-
광섬유로 300조분의 1초 오차의 클럭 개발
〈김 정 원 교수〉
우리 대학 기계항공공학부 김정원 교수 연구팀이 광섬유 광학 기술로 수백조분의 1초 오차를 가지는 클럭(clock) 원천기술을 개발했다.
이는 클럭 발진기(oscillator)의 성능을 획기적으로 향상시킬 수 있는 원천 기술로 성과를 인정받아 국제학술지 ‘사이언티픽 리포트(Scientific Reports)’ 11월 4일자 온라인 판에 게재됐다.
클럭 발진기는 일정한 시간 간격의 주기적 신호를 발생시켜 전자시스템이 신호에 맞춰 정확하게 동작하도록 만드는 장치이다. 음악 연주에서 메트로놈과 같은 역할을 한다.
이 클럭 발진기는 오늘날 각종 정보통신 시스템 뿐 아니라 입자가속기나 천체관측장치 같은 거대 과학시설, 초정밀 계측 장비, 레이더, GPS 및 위성항법 시스템 등 전 분야에 걸쳐 핵심적 역할을 하고 있다. 따라서 클럭 발진기에서 발생하는 주기적 신호의 시간 오차를 줄인다면 각종 시스템들의 획기적인 성능 향상과 이전에는 불가능했던 기술 개발도 가능해진다.
기존에는 특수 제작된 공진 회로를 이용한 라디오파 혹은 마이크로파 발진기를 사용하거나 광공진기의 주파수 나눔을 이용한 방식의 기술을 사용했으나, 이 방식은 크기가 클 뿐 아니라 기계적 안정도가 떨어지고 수억 원 이상의 고가였기 때문에 실험실 밖에서의 응용 등에 한계가 있었다.
연구팀은 문제 해결을 위해 신뢰성이 높고 가격경쟁력이 확보된 광통신용 광섬유 부품을 활용한 새로운 방식의 클럭 발진기를 개발했다.
기술의 핵심은 초고속 광섬유 레이저에서 발생하는 넓은 스펙트럼 내의 두 광주파수(optical frequency) 차이를 이용한 것이다. 기존 전자 발진기는 기가헤르츠(GHz, 1초에 109회 진동) 영역에서 동작하지만, 이 기술은 이보다 테라헤르츠(THz, 1초에 1012회 진동) 주파수를 이용하기 때문에 약 1000배 민감한 시간 차 측정이 가능하다.
또한 광섬유 케이블에서 빛이 전파되는 시간이 매우 일정하게 유지되기 때문에 테라헤르츠 주파수를 이용해 높은 분해능으로 측정된 시간차를 광섬유 케이블 내에서의 빛의 전파 시간에 정확하게 맞췄다.
그 결과 국제전기통신연합(ITU)에서 정의한 클럭 신호원의 성능을 나타내는 0.1초 동안의 시간오차인 타이밍 지터(timing jitter)가 3펨토초(333조분의 1초)로 측정됐으며, 이는 환산하면 100만년 동안 1초의 오차를 갖는 성능에 해당한다.
이를 통해 별도의 특수 제작된 고가 소자 없이도 세계적 수준의 클럭 발진기 성능을 얻을 수 있고, 상용화 시 제작비용을 기존 최고 성능 발진기의 10분의 1 이하 수준으로 낮출 것으로 기대된다.
연구팀은 이 기술의 성능과 안정성이 아날로그-디지털 변환기나 고성능 신호 분석기와 같은 ICT 시스템, 레이더, 원격 탐사, 위성항법 등 국방, 우주, 환경 기술 분야에서도 폭넓게 활용될 수 있을 것이라고 밝혔다.
김 교수는 “이 기술은 군용 레이더, 보안 분야와의 연관성 때문에 주요 장비들의 수출이 금지된 경우가 많아 순수 국내 기술로 자체 개발한 것은 그 의의가 크다.”며 “향후 유리기판 위에 시스템을 구현해 칩 스케일의 고성능 클럭으로 발전시킬 계획이다”고 말했다.
KAIST 기계공학과 정광연 박사과정(1저자)의 참여로 이루어진 이번 연구는 한국연구재단 중견연구자지원사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 수백조분의 1초 오차의 광섬유 클럭 발진기 개념도
2015.11.12
조회수 12401
-
화합물의 광학 활성 분석 기술 개발
〈 김 현 우 교수〉
우리 대학 화학과 김현우 교수 연구팀이 핵자기공명 분광분석기(NMR)를 통해 전하를 띠는 화합물의 광학 활성을 간단히 분석할 수 있는 기술을 개발했다.
연구 결과는 화학분야 학술지 ‘미국화학회지(Journal of the American Chemical Society)’ 10월 19일자 온라인 판에 게재됐다.
오른손과 왼손처럼 같은 물질이지만 거울상 대칭이 되는 화합물을 광학 이성질체라고 한다.
지구상의 생명체를 이루는 아미노산과 당은 하나의 광학 이성질체로 이뤄져 있어 새로운 화합물이 생체에 들어갈 때 광학 활성에 따라 서로 다른 생리학적 특징을 나타낸다. 따라서 신약을 개발할 때 광학 활성을 조절하고 분석하는 연구는 필수적이다.
