라사키 교수는 현재 스웨덴 스톡홀름대학교 석좌교수로, WCU사업의 지원을 받아 올해부터 KAIST EEWS(Energy, Environment, Water and Sustainability)학과에 겸임교수로 재직하고 있다.
이번 연구결과는 세계 수준의 연구중심대학과 세계적인 나노과학기술 육성을 위한 정부의 지원으로, 우리나라 과학기술의 수준을 한 단계 발전시킨 결과로서, 국내 기술력과 해외 우수 연구자들의 연구능력과 기술력을 통합한 국제공동연구의 모범사례로 평가된다.
2009.09.10
조회수 23822