-
디스플레이 소재로 빛 이용해 친환경 암모니아 합성법 제시
우리 대학 생명화학공학과 이도창 교수, 이상엽 특훈교수, 박영신 연구교수 연구팀이 디스플레이 소재인 양자점(퀀텀닷)을 이용해 *질소 고정 박테리아의 암모니아 생산 효율을 대폭 늘렸다고 16일 밝혔다.
☞ 질소 고정(Nitrogen Fixation) : 공기 중 질소 기체 분자(N₂)를 암모니아(NH₃)를 비롯한 질소화합물로 전환하는 과정을 말한다.
이 교수 연구팀은 양자점에 의해 흡수된 빛 에너지가 박테리아의 암모니아 합성 반응에 사용되도록 설계했으며, 그 결과 박테리아의 암모니아 생산량을 큰 폭으로 증가시킬 수 있었다. 이를 위해 연구팀은 양자점을 질소고정 박테리아 안에 더 많이 넣을 수 있는 방법을 제시했다.
생명화학공학과 고성준 박사가 제1저자로 참여한 이번 연구의 결과는 국제 학술지 `미국 화학회지(JACS)'에 표지 논문으로 선정돼 출판됐다. (논문명 : Light-Driven Ammonia Production by Azotobacter vinelandii Cultured in Medium Containing Colloidal Quantum Dots).
질소 고정 박테리아는 질소 고정 효소를 이용해 대기 중 질소를 암모니아로 전환하여 생장에 필요한 단백질을 생산한다. 이러한 질소 고정 반응은 화학적 암모니아 합성법인 하버-보슈 공정에 비해 에너지 소비와 이산화탄소 배출이 현저하게 적다.
하지만, 박테리아는 생장에 필요한 만큼만 암모니아를 생산하도록 진화돼 질소 고정 효소의 반응이 느리기에 이를 산업적으로 활용하기 어렵다. 질소 고정 반응이 느린 이유는 효소의 두 가지 구성요소(전자 전달부, 촉매 반응부)의 비효율적인 상호작용 때문이다. 전자 전달부가 촉매 반응부에 전자를 공급한 후, 반드시 탈착돼야만 촉매 반응부가 새로운 전자를 추가로 공급받아 암모니아를 생성할 수 있다.
연구팀은 문제 해결을 위해 빛을 흡수하는 양자점을 박테리아의 질소 고정 반응에 전자 공급원으로 활용해 나노·바이오 복합 시스템을 구축했다. 양자점은 수 나노미터의 작은 크기를 갖는 반도체 나노입자이며 디스플레이 소재로 많이 알려진 물질이다. 하지만, 양자점이 흡수한 빛 에너지를 표면에 쉽게 전달할 수 있도록 입자의 구조 및 표면을 제어하면 광 감응 및 광 촉매 소재로도 우수한 특성을 보인다. 연구팀은 질소 고정 효소의 전자 전달부 역할을 양자점으로 대체하기 위해 양자점의 코어/쉘 구조를 전자 전달에 유리하게 설계했다. 또한, 양자점이 생물학적 시스템에 결합할 수 있도록 표면 화학 특성을 제어해 수(水)분산 특성을 확보했다.
연구팀은 구조 및 표면이 제어된 양자점을 질소 고정 박테리아의 대사활동이 가장 활발한 성장기에 추가해, 박테리아의 능동적인 양자점 흡수를 유도했다. 이렇게 제작된 양자점-박테리아 복합 시스템에 빛을 조사한 결과, 질소고정 반응 속도가 증가하며 암모니아 생산량이 대폭 증가함을 확인했다. 고성준 박사는 "디스플레이 소재와 미생물의 장점을 합해 빛 에너지를 이용한 새로운 방식의 암모니아 합성법을 제시한 결과ˮ라며 "이번 연구를 활용한 그린 암모니아 생산 플랫폼을 구축한다면, 환경 및 에너지 문제에 적극적으로 대응할 수 있을 것이다ˮ라고 말했다.
한편 이번 연구는 삼성미래기술육성사업의 지원을 받아 수행됐다.
2022.06.16
조회수 7839
-
질병 세포만 찾아 교정치료 가능한 유전자 가위 시스템 개발
우리 대학 의과학대학원 이지민 교수 연구팀이 한국과학기술연구원(KIST) 오승자 선임연구원, 강원대학교 이주용 교수와 공동 연구를 통해 질병 세포에서만 핵 내 유전자 교정을 수행할 수 있는 유전자 가위 시스템(CRISPR/Cas9)을 개발했다고 14일 밝혔다.
연구팀은 세포 내 마이크로RNA가 특정 서열을 인식해 절단한다는 특성을 활용해, 질병 세포에서 과발현되는 마이크로RNA에 의해 특이적으로 절단될 수 있는 링커를 연결한 유전자 가위 시스템을 설계했다. 이렇게 설계된 시스템은 질병 세포 특이적 마이크로RNA가 적은 정상세포에서는 세포질에 머물러 유전자 교정을 수행하지 않지만, 질병 세포에서는 링커가 절단되면서 유전자 가위가 세포핵으로 들어가 유전자 교정을 수행할 수 있다.
이러한 플랫폼은 유전자 가위를 질병 세포에서만 기능 할 수 있게 해 정상세포와 질병 세포가 혼합돼있는 실제 환자에게도 효과적인 유전자 교정 치료를 진행할 수 있을 것으로 기대된다.
KIST 신철희 박사와 우리 대학 의과학대학원 박수찬 연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `뉴클레익 엑시드 리서치(Nucleic Acids Research, IF 16.971)' 온라인판에 지난달 30일 자 출판됐다. (논문명 : Cytosolic microRNA-inducible nuclear translocation of Cas9 protein for disease-specific genome modification).
마이크로RNA는 유전자를 전사 후 조절하는 19~24 뉴클레오티드(DNA나 RNA의 기본 단위) 길이의 RNA다. 마이크로RNA는 DNA로부터 전사된 메신저 RNA에 아르고너트(Argonaute; Ago) 단백질을 통해 결합하며, 결합한 메신저 RNA를 절단한다. 마이크로RNA의 비정상적인 발현이 다양한 질병에서 보고되고 있으며, 질병의 치료를 위한 표적 바이오마커로 많이 연구되고 있다.