광학 활성의 분석 방법으로 고성능 액체 크로마토그래피(HPLC)가 주로 사용되는데, 고가의 부품을 구비해야 하고 30분에서 1시간 정도의 시간이 소요되는 단점이 있다.
또한 신호의 감도 및 분해 기능이 떨어지고 사용할 수 있는 용매가 무극성에 한정되는 점 때문에 활용에 한계가 있었다.
반면 화합물의 분자 구조 분석에 활용되는 핵자기공명(NMR) 분광분석기는 1~5분 정도의 빠른 분석속도를 갖고 있다. 또한 화학 분야에서 분자의 구조를 확인하기 위한 필수 장비이기 때문에 대부분의 연구실에서 구비된 상태다.
하지만 이 핵자기공명 분광분석기를 통해 광학 활성 화합물의 신호를 분리하는 효과적인 방법은 보고되지 않았다.
연구팀은 기존에 알려지지 않은 음전하를 띠는 금속 화합물과 핵자기공명 분광분석기를 이용해 분석 방법을 개발했다.
음전하를 띤 금속 화합물이 양전하 및 음전하를 갖는 광학활성 화합물과 이온성 결합을 하면 핵자기공명 분광분석기를 통해 신호가 구별돼 광학 활성을 분석할 수 있는 원리이다.
이 방법을 사용하면 구조적 제약 없이 다양한 화합물을 분석할 수 있고, 비극성 및 극성 용매에 모두 적용 가능하다는 장점을 갖는다.
연구팀은 다양한 신약 및 신약후보 물질들은 전하를 띨 수 있는 작용기를 포함한 경우가 많아 연구팀의 새로운 분석 방법이 신약 개발에 직접적으로 활용 가능할 것으로 기대된다고 밝혔다.
김 교수는 “간단한 화학적 원리를 통해 기존의 틀을 깨는 혁신적 분석방법을 만들었다”며 “이 방법이 신약개발에 많이 활용되길 기대한다”고 말했다.
화학과 서민섭 박사과정(1저자)의 참여로 이루어진 이번 연구는 기초과학연구원(IBS) 나노물질 및 화학반응 연구단과 슈퍼컴퓨팅연구지원사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 금속 화합물과 이온성 상호작용으로 광학활성을 가진 화합물의 NMR 신호가 분리되는 현상
그림2. 다양한 광학활성 물질이 분리되는 그림
2015.11.10
조회수 16241
-
고효율의 하이브리드 자동차 구동 시스템 개발
〈윤 용 산 교수〉
우리 대학 기계공학과 윤용산 교수 연구팀이 클러치 페달 없이 수동 변속이 가능한 독자적 구동시스템의 시작품(Prototype) 제작에 성공했다.
이 기술로 기존 하이브리드 자동차보다 높은 효율의 자동차 개발이 가능할 것으로 보인다. 연구팀의 하이브리드 자동차는 구조가 간단해 기존 자동차에 약간의 변형을 주는 것으로도 구현이 가능하며, 제작비용이 저렴하고 운전이 용이하다는 장점을 갖는다.
이 구동시스템은 ‘대화형 수동변속기를 갖는 하이브리드 차량 및 이의 제어 방법’으로 작년 5월 국제특허(PCT)로 등록됐고, 지난 5월 경기도 고양에서 열린 제 28회 국제 전기자동차 심포지엄 및 전시회에 발표됐다.
하이브리드 자동차는 내연기관 엔진과 변속기에 모터와 발전기를 결합시켜 공해와 연료 소모를 최소화하는 차량이다. 미국에서 발표하는 에너지 아웃룩(Energy Outlook)에 의하면 25년 후에도 하이브리드 자동차가 친환경 자동차 시장을 주도할 것으로 예상하고 있다.
그러나 일본의 자동차 기업이 하이브리드 자동차 관련 특허를 대량으로 선점해 기술 개발에 어려움을 겪고 있는 현실이다.
또한 한때 개발된 컴퓨터에 의한 반자동 수동변속기나 일본 회사의 수동변속기에 모터를 단순 부착한 제품은 비용이나 편의 측면에서 한계가 있었다.
문제 해결을 위해 연구팀은 비용이 제일 저렴한 수동변속기에 모터 발전기를 부착해 독창적인 방식의 비용절감 효과가 큰 하이브리드 자동차 시스템을 구현했다.
연구팀은 수동변속기의 클러치판을 없애고 그 기능을 모터발전기로 대신해 저속에서는 모터발전기로만 운행하게 만들었다.
이를 통해 기존 수동변속기 차량의 문제점인 엔진 꺼짐이나 번거로운 클러치 조작에서 벗어날 수 있다. 또한 변속 시간, 중량이 줄고 구동시스템의 내구성이 향상된다.
윤 교수는 “기존 방식과 달리 모터발전기가 클러치판을 대신해 엔진을 조절하기 때문에 기어 변경이 부드럽게 이뤄질 수 있다”며 “저속에서는 모터발전기에 의해서만 구동되므로 수동변속기의 문제점을 상당부분 해결할 수 있다”고 말했다.
기계공학과 손희운 석사과정 학생의 주도로 진행된 이번 연구는 한국연구재단의 이공분야 기초연구사업, 일반연구자 지원사업의 지원을 받아 수행됐다.
□ 그림 설명
그림 1. 클러치를 제거하고 일방향 클러치와 모터발전기를 첨가해 반자동의 실용적인 하이브리드 구동시스템을 구현한 모습
2015.11.04
조회수 11035
-
대장균의 생물막 형성 제어 기술 개발
〈이 영 훈 교수〉
우리 대학 화학과 이영훈 교수 연구팀이 작은 RNA(small RNA : sRNA)의 발현을 조절해 대장균의 생물막 형성을 제어할 수 있는 기술을 개발했다.
연구 결과는 네이처 자매지인 ‘사이언티픽 리포트(Scientific Reports)’ 10월 15일자에 게재됐다.
세균들은 외부의 여러 환경으로부터 스스로를 보호하기 위해 다량체로 이뤄진 세포성분을 분비한다. 이로 인해 고체 표면이나 살아있는 생물 조직에서 생물막(biofilm)이라는 3차원 구조물이 형성된다.
이 생물막은 제거가 어려울 뿐 아니라 세균의 생체 내 증식, 치석, 의료기기 오염, 수도관, 정수기 등에 분포해 각종 산업시설에서 광범위한 문제를 일으키고 있다.
특히 생물막을 형성하고 있는 세균들은 항생제에 매우 높은 내성을 가질 수 있어 슈퍼박테리아의 항생제 내성의 주요 원인이기도 하다.
생물막 형성에 크게 관여하는 세균 내의 sRNA는 표적 메신저 RNA(mRNA) 또는 단백질과 상호작용해 세포대사를 조절하는 핵심 요소로 기능한다. 학자들은 생물막 형성의 원리를 규명하기 위해 이 sRNA를 연구해 왔다.
현재 대장균에서는 100여 종의 sRNA가 보고됐다. 연구팀은 이 중 99종을 분석해 각각의 대장균 sRNA를 발현할 수 있는 라이브러리를 구축했다. 이후 이를 통해 환경적 스트레스 대응과 밀접한 관련성을 가져 생물막 형성에 핵심이 되는 sRNA를 탐색했다.
그 결과로 연구팀은 생물막 형성에 관여하는 sRNA를 새롭게 발견했고, 생물막 형성을 위한 생리적 변화(세포운동성, I형 핌브리아 형성, 컬리핌브리아 형성)를 일으키는 sRNA들을 분석하는 데 성공했다.
이 분석 방식은 기존의 유전체적 분석을 통한 sRNA 작용 원리 규명 연구에 비해 이 교수 연구팀은 특정 sRNA의 기능을 직접 분석할 수 있어 신속하고 효율적으로 작용 원리를 규명할 수 있다는 장점을 갖는다.
이번 연구를 통해 생물막 형성과정에 관여하는 신호 전달체계를 이해하는 후속 연구 뿐 아니라, sRNA를 진단 마커나 약물 타겟으로 삼아 세균의 병원성 제어에 활용할 수 있을 것으로 기대된다.
이 교수는 “세균의 생물막 형성과 분해를 원하는 방향으로 제어할 수 있게 됐다”며 “향후 99종의 sRNA 각각에 대한 돌연변이 균주도 확보해 함께 활용할 예정이다”고 말했다.
화학과 박근우, 이정민 박사가 공동 1저자로 참여한 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 글로벌프론티어사업(지능형 바이오시스템 설계 및 합성 연구), 기초연구실 지원사업, 중견연구자 지원사업(도약연구)을 통해 수행됐다.
□ 그림 설명
그림 1 . 세균 생물막 형성과정의 모식도
그림 2. sRNA의 발현양에 비례하여 생물막 형성의 억제. 생물막 형성이 많을수록 진한 보라색
그림 3. 99종의 대장균 sRNA와 라이브러리 구축에 사용된 pHMB1 플라스미드의 구조
2015.10.28
조회수 14905
-
휘어지는 물질에서 증폭된 광전기 효과 발견
양 찬 호 교수
우리 대학 물리학과 양찬호 교수 연구팀이 물질이 휘어질 때 광전기(光電氣) 효과가 증폭되는 것을 발견하고 그 원인을 규명했다.
이번 연구결과는 나노과학기술 분야 학술지 ‘네이처 나노테크놀로지(Nature Nanotechnology)’ 8월 31자 온라인 판에 게재됐다.
광전기 효과는 빛 에너지가 전기 에너지로 전환되는 현상으로 이 효과를 이용하면 온실가스 배출 없이 전기를 만들 수 있다. 따라서 전 세계적으로 안정적이고 저렴하며 효율이 높은 광전기 효과를 발생시키는 물질 및 구조를 찾는 연구가 활발히 진행되고 있다.
기존 태양광 소자들은 다른 물질을 붙이거나 P형-N형 반도체를 접합하는 등 두 개 이상의 물질을 이용하는 방식으로 광전기 효과를 일으켰다.
하지만 연구팀은 단일 물질에서도 휘어지는 변형이 발생했을 때 마치 두 물질의 경계면에서 광전기 효과가 일어나는 것과 흡사한 현상을 발견했다.
P형-N형 반도체 접합에서만 가능했던 전기장 생성이 단일 물질의 휘어짐으로도 가능함을 확인해 좀 더 효율적인 광전기 소자 제작이 기대된다.