다양한 질병에서 마이크로RNA를 표적으로 하는 치료법들이 빠르게 연구되고 있지만, 치료 물질의 전달 및 투여량의 문제, 세포 독성 및 비정상적 면역 반응 활성화 등의 문제가 있다.
유전자 가위 시스템은 단일 가이드 RNA(single guide RNA)를 조합해 정교한 유전자 교정을 수행하는 매우 효과적인 도구다. 하지만, 이 시스템의 실제 활용에는 기술적 한계들이 존재한다. 가장 큰 문제는 안정성 문제로, 표적 유전자가 아닌 다른 유전자를 편집하는 오프-타겟 이펙트(off-target effect)다. 또한, 다양한 세포가 혼합된 환경에서는 유전자 교정을 수행하기 어렵다.
연구팀은 이러한 문제를 해결하기 위해 질병 세포 본연의 생태를 활용하는 접근법을 고안했다. 연구팀은 핵 위치 신호(Nuclear localization signal; NLS)가 부착된 기존 유전자 가위(Cas9)에 핵 외 수송신호(Nuclear export signal; NES)를 연결한 질병 세포 마이크로RNA의 메신저 RNA 표적 서열을 결합한 유전자 가위를 제작했고, 이를 유전자 가위 `셀프 체크인'으로 명명했다.
연구팀은 인간 질병 세포에서 과발현되는 마이크로RNA-21의 표적 서열과 실험용 쥐의 마이크로RNA-294의 표적 서열을 연결한 유전자 가위의 인간 질병 세포 내 유전자 교정 기능을 비교했고, 마이크로RNA-21 표적 서열 연결 유전자 가위만이 세포 내 마이크로RNA-21에 의해 절단돼 핵까지 전달되어 기능을 수행할 수 있음을 확인했다.
연구팀은 다양한 폐암 세포에서 마이크로RNA-21의 발현량과 발암 단백질 Ezh2가 양의 상관관계가 있다는 것을 증명했고, `셀프 체크인'을 적용해 마이크로RNA-21이 과발현된 폐암 세포에서 발암 유전자 Ezh2의 유전자 교정을 성공적으로 수행했다.
또한, 암세포는 항암 약물에 지속해서 노출되게 되면, 약물 저항성을 획득하게 되는데, 연구팀은 폐암 세포에서 마이크로RNA-21과 Ezh2의 발현이 항암 약물 시스플라틴을 투여하면 오히려 증가함을 확인했다. 유전자 가위 셀프 체크인 기술을 통한 Ezh2 유전자 교정과 항암제(시스플라틴)의 병행 사용은 폐암 세포의 성장을 더욱 효과적으로 억제할 수 있음을 마우스 실험을 통해서 밝혔다.
연구팀이 개발한 유전자 가위 셀프 체크인 기술은 질병 세포에서만 기능하기 때문에, 오프-타겟 이펙트를 최소화할 수 있다는 장점이 있으며, 세포 내 시스템을 활용한다는 점에서 안정성이 높다고 할 수 있다. 또한, 단일 가이드 RNA 및 메신저 RNA 표적 서열을 상황에 맞게 교체해 사용할 수 있어, 다양한 질병에 적용이 가능할 것으로 기대된다.
연구팀은 "유전자 가위 셀프 체크인 기술은 기존 유전자 가위 시스템의 문제를 개선해, 높은 특이성을 가지고 질병 세포에 대한 유전자를 세포 특이적으로 교정할 수 있다는 것을 확인할 수 있다ˮ 라며 "다양한 질병 연관 마이크로RNA에 대응해 기술을 적용할 수 있을 것이다ˮ 라고 전했다.
한편 이번 연구는 삼성미래기술육성사업, 한국연구재단 이공분야기초연구사업 및 한국과학기술연구원 지원을 받아 수행됐다.
2022.06.14
조회수 11765
-
인공지능 엔진으로 영상 위변조 탐지 기술 개발
우리 연구진이 영상 내 변형 영역을 더욱 정밀하게 탐지하기 위해 영상내 색상 정보와 주파수 정보를 함께 활용하는 인공지능 엔진 기술을 학계 처음으로 개발했다. 이번 개발 기술은 기존 기술보다 정밀도와 정확도를 크게 높여 위변조 탐지 기술의 기술 유용성을 일정 수준 확보할 수 있는 기반을 제공한다는 점에서 그 의미가 크다. KAIST에서 각종 위변조 영상들을 잡아낸다는 의미를 지닌 `카이캐치(KaiCatch)' 소프트웨어는 이미지, 영상뿐만 아니라 CCTV 비디오 변형 여부도 분석할 수 있다.
우리 대학 전산학부 이흥규 교수 연구팀이 새로운 인공지능 구조와학습 방법론, 그리고 실험실 환경에서는 구하기 힘든 고급 변형 이미지 영상들을 사용해 영상 이미지 위변조 탐지 소프트웨어인 `카이캐치(KaiCatch)'의 영상 이미지 정밀도와 정확도를 크게 높일 뿐만 아니라 비디오 편집 변형도 탐지할 수 있는 카이캐치 2.1 버전을 개발했다고 13일 밝혔다.
카이캐치 소프트웨어는 `이상(異常) 유형 분석 엔진'과 `이상(異常) 영역 추정 엔진' 두 개의 인공지능 엔진으로 구성된다. `이상 유형 분석 엔진'은 블러링, 노이즈, 크기 변화, 명암 대비 변화, 모핑, 리샘플링 등을 필수 변이로 정의해 이를 탐지하며 `이상 영역 추정 엔진'은 이미지 짜깁기, 잘라 붙이기, 복사 붙이기, 복사 이동 등을 탐지한다. 이번에 새로 개발한 기술은 `이상 영역 추정 엔진'으로 기존 기술에서는 이상 영역 탐지 시 그레이 스케일(회색조)로 이상 유무를 탐지하였으나 분석 신호의 표현력이 낮고 탐지 오류가 많아 위변조 여부 판정에 어려움이 많았다. 이번에 개발된 기술은 색상 정보와 주파수 정보를 함께 활용해 정밀도(precision)와 재현율(recall)이 크게 향상되고 변형 영역을 컬러 스케일로 표현함으로써 해당 영역의 이상 유무뿐만 아니라 위변조 여부도 더욱 명확하게 판별이 가능해졌다.