물질의 일반적인 휘어짐으로는 얻을 수 있는 광전기 효과가 크지 않아 실용성이 없었다. 하지만 연구팀은 나노미터 크기의 구조까지 관찰해 물질이 자발적으로 매우 크게 휘는 구간을 발견했다.
그리고 수십 나노미터(1억분의 1미터)의 곡률(曲律)로 크게 휘어진 이 물질이 통상적인 물질에 비해 100배 증폭된 광전기 효과를 생성함을 규명했다.
광전기 효과가 증폭된 원인은 물질이 휘어질 때 발생하는 전기장에 있다. 물질이 빛을 받으면 원자에 묶여있던 전자가 잠깐 움직일 수 있는 상태가 되는데 일반적으로는 원자에 다시 속박된다.
하지만 물질이 휘어지는 구간에서는 전기장이 유의미한 강도로 세게 발생해 전자가 원자의 속박을 벗어나 외부로 빠져나와 전류가 흐를 수 있는 것이다.
특히 나노미터 규모의 미시적 구조에서는 물질이 크게 휘어진 상태가 흔하게 존재하기 때문에 연구팀의 규명은 작은 나노소자 연구에 유용할 것으로 예상된다.
또한 연구팀은 물질 표면의 전기기계적 성질을 10나노미터의 해상도로 이미지화할 수 있는 기술을 개발했다. 이 기술은 전기장 분포를 유추할 수 있어 다양한 나노스케일 연구에 활용할 수 있을 것으로 기대된다.
양 교수는 “휘어진 정도가 큰 경우에 플렉소전기 현상의 비선형 움직임이 중요함을 제안했다.”며 “이러한 비선형 거동은 전기기계적 성질의 계보를 잇는 새로운 현상으로 학술적 가치가 높다”고 말했다.
이번 연구는 우리 대학 김용현 교수, 포항공대 조문호 교수, 오상호 교수, 포항 가속기연구소 구태영 박사, 재료연구소 최시영 박사 등과 공동으로 진행됐고, 한국연구재단의 중견연구자지원사업을 통해 수행됐다.
□ 그림 설명
그림1. 물질이 휘어질 때 광전기 효과가 발생함을 나타낸 개념도
2015.09.15
조회수 12853
-
디지털 이미지 위조, 변조 식별 기술 개발
이 흥 규 교수
우리 대학 전산학부 이흥규 교수 연구팀이 육안으로 판단이 어려운 디지털 이미지의 위조 및 변조를 식별할 수 있는 웹 서비스를 개발했다.
이 서비스는 국내에서 처음 시행되는 디지털 이미지 조작탐지 웹 서비스이며, 11일부터 http://forensic.kaist.ac.kr 도메인을 통해 시범 운영된다.
이번 연구는 이미지의 무결성 확인이 필요한 법원, 의료, 군사 등 다양한 분야에서 활용될 전망이다. 논문 사진, 의료 영상, 법적 증거자료 등에서 조작으로 인해 발생할 사회적 문제를 예방할 수 있을 것으로 기대된다.
기존의 이미지 조작 식별 서비스는 포맷 기반의 조작 탐지 방식에 근거해 위조 가능성 여부만을 알 수 있는 수준이었다. 포토샵 등 이미지 수정 프로그램의 다양한 수정 방식을 현재의 탐지 기술로 모두 잡아내기엔 어려움이 있었다.
연구팀은 국제 저명 논문 및 연구 결과들을 기반으로 해당 서비스를 구축했다. 복사-붙여넣기, 리터칭, 전체 변형, 스플라이싱 등 다양한 조작 방식을 식별하기 위해 탐지 방식 역시 여러 방향으로 구축했다.
연구팀은 ▲이미지 픽셀의 통계적 특성의 변화를 탐지하는 픽셀 기반 방식▲이미지 손실 압축 기업에 의한 무결성 검증을 통한 포맷 기반 방식▲카메라의 촬영 프로세스가 남기는 특성에 기반한 카메라 기반 방식을 이용해 조작을 탐지했다.
디지털 이미지에 가해지는 변형은 눈에 보이지 않아도 이미지 내부의 통계적 특성을 변화시킨다. 또한 변형의 종류에 따라 통계적 특성이 다르게 나타나는데 위의 방식들을 통해 조작의 영역 및 방식까지 측정이 가능해진다.
이번 웹 서비스는 논문 발표 수준에서만 진행되던 기술들을 다년간의 연구개발을 통해 일반에 제공함으로써 상용화의 발판이 될 것으로 기대된다. 연구팀은 개발된 기술 중 상당수는 이미 상용화 가능한 수준의 탐지율 및 기술 신뢰도를 보인다고 말했다.
이흥규 교수는 “전문 이미지 편집 툴의 발전에 비해 위변조 탐지 기술은 그 중요도에 비해 관심과 연구가 많이 부족하다”며 “다양한 위, 변조 탐지의 과학적 기법들이 실용화가 가능하도록 연구하겠다”고 말했다.
이번 연구는 미래창조과학부와 한국연구재단이 추진하는 중견연구자지원사업의 지원으로 수행됐다.
□ 사진 설명
그림 1. 2008년 이란의 미사일 발사 사진 조작 탐지 결과(복사-붙여넣기)
(左 : 원본, 中 : 이란에서 발표한 조작 사진, 右 : 연구팀이 탐지한 조작 영역이 픽셀로 표시된 화면)
그림 2. 탐지 기법 중 ‘색상 변환 탐지 기법’에 의해서 탐지된 결과 (左 : 원본, 中 : 색상 변형 조작 사진 右 : 조작 영역이 색깔로 표시된 화면)
그림 3. 복사-붙여넣기한 사진 조작 탐지 결과 (左 : 원본, 中 : 조작 사진, 右 : 조작 영역이 표시된 화면)
2015.06.11
조회수 15845
-
레고블록 계면구조 수소연료전지 개발
우리 대학 생명화학공학과 김희탁 교수와 박정기 교수 공동 연구팀이 레고블록과 같은 맞물림 계면구조를 통해 결착력이 강화된 수소연료전지를 개발했다.
연구 결과는 재료과학분야 국제 학술지 ‘어드밴스드 머터리얼스(Advanced Materials)’ 20일자 온라인 표지논문으로 게재됐다.
전기자동차인 수소연료전지 자동차는 차세대 친환경 미래 자동차로 각광받고 있다. 하지만 기존 연료전지는 고가의 불소계 멤브레인(고분자 필름 박막)을 이용하기 때문에 가격을 낮추는 데 한계가 있었다.
이를 극복하기 위해 저가의 탄화수소계 멤브레인을 사용했지만, 백금 전극과의 계면 결착이 취약해 상용화에 어려움을 겪었다.
연구팀은 문제 해결을 위해 멤브레인과 전극 계면이 레고 블록처럼 서로 맞물려진 구조를 개발했다. 탄화수소계 멤브레인 표면에 형성된 마이크론 크기의 돌기가 전극 표면 고분자 층에 삽입된 후, 수분에 의해 팽창하며 계면 결착력이 발생하는 원리이다.
이 맞물림 계면구조의 개발로 탄화수소계 연료전지의 계면 결착력은 8배, 연료전지의 내구성은 4배 이상 향상됐다.
연구팀은 화학연구원 홍영택 박사팀과 협력해 맞물림 계면구조의 소재 설계를 수행했고, KAIST 기계공학과 이대길 교수팀과 수치 해석을 통한 계면 결착력 향상 메커니즘을 규명했다.
김희탁 교수는“맞물림 계면 구조를 도입한 연료전지는 탄화수소 소재가 가져왔던 한계를 극복할 단서를 제시했다”며, “연료전지의 가격을 낮추는 데 큰 역할을 할 수 있을 것이다”고 말했다.
이번 연구는 한국연구재단의 일반연구자사업과 KAIST 세계수준 연구중심대학(World Class University:WCU) 육성사업 프로그램 및 한국화학연구원 기관고유사업의 지원을 받아 수행됐다.
□ 그림 설명
그림 1. 어드밴스드 머터리얼스 誌에 게재된 레고블록 계면구조 개념도
그림 2. 마이크론 크기의 돌기가 표면에 형성된 탄화수소계 멤브레인
그림 3. 마이크론 크기의 돌기가 전극 표면 고분자층에 삽입된 계면 구조
2015.05.27
조회수 14665
-
새 인공 형광 단백질 나노 조립체 개발
정 용 원 교수
우리 대학 화학과 정용원 교수 연구팀이 새로운 모양과 다양한 크기의 인공적 형광 단백질 나노 조립체를 개발했다.
이 단백질 나노 조립체 연구로 단백질 기반 신약 및 백신 개발 등 새로운 나노구조체 분야에 활발한 적용이 가능할 것으로 기대된다.
이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 14일자 온라인 판에 게재됐다.
우리 몸의 필수 구성요소인 단백질은 나노미터 크기의 특성과 더불어 무한한 기능과 구조를 갖고 있다는 점에서 새로운 물질 및 구조체 개발에 매우 적합한 것으로 알려져 있다.
특히 단백질 다수가 조립된 다중 조립체는 새로운 성질과 모양, 크기를 가지며 생체친화적인 나노 구조체이기 때문에 많은 관심을 받고 있다. 단백질 다중 조립체는 다수의 단백질이 동시에 작용하기 때문에 결합력을 극대화 해 신약, 백신 기능 향상 연구에 중요한 방법론을 제시할 것으로 기대되기 때문이다.
이 조립체의 상업적, 연구적 이용을 위해선 조립된 단백질의 수가 정확히 조절되고, 다양한 크기의 조립체를 제작할 수 있어야 한다. 하지만 현재의 기술로는 조립체의 크기에 따라 정밀히 분리하는 것이 쉽지 않다.
연구팀은 문제 해결을 위해 인공적 형광 단백질 조립체를 세포 내 합성을 통해 다양한 크기로 제작했다. 또한 조립체 표면 개량을 통해 거대 생체분자의 안정성을 향상시켰고, 다양한 크기의 조립체를 분리할 수 있는 방법을 최초로 개발했다.
이 방법을 이용해 다각형 및 선형 배열을 갖는 형광 단백질 조립체 또한 제작해 관찰했다. 이 과정에서 나노크기 공간에서의 결합 단백질의 개수를 증가시켰고, 기존 단일 단백질보다 비약적으로 향상된 결합력을 확인했다.