연구팀은 이번 연구에서 영상 생성 시 발생하는 흔적과 압축 시 발생하는 흔적 신호들을 함께 분석하기 위해 색상 정보와 주파수 정보를 모두 활용하는 접근 방법을 학계 처음으로 제시했다. 또 이러한 방법론을 설계 구현하기 위해 주파수 정보를 하나의 분할 네트워크에서 직접 입력으로 받아들이는 방식의 ‘압축 왜곡신호 탐지 네트워크(Compression Artifact Tracing Network, 이하 CAT-Net)’을 학계 최초로 개발하고 기존 기법들과 비교해 탐지 성능이 크게 뛰어남을 입증했다. 개발한 기술은 기존에 제시된 기법들과 비교할 때 특히 원본과 변형본을 판별하는 평가 척도인 F1 점수, 평균 정밀도(average precision)에서 대단히 뛰어나 실환경 위변조 탐지 능력이 크게 강화됐다.
비디오 편집 변형의 경우도, 프레임 삭제, 추가 등에 의한 편집 변형이 흔히 CCTV 비디오 등에서 발생한다는데 착안해 이러한 비디오 편집 변형을 탐지하는 기능 역시 이번 카이캐치 2.1 버전에 탑재됐다.
이번에 카이캐치 2.1 소프트웨어를 연구 개발한 이흥규 교수는 "영상 이미지 위변조 소프트웨어인 카이캐치를 휴대폰에 탑재되는 안드로이드 앱 형태로 일반에 소개한 2021년 3월 이후 현재까지 카이캐치 앱을 통한 900여 건의 위변조 분석 의뢰와 개별적으로 60건이 넘는 정밀 위변조 분석 의뢰를 받았다. KAIST 발표 논문 수준이나 실험 결과 등을 감안할 때 위변조 분야 최고 기술로 만든 소프트웨어인데, 오탐지율이 높아 실제 탐지 정밀도가 이론치보다 매우 낮았다. 많은 경우 위변조나 변형 여부에 대한 명확한 기술 판정이 불가능했으나 이번에 개발한 카이캐치 2.1 은 CAT-Net이라는 새로운 네트워크 구조와 학습 방법론, 그리고 ‘색상 및 주파수 영역 왜곡 흔적 동시 분석’이라는 첨단 기술을 사용해 정밀도를 높여, 보다 명확한 판별이 가능하도록 개발됐다. 앞으로 영상 위변조 판단 여부가 어려운 경우가 많이 줄어들기를 기대한다”고 말했다.
이 교수는 이어 "비디오는 MP4 파일 포맷이, 그리고 영상 이미지는 JPEG 이미지들이 일반인들이 널리 사용한다는 점에서 해당 포맷을 주 개발 대상으로 삼았다. 영상 이미지의 경우 영상 편집 변형 시 영상에 남겨지는 인위적으로 발생하는 JPEG 압축 미세 신호 탐지에 주안점을 두어, 위변조 여부와 위변조 영역을 잡아내는 것에 집중했다. 비디오의 경우 특정 프레임들을 삭제하거나 삽입하는 경우, 프레임 부분 편집 후 재압축 하는 경우 등을 탐지한다. 최근 CCTV 비디오 편집 여부에 대한 분쟁이 많아 크게 도움을 줄 수 있을 것으로 기대하며 향후에도 지속적으로 연구 개발해 취약점들을 보완해 나갈 계획이다ˮ 고 덧붙였다.
현재 카이캐치 소프트웨어는 안드로이드 기반 휴대폰의 구글 플레이스토어에서 ‘카이캐치’를 검색하여 앱을 다운로드 받아 설치한 후, 영상 이미지들을 카이캐치에 업로드하면 위변조 여부를 간단하게 테스트해 볼 수 있다.
한편 이번 연구는 제1 저자로 참여한 우리 대학 전기및전자공학부 권명준 박사, 그리고 김창익 교수, 남승훈 박사, 유인재 박사 등과 공동으로 수행됐으며, `스프링거 네이처(Springer Nature)'에서 발간하는 컴퓨터 비전 분야 톱 국제저널인 `국제 컴퓨터 비전 저널(International Journal of Computer Vision, IF 7.410)'에 2022년 5월 25일 字 온라인판에 게재됐다. (논문명 : Learning JPEG Compression Artifacts for Image Manipulation Detection and Localization)
이번 연구는 한국연구재단 창의도전연구기반지원사업지원과 KAIST 창업기업인 ㈜디지탈이노텍(http://www.kaicatch.com/) 과의 산학협력 연구로 수행됐다.
2022.06.13
조회수 7734
-
사람처럼 느끼고 상처 치유가 가능한 로봇 피부 기술 개발
우리 대학 기계공학과 김정 교수 연구팀이 메사추세츠 공과대학(MIT), 슈투트가르트 대학교(Univ. of Stuttgart)의 연구자들과 공동연구를 통해 `넓은 면적에 대해 다양한 외부 촉각 자극을 인지할 수 있으며, 칼로 베어져도 다시 기능을 회복할 수 있는 로봇 피부 기술'을 개발했다고 9일 밝혔다.
기계공학과 박경서 박사가 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 로보틱스(Science Robotics)'에 6월 9일 출판됐다. (논문명: A biomimetic elastomeric robot skin using electrical impedance and acoustic tomography for tactile sensing)
사람의 가장 큰 장기인 피부는 내부를 충격에서 보호함과 동시에 주위로부터의 물리적인 자극을 전달하는 통로다. 피부를 이용한 정보 전달(혹은 촉감)은 표면 인식, 조작, 쓰다듬기, 꼬집기, 포옹, 몸싸움 등으로 종류가 다양하며, 피부가 덮은 모든 부분에서 느낄 수 있기에 풍부한 비언어적 감정 표현과 교류를 가능하게 한다. 그래서 촉각은 `한 인간이 세계를 탐구하는 첫 번째 수단'이라고도 한다.
그러나, 로봇 분야의 비약적인 발전에도 불구하고 로봇 대부분은 딱딱한 소재의 외피를 가지며, 인간과의 물리적 교류를 터치스크린과 같은 특정한 부위로 제한하고 있다. 그 이유는 현재의 로봇 촉각 기술로는 `인간의 피부처럼 부드러운 물성과 복잡한 3차원 형상을 가지고, 동시에 섬세한 촉각 정보를 수용하는 것이 가능한 로봇 피부'를 개발하지 못하기 때문이다. 또한, 사람의 피부는 날카로운 물체에 베여 절상 혹은 열상이 발생하더라도 신축성과 기능을 회복하는 이른바 치유 기능을 하고 있으며, 이는 현대 기술로 재현하는 것이 매우 어렵다. 따라서, 사람과 로봇의 다양한 수준의 물리적 접촉을 중재하기 위해 부드러운 물성을 가지면서 다양한 3차원 형상을 덮을 수 있는 대면적 촉각 로봇 피부 기술이 필요하다.
김정 교수 연구팀은 이러한 로봇 피부를 만들기 위해 생체모사 다층구조와 단층촬영법을 활용했다. 이 기술들은 인간 피부의 구조와 촉각수용기의 특징과 구성 방식을 모사해, 적은 수의 측정 요소만으로도 넓은 3차원 표면 영역에서 정적 압력(약 0~15Hz) 및 동적 진동 (약 15~500Hz)을 실시간으로 감지 및 국지화하는 것을 가능케 했다. 기존의 터치스크린 기술은 해상도를 높일수록 필요한 측정점의 수가 증가하는 데 비해, 이번 기술은 넓은 수용영역을 갖는 측정 요소들을 겹치게 배치해 수십 개의 측정 요소만으로도 넓은 측정 영역을 달성할 수 있다.
연구팀은 측정된 촉감 신호를 인공지능 신경망으로 처리함으로써, 촉각 자극의 종류(누르기, 두드리기, 쓰다듬기 등)를 분류하는 것도 가능함을 선보였다. 더 나아가, 개발된 로봇 피부는 부드러운 소재(하이드로젤, 실리콘)로 만들어져 충격 흡수가 가능하고, 날카로운 물체에 의해 깊게 찢어지거나 베여도 피부의 구조와 기능을 손쉽게 회복하는 것이 가능했다.
연구진은 본 기술이 넓은 부위에 정교한 촉각 감각뿐만 아니라 사람의 피부와 유사한 물성과 질감도 부여할 수 있으므로, 서비스 로봇과 같이 사람과의 다양한 접촉과 상호작용이 필요한 응용 분야에 유용하게 활용될 것으로 기대했다. 예를 들면 점점 대중화되는 식당 서빙 로봇이나 인간형 로봇에 적용할 수 있다. 더 나아가, 로봇 피부를 의수/의족의 피부로 사용한다면 실제 사람의 손/다리와 똑같은 외형과 촉감 감각을 절단 환자들에게 제공할 수도 있다. 또한 인간형 로봇이 사람과 똑같은 기능과 외형의 피부를 가지고, 상처가 나더라도 피부의 기능을 복구하는 치유 능력을 갖게 할 수도 있다.
기계공학과 김정 교수는 "이번 연구를 통해 인간과 로봇이 같은 공간에 공존하기 위한 필수 기술인 대면적 로봇 촉각 피부를 개발했을 뿐만 아니라 현재 기술보다 월등한 사람의 피부감각 혹은 촉각의 성능에 비견할 만한 기술을 구현한 데 큰 의의가 있다ˮ라고 밝혔다.
한편, 이번 연구는 한국연구재단 중견연구자지원사업의 지원을 받아 수행됐으며,ᅠKAIST 기계공학과 양민진, 조준휘 박사과정과 메사추세츠 공과대학(MIT)의 육현우 박사, 슈투트가르트 대학교(Univ. of Stuttgart)의 이효상 교수가 공동연구자로 참여했다.
동영상 1: 로봇 피부 촉각 시연 (https://youtu.be/3T8dX32fo6U)
동영상 2: 로봇 피부 촉감 인식 시연 (https://youtu.be/CViv1oLo_Ec)
동영상 3: 로봇 피부 절개 및 복구 시연 (https://youtu.be/vsllVFM9yS4)
동영상 4: 로봇피부의 미용의수에의 적용 (https://youtu.be/qR1msF0FDTA)
2022.06.09
조회수 10223
-
차세대 뉴로모픽 구현을 앞당길 멤리스터 기반 고신뢰성 인공 뉴런(신경세포) 어레이 개발
우리 대학 전기및전자공학부 최신현 교수 연구팀이 뛰어난 안정성과 집적도가 높은 우리 뇌의 뉴런 세포의 동작을 모사하는 *고신뢰성 차세대 저항 변화 소자(멤리스터) 어레이를 개발했다고 7일 밝혔다.
☞ 멤리스터(Memristor): 입력에 따라 소자의 저항 상태가 바뀌는 소자. 입력 전압의 크기와 길이 등에 따라 소자 내부의 저항 값이 바뀌며 정보를 저장하거나 처리한다.
최 교수 연구팀은 기존 멤리스터의 불안정한 특성을 보이는 필라멘트 기반 방식에서 벗어나, 점진적인 산소 농도를 갖는 금속산화물을 이용해 안정적이고 신뢰성 높은 인공 뉴런 어레이를 발표하였다. 기존의 멤리스터 소자는 안정성이 낮고 응용에 사용하기 위한 어레이 형태로 제작하기 힘든 문제점이 있지만, 최 교수 연구팀이 개발한 소자는 뛰어난 안정성을 갖출 뿐만 아니라, 자가 정류 특성과 높은 수율을 갖춰 대용량 어레이 형태로 집적될 수 있다. 따라서 집적도가 높고 안정적인 뉴로모픽 시스템을 구현할 때 활발히 사용될 수 있을 것으로 기대된다.