정 교수는 “이번 단백질 조립체 제작 기술은 다양한 모양과 크기, 기능성을 갖는 새 조립체 제작의 기반이 될 것이다”며 “비약적으로 향상된 기능을 가진 단백질 신약, 백신, 혹은 결합 리셉터 연구에 핵심적 역할을 할 것”이라 말했다.
정용원 교수 지도 아래 김영은 박사과정 학생이 1저자로 참여한 이번 연구는 우리 대학 김호민 교수 연구팀이 참여했으며, 한국연구재단이 추진하는 글로벌프론티어사업(바이오나노 헬스가드 연구단) 및 기초연구실지원사업의 지원을 받아 수행됐다.
□ 그림 설명
그림 1. 형광단백질 조립체 모식도 및 전자현미경 사진
2015.05.26
조회수 14481
-
빛 이용 나선형 구조체 방향조절 기술 개발
김 상 율 교수
우리 대학 화학과 김상율 교수, 서명은 교수 연구팀이 빛의 파동을 이용해 특정한 방향으로 꼬인 나선형 나노 구조체를 형성하는 데 성공했다.
연구 결과는 국제 학술지 네이처 커뮤니케이션(Nature Communications) 23일자 온라인 판에 게재됐다.
키랄성이란 오른손과 왼손처럼 모양은 같지만 서로 거울에 비친 형태를 가지는 물질을 말한다. 키랄성 물질은 돌리고 방향을 바꾸어도 서로 겹칠 수 없는 구조적 특성을 갖는다. 자연에 존재하는 DNA나 단백질 등을 구성하는 분자들은 이 중 한쪽 형태로만 이루어져 있다.
다량의 특정 키랄성 물질이 자연계에 존재하는 이유는 명백히 밝혀지지 않았다. 한 가지 가설은 유기 물질이 처음 생성될 시점에 우주로부터 나선을 따라 진동하는 빛의 파동인 원편광이 쬐어져, 원편광의 나선 방향이 유기 물질에 전달되어 한쪽 키랄성을 갖는 분자가 보다 많이 만들어 지게 됐다는 것이다.
연구팀은 이 가설에 입각해 원편광의 키랄성이 비키랄성 분자에 전달 및 증폭이 가능한지 알아보기 위해 빛에 반응하는 비키랄성 분자를 이용했다.
그리고 비키랄성 분자에 오른원편광, 왼원편광을 따로 노출시켜 분자들이 원편광의 방향에 따라 다른 방향의 나선을 그리며 쌓이는 것을 확인했다. 기존의 방법으로 나선형 구조체를 만들 때 반드시 키랄성 분자가 필요했던 것을 뒤집는 결과가 나온 것이다.
이처럼 단순히 특정 방향의 원편광을 비추는 것만으로 원하는 방향의 나선형 구조체를 만들 수 있고, 다시 반대 방향의 원편광을 비추면 나선의 방향을 뒤집는 것 또한 가능하다는 것을 증명했다.
뿐만 아니라 광중합을 이용해 나선형 구조체를 굳히는 방법을 개발해 구조체의 제작부터 방향을 고정시키는 전 과정을 빛을 이용해 제어하는 데 성공했다.
김상율 교수는 “원평광의 방향에 따라 비키랄성 분자의 자기조립 경로가 좌우되고, 자기조립을 통해 키랄성이 증폭되므로 결국 원편광의 방향이 나선 방향을 결정할 수 있다는 것이다”며 “키랄성의 기원에 대해 흥미로운 가능성을 제시하고 있다”고 말했다.
연구팀은 키랄성 센서를 만들거나 키랄성 분자를 분리하는 등의 응용 분야에 개발된 나선형 나노 구조체가 유용하게 사용될 것으로 전망했다.
한국연구재단 중견연구자 지원사업과 선도연구센터 육성사업의 지원을 받아 진행된 이번 연구는 김상율 교수와 서명은 교수가 교신 저자로, 김지성 학생이 제1저자로 참여했다.
□ 그림 설명
그림1. 빛에 의해 형성된 나노 구조체의 주사전자현미경 사진
그림2. 전체 실험과정 모식도
2015.04.30
조회수 11631
-
고효율의 단일광자원 소자 핵심기술 개발
조 용 훈 교수
우리 대학 물리학과 조용훈 교수 연구팀이 양자정보기술에 기여할 수 있는 고효율의 단일광자원(양자광원) 의 방출 효율과 공정 수율을 높일 수 있는 기술을 개발했다.
이번 연구 결과는 자연과학분야 학술지인 미국국립과학원회보(PNAS: Proceedings of the National Academy of Sciences) 4월 13일자 온라인 판에 게재됐다.
빛은 보통 파동의 성질을 갖는 동시에 입자의 성질도 가지고 있는데, 이 입자를 광자라고 한다. 단일광자원 혹은 양자광원은 광자가 뭉쳐서 나오는 고전적인 광원과는 달리 한 번에 한 개의 광자만 방출하는 소자이다. 반도체 양자점을 이용한 단일광자 방출 소자는 안정성 및 전기구동 가능성이 높아 상용화에 적합한 소자로 각광받고 있다.