전기및전자공학부 박시온, 정학천 석박사통합과정, 박종용 석사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션스(Nature Communications)' 6월호에 출판됐다. (논문명 : Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing)
인간의 뉴런은 들어오는 신호의 크기와 주파수에 따라 스파이크를 내보내거나 내보내지 않는 방식으로 정보를 처리한다. 현대의 컴퓨터가 빅데이터를 처리하는데 많은 에너지를 소모하는 것과 다르게, 사람의 뇌는 매우 적은 에너지만으로도 많은 양의 데이터를 빠르게 처리할 수 있다. 이러한 이유로, 신경의 효율적인 신호전달 시스템을 모사하여 컴퓨팅에 사용하는 `뉴로모픽' 하드웨어 기술이 활발히 연구되고 있다. 멤리스터 소자는 고집적, 고효율로 뉴로모픽 컴퓨팅 시스템을 구현할 수 있는 차세대 소자로 주목받고 있다.
그러나 현존하는 멤리스터로 실용적인 대용량 인공신경망 컴퓨팅(Large-scale Neural Computing) 시스템을 구현하기에는 단위 소자의 신뢰성 및 수율의 문제가 있다. 기존의 멤리스터는 절연체 내부에서 필라멘트가 마치 번개와 같이 무작위적으로 생성되고 사라지며 동작하기 때문에 제어하기가 힘들어 낮은 신뢰성을 보이게 되며, 이로 인해 안정적인 뉴로모픽 시스템을 구현하는 데 한계점으로 지적되어 왔다.
최신현 교수 연구팀은 이러한 무작위적인 필라멘트 문제를 해결하기 위해 필라멘트 기반 저항 변화가 아닌, 산소 이온의 점진적인 이동을 이용해 저항 변화 소자를 구현함으로써 소자의 신뢰성 확보하였다. 또한 단위 소자를 통한 어레이 제작 기술을 확보하여, 400개의 고신뢰성 인공 뉴런 소자를 100% 수율의 크로스바 어레이 형태로 집적하는 데 성공했다.
연구팀은 제작한 고신뢰성 인공 뉴런 어레이 기반 뉴로모픽 시스템을 이용해 항균성 단백질(anti-microbial peptide) 아미노산 서열을 학습하고, 이를 바탕으로 새로운 항균성 단백질을 만들어내는 뉴로모픽 시스템을 구현하였다.
제1 저자인 박시온 석박통합과정 연구원은 "이번에 개발한 고신뢰성 인공 뉴런 소자는 안정적인 특성과 높은 수율을 바탕으로 차세대 멤리스터 기반 뉴로모픽 컴퓨팅 시스템 구현에 기여할 수 있을 것으로 기대되며, 개발된 인공 뉴런 소자를 이용해 촉각 등을 감지하는 로봇의 인공 신경계, 시계열 데이터를 처리하는 축적 컴퓨팅(reservoir computing) 등 다양한 응용을 가능케 하여 미래 전자공학의 기반이 될 것으로 기대한다ˮ라고 말했다.
한편 이번 연구는 삼성미래육성사업의 지원을 받아 수행됐다.
2022.06.07
조회수 8288
-
기억 저장 세포의 뇌 지도 제작기법 최초 개발
우리 대학 연구진이 기억을 저장하는 다양한 뇌 부위 세포들의 분포를 지도로 제작하는 기법의 개발에 최초로 성공했다.
바이오및뇌공학과 박영균 교수 연구팀이 메사추세츠 공과대학(MIT) 정광훈 교수 및 스스무 도네가와(Susumu Tonegawa) 교수 공동연구팀과 함께 단일 기억을 저장하는 세포들을 생쥐의 뇌 전체에서 매핑하는 기법을 개발하고, 이를 통해 공간 공포 기억을 저장하는 새로운 뇌 부위 세포들을 발견했다고 2일 밝혔다.
기억은 주로 몇몇 뇌 부위에 국한해 연구돼왔다. 예를 들어 공포 기억은 편도체, 공간 기억은 해마의 세포들에 저장된다고 생각돼왔으며, 해당 뇌 부위들이 주로 연구됐다. 하지만 단일 기억이 다양한 뇌 부위에 나누어 저장될 것이라는 가설도 제시돼왔는데, 이러한 가설은 기억을 저장하는 세포들의 분포를 뇌 전체에서 확인(매핑)함으로써 확실한 검증이 가능하나, 이는 기술적 한계로 이뤄지지 못했다.
공동연구팀은 기존 팀이 개발한 전뇌 투명화 기술(SHIELD) 및 초고속 전뇌 면역염색 기술(eFLASH)을 통해, 공간 공포 기억을 학습한 생쥐에서 기억의 학습과 회상 시 모두 활성화된 세포들을 뇌 전체에서 매핑했다. 이를 통해 공간 공포 기억을 저장하고 있을 확률이 높은 뇌 부위의 세포들을 생쥐 뇌 전체에서 찾아낼 수 있었다. 이후 해당 세포들을 광유전학적 방법으로 조절해 해당 세포들에 공간 공포 기억이 저장됐음을 확인함으로써, 공간 공포 기억을 저장하는 7개의 새로운 뇌 부위와 세포들을 연구팀은 찾아낼 수 있었다.
그렇다면 기억에 다양한 뇌 부위의 기억저장 세포들이 모두 필요한 것일까? 연구팀은 이를 확인하기 위해, 화학유전학 기법을 통해 다양한 뇌 부위의 기억저장 세포들을 한꺼번에 자극해 보았으며, 그 결과 뇌의 한 부위의 기억저장 세포를 자극했을 때와는 다르게, 자연적인 기억 회상에 가까운 기억의 완전한 회상이 유도됨을 확인했다. 이는 다양한 뇌 부위의 기억저장 세포들의 활성이 기억에 모두 필요함을 의미한다.
박영균 교수는 "이번 연구는 연구팀이 기존에 개발한 기술들에 힘입어 기억저장 세포의 매핑을 최초로 실현하고, 이를 통해 단일 기억이 다양한 뇌 부위 세포들에 흩어져 저장됨을 증명한 데 의의가 있다ˮ며, "이번 연구에서 밝혀진 기억저장 세포의 뇌 지도는, 각 뇌 부위의 세포 및 세포 간 상호작용이 기억에 있어 각각 어떠한 세부적인 기능을 하는지에 관한 연구를 촉진함으로써, 기억의 메커니즘에 대한 완전한 이해를 도울 수 있다ˮ고 말했다.