하지만 빛의 파장은 양자점보다 수십~수백 배 정도 크기 때문에 상호 작용하기 어려워서 단일광자의 방출 효율이 매우 작다는 한계점이 있다. 따라서 고효율 단일광자원를 만들기 위해서는 양자점과 빛을 집속시키는 구조(광공진기)를 공간적으로 정확히 결합시키는 것이 필수적이다.
하지만 양자점은 불규칙하게 분포되어 있고 위치를 정확히 확인할 수 없어 우연성에 의존한 결합을 기대할 수밖에 없었다. 따라서 긴 공정시간에도 불구하고 소수의 단일광자소자를 제작하는 수준에 머물러 있었다.
연구팀은 문제 해결을 위해 피라미드 모양의 나노 구조체를 활용했다. 반도체 나노피라미드 구조에서는 양자점이 피라미드의 꼭지점에 자발적으로 형성된다. 그리고 그 위에 금속 필름을 얇게 증착하면 빛 역시 뾰족한 금속 끝에 모이는 성질 때문에 양자점과 동일한 위치에 집속되는 것이다.
특히 금속에서는 빛이 본래 가진 파장보다 작게 뭉칠 수 있다. 즉, 빛이 가진 파장보다 더 소형화를 시킬 수 있기 때문에 양자점과의 크기 차이로 인한 문제를 극복할 수 있게 되는데, 이 방법으로 단일광자 방출 효율이 기존의 방식보다 20배 정도 증가되었다.
단일광자 방출소자는 양자광컴퓨터 및 양자암호기술 구현의 가장 기본적인 구성 요소이다. 이번 연구를 통해 기존의 까다로운 과정들 없이 단순한 방식으로 효율과 수율을 모두 높일 수 있으므로, 단일광자방출원 혹은 양자광원 관련 기술의 상용화 가능성이 높아질 것으로 기대된다.
조 교수는 “이 기술은 높은 공정 수율을 갖고 있기 때문에 상용 양자광원 소자 제작 한계를 해결하고, 양자정보통신 분야 구현에 중요 기술이 될 것”이라고 말했다.
조용훈 교수의 지도를 받아 공수현(1저자)·김제형(2저자) 박사가 수행한 이번 연구는 우리 대학 신종화·이용희 교수, 프랑스 CNRS의 레시당 박사, 미국 UC 버클리의 샹장 교수가 참여했으며, 한국연구재단의 중견연구자 지원사업과 KAIST 기후변화연구 허브사업의 지원을 받아 수행됐다.
그림 1. 단일 광자가 높은 효율로 방출되는 모습의 개념도
2015.04.23
조회수 15655
-
종양 전역에 약물 전달하는 항암치료나노기술 개발
<박 지 호 교수>
우리 대학 바이오 및 뇌공학과 박지호 교수 연구팀이 종양의 전역에 약물이 골고루 전달되게 해 항암효과를 현저히 높일 수 있는 새 항암치료 나노기술을 개발했다.
이번 연구는 나노분야 학술지 ‘나노 레터스(Nano Letters)’3월 31일자 온라인 판에 게재됐다.
일반적으로 수술이 어려운 종양의 치료를 위해 항암약물치료법이 사용된다. 하지만 종양이 외부로 들어오는 약물의 접근을 여러 방법으로 막기 때문에 종양 전체에 항암효과를 보기 어려웠다. 혈류로 투여된 약물들의 대부분이 혈관주위의 종양세포들에만 전달되고, 중심부의 종양세포에는 전달되지 않아 재발 문제가 자주 발생한 것이다.
연구팀은 문제 해결을 위해 리포좀과 엑소좀이라는 소포체를 이용했다. 리포좀은 인공나노소포체로서 혈류를 통해 혈관 주위의 종양 세포 부위까지 약물을 전달한다. 종양 세포에서 자연적으로 분비되는 생체나노소포체인 엑소좀에 약물을 무사히 탑재하는 것이 리포좀의 역할이다.
엑소좀은 종양에서 세포 내부의 생물학적 물질들을 전달하기 때문에 종양의 진행 및 전이에 중요한 요소로 알려져 있다. 리포좀이 항암 약물을 엑소좀에 탑재하면, 엑소좀이 이동하는 종양 내의 모든 위치로 약물이 전달됨으로써 질병이 치료되는 것이 연구의 핵심이다.
연구팀은 이 기술을 이용해 빛에 반응해 항암효과를 내는 광과민제를 종양이 이식된 실험용 쥐에 주입했다. 이후 종양 부위에 빛을 노출시켜 항암효과를 유도한 후 분석한 결과 종양조직 전역에서 항암효과를 관찰할 수 있었다.
연구팀의 핵심 성과는 종양 및 다른 질병들의 미세 환경을 파악해 질병에 대항하는 맞춤형 약물전달 기술 개발의 발판을 마련한 것이다.
연구팀은 이 기술을 제약회사에서 개발 중인 항암제에 적용해 약물전달이 어려운 악성 종양의 치료효과를 실험 진행 중이다.
박 교수는 “엑소좀이 세포에서 끊임없이 분비되는 특성과 주변 세포로 생물학적 물질을 전달하는 특성을 응용해 종양 중심부까지 약물을 전달 가능하게 만든 최초의 연구”라고 말했다.