이번 연구 결과는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)'에 지난 4월 4일 자로 게재됐다(논문명: Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions)
2022.06.02
조회수 6061
-
차세대 반도체 나노구조 공정을 혁신하는 새로운 3차원 노광 공정 개발
우리 대학 신소재공학과 전석우 교수와 신종화 교수 공동연구팀이 차세대 반도체 공정 핵심기술인 3차원의 나노구조를 단일 노광으로 효율적으로 제작하는 방법을 개발했다고 27일 밝혔다. 노광 공정이란 빛을 이용해 실리콘 웨이퍼에 전자 회로를 새기는 공정을 말한다.
이번 연구 성과는 갈수록 복잡해지는 반도체 구조와 배선구조 등을 기존 2차원 평면 노광 방식으로 건물을 한층 한층 제작하듯이 진행하던 방식에 비해 훨씬 더 낮은 비용과 공정으로 제작할 수 있는 근거를 마련한 획기적인 연구 결과로 판단된다.
전석우 교수와 신종화 교수가 교신 저자로, 남상현 박사와 김명준, 김나영 박사과정이 공동 제1 저자로 참여한 이번 연구는 저명한 국제 학술지 `사이언스 어드밴시스(Science Advances)' 5월 25일 字 온라인판에 게재됐다. (논문명: Photolithographic Realization of Target Nanostructures in 3D Space by Inverse Design of Phase Modulation)
공동연구팀은 수반행렬 방법(Adjoint method) 기반 역설계 알고리즘을 활용해, 적은 연산으로 원하는 형태의 나노 홀로그램을 생성하는 위상 마스크의 격자구조를 효율적으로 찾아내는 방법론을 제시했다. 이는 기존의 반도체 리소그래피 공정에 적용됐으며, 연구팀은 광감응성 물질에 단 한 번의 빛을 쏘아 목표하는 나노 홀로그램을 형성하고, 물질화해 원하는 3차원 나노구조를 단 한 번의 노광으로 구현할 수 있음을 실험적으로 증명했다.
최근 리소그래피 및 패터닝 기술의 발달로 소재의 형상을 나노스케일에서 구현하는 기술이 발달함에 따라 기존 소재의 물성을 극복하는 메타 소재 및 3차원 프린팅 연구가 주목받고 있다. 특히 3차원 나노소재를 구현하기 위해 활용되는 기존 공정들은 구현하는 구조의 자유도, 생산성, 정밀도를 모두 만족하기 어려운 점이 있어 이를 개선하기 위한 다양한 시도가 진행 중이다.
다양한 3차원 패터닝 공정 가운데, 근접장 나노패터닝(PnP, Proximity-field nanoPatterning)은 단일 노광으로 주기적인 3차원의 나노구조를 정확하고 생산성 있게 구현할 수 있다. 하지만, 현재까지 주기적인 위상 마스크 패턴을 활용해 구현할 수 있는 구조의 자유도는 제한돼왔으며, 이를 극복하기 위해서는 감광물질에 원하는 형태의 홀로그램을 구현하는 위상 마스크의 디자인을 계산하는 과정이 필요하다.
기존 연구에서는 유전 알고리즘(Genetic Algorithm)을 통해 이러한 역계산을 수행했으나, 비효율적인 계산방식, 많은 계산량 등의 문제로 활용이 제한된다. 최근 주목받는 머신러닝도 학습을 위한 데이터양이 최소 수천 개 이상으로 많이 요구돼 현실적으로 이를 역계산에 활용하기에는 아직 요원한 상황이다.
연구팀은 수학적 방법론인 수반행렬 방법(Adjoint Method) 기반 알고리즘을 위상 마스크의 패턴이 빛과 상호작용하는 광학현상에 적용해, 원하는 홀로그램 형상을 광감응성 소재에 효율적으로 계산해 그 형상을 얻어내는 데 성공했다. 이 알고리즘은 수식으로 표현된 목표 디자인을 최소한의 계산 경로로 찾아내는 알고리즘이며, 행렬 연산을 활용해 많은 계산량을 효율적으로 처리한다는 장점이 있다. 기존의 단순한 주기적 위상 마스크 패턴은 수직 입사하는 빛으로 특정 배열의 나노구조만을 발생시켰다. 연구팀은 해당 연구에서 위상 마스크에 반도체 공정에 적용 가능한 수직 입사 빔 방식으로 기존의 마스크로 얻어내는 것이 불가능했던 새로운 배열의 3차원 나노구조를 얻어내는 데 성공했다. 이번 연구는 이를 통해 기존의 반도체 노광공정이 갖는 자유도의 한계를 극복하고 더 나아가 보다 복잡한 나노구조를 구현할 수 있다는 것을 이론적, 실험적으로 증명한 주요 연구라 할 수 있다.
이렇게 제작된 3차원의 나노구조는 원자층 증착법을 활용해 구조에 따라 물질의 주입 및 치환으로 다양한 소재를 원하는 구조로 제작할 가능성을 열어준다. 이번 기술이 차세대 반도체 소자인 GAA(Gate All Around) 소자나 3차원 반도체 집적기술에 적용된다면 현재 국가적으로 많은 노력을 기울이고 있는 차세대 반도체 역량 강화에 크게 이바지할 것으로 기대된다. 더 나아가 소재의 물성이 소재를 구성하는 원자나 결합이 아닌 순수한 나노구조에서 기인하는 새로운 물성을 확보하는 메타 소재 연구에서 원하는 나노구조를 낮은 비용으로 대면적에 생산함으로 국내의 소재 경쟁력을 크게 강화할 원천기술이 될 것이다.
이번 연구는 한국연구재단 원천기술개발사업의 미래소재디스커버리 사업과(NRF-2020M3D1A1110522) 삼성전자의(G01190420) 지원을 통해 수행됐다.
2022.05.27
조회수 7375
-
마찰전기의 발생 원리를 세계 최초로 규명
우리 대학 물리학과 김용현 교수 연구팀이 수천 년 동안 해결되지 않은 난제 중의 난제로 알려진 마찰전기 발생 원리를 세계 최초로 규명했다고 26일 밝혔다.
김 교수 연구팀은 두 물질을 마찰시킬 때 경계면에서 발생하는 열에 의해 전하가 이동할 수 있다는 아이디어를 바탕으로 `제1 원리 전자구조 계산'과 `열전달 방정식'을 풀어 마찰전기의 미시적 작동원리를 찾아냈고, 기존에 알려진 실험적 사실을 정성적으로 기술할 수 있었을 뿐만 아니라 정량적으로도 이동 전하량을 설명해 낼 수 있었다. 기존에는 정량적으로 마찰전기를 설명할 수 있는 이론은 없었다.
마찰전기에 대한 새로운 이론은 최근 주목받고 있는 에너지 수확 기술 중의 하나인 마찰전기 나노 발전기(triboelectric nanogenerator, TENG) 효율의 혁신적 증대에 이바지할 것이며, 여러 실생활 및 반도체 산업에서 원하지 않는 문제를 일으키거나 터치스크린처럼 긍정적으로 사용되고 있는 정전기의 미시적 제어를 가능하게 할 것으로 기대된다.
물리학과 신의철 박사과정이 제1 저자로 참여하고 한국표준과학연구원 여호기 박사가 공동연구로 참여한 이번 연구는 1년여의 동료심사를 거쳐 미국물리학회 오픈엑세스 국제 학술지 `피지컬 리뷰 리서치 (Physical Review Research)' 5월 4권 2호에 지난 17일 출판됐다. (논문명 : Derivation of a governing rule in triboelectric charging and series from thermoelectricity).
마찰전기는 2,600년 전 인류가 처음 `전기'를 인식하게 된 계기로 알려질 만큼 인류와 함께한 역사가 굉장히 오래된 현상이다. 최근에는 에너지 수확 기술 중 하나로 중요하게 여겨지고 있을 뿐만 아니라 코로나19의 감염을 막기 위한 마스크 그리고 공기 정화 기술로 광범위하게 사용되고 있다.
실생활에서도 번개나 정전기 등으로 매우 친숙한 자연현상이지만 지금까지 마찰전기의 발생을 정량적으로 설명할 수 있는 양자역학 이론이나 나노기술 이론은 없었다.
김용현 교수와 여호기 박사는 2014년 열전 영상 측정 기술을 개발하며 두 물질 간의 계면에 급격한 온도변화가 발생할 수 있다는 사실에 주목했다. 계면에 마찰에 의한 열이 발생하면 열전효과에 의해 전하가 이동할 수 있고, 마찰전기의 원리를 규명할 수 있는 실마리를 찾은 것으로 기대했다. 하지만 당시 2~3명의 박사과정 학생이 달려들어도 문제는 쉽게 해결되지 않았고, 7년여 만인 지금 대부분 난관을 해결하고 마침내 마찰전기의 비밀을 인류 최초로 맛볼 수 있었다.
연구팀은 마찰전기의 전하 이동 방향을 예측할 수 있는 `마찰전기 팩터(triboelectric factor)' 공식을 유도했으며 이를 이용해서 세계 최초의 이론 마찰 대전열을 구성했다. 마찰전기 팩터는 제벡 계수(단위 온도차에서 유도되는 전압), 밀도, 비열, 열전도도 등 물질 특성으로 구성돼 있다. 또한 마찰전기로 발생시킬 수 있는 전압강하의 크기를 예측하는 `마찰전기 파워(triboelectric power)'라는 물리량 K도 연구팀이 최초로 제안했다.
마찰 대전열은 중학교 2학년 교과서에서 다루는 내용이었지만 2015년 개정 교육과정 교과서에서는 더이상 다루고 있지 않다. 기존의 경험적 방법으로 결정되는 마찰 대전열이 연구자마다 다른 결과를 보고하고 있어 부정확하다는 인식이 확산됐기 때문이다. 그러나 우리 연구팀이 미시적, 양자역학적으로 정의된 마찰전기 팩터를 이용해 정량적인 대전열을 최초로 구성했기 때문에 다시 교과서에 마찰 대전열이 실릴 수 있는 계기가 마련됐다.
김용현 교수는 "미시세계에서의 열전현상을 양자역학적으로 연구하고 있었기 때문에 인류의 난제인 마찰전기 문제를 해결할 수 있는 행운이 따랐고, 오랫동안 포기하지 않고 매달려 준 학생들과 동료들에게 감사하다ˮ 라며 "마찰전기에 대한 미시적 이해를 통해, 보다 고효율 마찰전기 나노 발전기를 물질 수준에서 설계할 수 있게 됐으며, 실생활이나 산업에서 정전기를 제어하는 데 널리 이용되기를 바란다ˮ 라고 말했다.
한편 이번 연구는 한국연구재단의 자율운영 중점연구소 지원사업, SRC 이공분야기초연구사업, 미래소재디스커버리사업, 그리고 KAIST의 최장 30년까지 지원하는 그랜드 챌린지 30 사업의 지원을 받아 수행됐고, 관련 기술은 국내 특허출원이 완료됐다.
2022.05.26
조회수 12311
-
안정적인 형태의 액체금속 프린팅 기술 개발
우리 대학 신소재공학과 스티브 박, 전기및전자공학부 정재웅 교수 공동 연구팀이 안정적인 형태의 액체금속을 고해상도로 프린팅할 수 있는 기술을 개발했다고 25일 밝혔다.
액체금속은 높은 전기전도성과 액체와 같은 변형성으로 인해 유연 및 신축성 전자소자에 다양하게 적용돼왔다. 하지만 액체 상태가 갖는 불안정성과 높은 표면장력으로 인해 직접적인 접촉을 요구하는 전극이나 고해상도를 요구하는 전자소자의 배선으로 사용하는 것에는 한계가 있었다.
이를 극복하기 위해 액체금속을 6~10㎛ (마이크로미터) 크기의 입자 형태로 분쇄해 안정적인 형태로 만들어 전자소자에 적용하는 연구가 진행돼왔지만, 이 경우에는 표면에 일어난 산화로 인해 기존의 높은 전기전도성을 상실한다는 단점이 존재했다. 이러한 액체금속 입자를 전기소자에 사용되기 위해서는 기계적, 화학적 변성을 통해 표면에 존재하는 산화막을 제거해 전기전도성을 다시 확보하는 과정이 필요했다.