박지호 교수 지도아래 이준성 박사, 김지영 석사가 주 저자로 참여한 이번 연구는 한국연구재단이 추진하는 신진연구자지원사업, 글로벌프론티어사업, 미래유망융합기술파이오니어사업의 지원을 받아 수행됐다.
□ 그림설명
그림 1. 종양 전역에 약물이 골고루 전달되게 해 항암효과를 높이는 새 종양투과 약물전달 나노기술
세포막과 결합하는 리포좀에 의해서 세포로 전달된 물질이 그 세포가 분비하는 엑소좀에 효율적으로 탑재돼 주변세포로 전달되는 과정을 보여주는 모식도(좌). 이러한 엑소좀기반 세포간 약물전달이 실제로 종양 스페로이드 및 생체 내 종양모델에서 관찰된 결과들 (우).
2015.04.06
조회수 16002
-
신경세포 전달 후 분해 원리 30년 만에 규명
윤태영 교수
2013년도의 노벨 생리의학상은 제임스 로스먼, 랜디 셰크먼, 토마스 쥐트호프에게 돌아갔다. 그들은 신경전달물질, 호르몬 등의 주요 물질이 자루 모양의 지질막인 소포(vesicles)에 담겨 택배처럼 전달되는 과정을 발생시키는 단백질을 발견한 공로를 인정받았다.
수상자들은 소포의 막을 열어 세포막과 융합해 물질을 분출하는 방식으로 에너지를 전달하는 역할인 스네어(SNARE)라는 단백질과, 물질을 분출한 후의 스네어 단백질 재활용을 위해 기능하는 NSF라는 단백질을 발견했다.
우리에게 잘 알려진 보톡스도 스네어 단백질의 작용 과정을 역으로 이용한 것이다. 보톡스가 스네어를 절단해 소포가 세포막과 융합하지 못하게 만들어 신경전달물질의 방출을 막고, 그로인해 근육의 수축을 방해하는 것이다.
이런 운송 업무가 있기 때문에 우리 세포는 신체 곳곳에 단백질과 같은 물질이 공급돼 정상적인 기능을 할 수 있다.
우리 대학 물리학과 윤태영 교수 연구팀은 그간 명확하지 않았던 NSF가 스네어 결합체를 분해해 세포수송을 지속시키는 원리를 규명했다고 밝혔다.
이번 연구 결과는 저명 학술지 사이언스지 3월 27일자에 게재됐다.
NSF와 스네어 단백질은 30여 년 전에 발견됐지만 각각의 물질이 작용하는 방식은 명확히 규명되지 않았다. 특히 세포막과 결합한 스네어 결합체를 NSF가 어떤 방법으로 분해해 재활용하는지에 대해선 의견이 분분했다.
지금까지 과학자들은 NSF가 스네어 결합체를 분해할 때 끈을 조금씩 푸는 것처럼 점진적인 과정을 통해 분해가 이뤄지고, 하나의 스네어 결합체를 분해하는 데 ATP라는 연료 역할을 하는 유기화합물 수십 개가 필요하다는 가설을 주장했다.
하지만 윤 교수팀의 연구는 단분자 형광 기법과 자기집게 기술(magnetic tweezers)을 사용해 가설을 반박했다. 마치 매듭의 양 끝을 잡고 당기면 한 번에 풀리듯, ATP를 주입하면 NSF가 스프링처럼 에너지를 저장했다가 스네어 결합체 전체를 단번에 폭발적으로 풀어냄을 증명한 것이다.
이번에 규명된 NSF는 근육의 이동, 단백질 분해, DNA의 복제 및 이동 등 신체에서 중요한 역할을 하는 AAA+ 단백질 그룹에 속해있다. 따라서 NSF와 비슷한 구조의 AAA+ 단백질 그룹은 함께 동작할 것으로 예상되며, 앞으로 많은 생물 현상 이해의 주춧돌이 될 것으로 보인다.
스네어 단백질은 신경세포 통신과 인슐린 분비 등에 중추적 역할을 하고 있어 윤 교수팀의 성과는 알츠하이머와 같은 퇴행성 뇌질환, 당뇨병과 같은 대사질환 관련 연구 뿐 아니라 피부미용 연구에도 이바지 할 것으로 기대된다.
윤 교수는 “생물 물리 분야에서 우리나라가 최고수준의 기초과학 연구력을 보유하고 있음을 증명했다”며 “이번 연구결과는 여러 대사질환을 분자수준에서 이해할 수 있는 토대가 될 것”이라고 말했다.
이번 연구는 고등과학원의 현창봉 교수팀, 독일 막스 플랑크 연구소 라인하르트 얀(Reinhard Jahn) 교수팀, 우리 대학 의과학대학원 김호민 교수팀과의 공동 연구로 진행됐으며, 윤 교수 연구팀의 류제경, 민두영 박사, 나상현 학생의 주도로 이뤄졌다.
□ 그림 설명
그림 1. 신경전달물질의 분비가 끝난 후 NSF가 SNARE 단백질 복합체를 한 번에 분해하는 모습
그림 2. NSF 가 SNARE 복합체를 풀어내는 모습
2015.03.27
조회수 13868