이 문제를 해결하기 위해 연구팀은 프린팅 과정에서 노즐과 기판 사이에서 유도된 반월판(meniscus)에서 촉진된 증발로 현탁액(suspension)의 조성을 바꾸면서 화학적 변성을 유도할 수 있는 시스템을 개발했다. 먼저 프린팅에 사용되는 현탁액을 물과 물보다 끓는점이 높은 약산(아세트산)을 이용해 증발함에 따라 점점 강한 산성을 보이게 만들었다. 추가로 연구팀은 기판에 약 60℃의 열을 가해, 잉크의 증발과 산의 활성 및 화학적 변성을 촉진했다. 이를 통해 프린팅된 액체금속 입자 배선의 경우에는 별도의 전기적 활성 과정 없이 금속과 비슷한 수준의 높은 전기전도도(1.5x10^6 S/m)를 보이는 것을 확인했다.
연구팀은 액체금속 입자의 표면에 전해질을 붙여 기계적, 화학적 안정성을 향상해 프린팅 과정에서 발생할 수 있는 막힘(clogging) 현상을 방지하고, 액체금속 입자 간에 연결(bridging)을 통한 신축성을 부여했다. 프린팅된 액체금속 입자 기반 배선은 약 500%까지 늘려도 저항이 크게 변하지 않아 다양한 신축성 소자에 사용될 수 있는 것으로 기대된다.
프린팅을 통해 다양한 기판에 여러 형태로 빠르게 증착할 수 있어 여러 맞춤형 소자에 적용될 수 있다. 특히 프린팅된 액체금속 입자의 기계적, 화학적 안정성으로 인해 기존 액체금속으로는 불가능했던 전극으로서의 사용이 가능함을 보였다.
또 전해질이 부착된 액체금속은 생체 친화성이 우수해, 피부와 직접 닿을 수 있는 생체전극으로도 사용될 수 있다. 연구팀은 액체금속을 상용화된 의료용 테이프 위에 증착해, 사용자의 신체에 맞춰 최적화된 EMG 센서(근육 움직임으로 인한 미세한 전기신호를 감지하는 센서)를 제작했다. 나아가서 생분해성 기판 위에 액체금속 전극을 증착해 사용 이후에 의료용 폐기물이 나오지 않는 ECG 센서(심전도 센서)로의 응용 가능성도 제시했다.
신소재공학과 이건희(스티브 박, 정재웅 교수 공동 지도), 이예림 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션스(Nature Communications)' 온라인 버전에 5월 12일 字 출판됐다. (논문명 : Rapid meniscus-guided printing of stable semi-solid-state liquid metal microgranular-particle for soft electronics)
스티브 박 교수는 "최근 주목받고 있는 액체금속 입자 기반 현탁액의 새로운 적용 가능성을 보여준 의미 있는 결과ˮ라고 말했다. 정재웅 교수는 "헬스케어를 위한 웨어러블, 임플란터블 모니터링 전자소자를 포함한 다양한 유연 및 신축성 전자소자에 핵심 기술로 활용될 수 있을 것으로 기대된다ˮ 라고 말했다.
2022.05.26
조회수 6879
-
암, 뇌졸중, 치매 등 각종 난치병 진단하는 멀티 바이오마커를 동시에 탐지하는 고성능 기술 개발
우리 대학 신소재공학과 장재범 교수, 전기및전자공학부 윤영규 교수 연구팀이 기존 기술 대비 5배 이상 더 많은 단백질 바이오마커를 동시에 탐지할 수 있는 멀티 마커 동시 탐지 기술 개발을 했다고 23일 밝혔다.
바이오마커란, 단백질이나 DNA, RNA, 대사 물질 등의 생체 분자로써 이를 통해 몸 안의 변화를 알아낼 수 있어 암을 비롯해 뇌졸중, 치매 등 각종 난치병을 정밀하게 진단하는 표지자로 각광받고 있다.
최근 환자별로 암 조직 내부에 발현되는 단백질 마커가 서로 다르다는 사실이 밝혀지고 있으며, 이러한 차이에 따라서 암의 예후 및 항암제 반응성 등이 결정된다는 연구 결과가 발표되고 있다. 이에 따라서 암 조직에서 여러 단백질 마커를 동시에 탐지하는 기술이 반드시 요구된다.
이에 장 교수 연구팀은 기존 기술 대비 5배 이상 더 많은 수의 단백질 마커를 동시에 관찰할 수 있는 기술을 개발했다. 이 기술은 특수한 시약이나 고가의 장비가 필요하지 않아 암의 정확한 진단 및 항암제 개발, 새로운 단백질 마커 발굴 등에 폭넓게 활용될 수 있을 것으로 기대된다.
우리 대학 신소재공학과 서준영, 심연보, 김지원 연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션스(Nature communications)' 5월 13권에 출판됐다. (논문명 : PICASSO allows ultra-multiplexed fluorescence imaging of spatially overlapping proteins without reference spectra measurements).
그동안 정밀 암 연구는 암 환자 조직 내부의 유전자를 분석하는 유전체 연구를 중심으로 진행돼왔다. 하지만 유전자 분석으로는 실제로 이 유전자로부터 단백질 마커가 얼마나 많이 발현되는지 혹은 어떤 공간적 분포로 발현되는지는 알 수 없다는 한계가 있다. 이에 따라서 최근 연구는 유전체 및 단백체를 동시에 분석하는 방향으로 나아가고 있다.
실제로 기존의 유전체 분석으로 유방암으로 진단받은 수백 명의 유방암 환자의 암 조직 내부 단백질 마커를 분석한 결과, 환자들을 생존율 및 약물 반응성이 서로 다른 여러 서브 타입으로 나눌 수 있다는 연구 결과가 발표된 바 있다. 또한, 최근 암을 정복할 신약으로 주목받고 있는 3세대 항암제인 면역항암제의 경우, 암 조직 내부의 면역세포를 활성화해 암을 치료한다.
이때, 암 조직 내부에 어떤 면역 단백질 마커가 발현되어 있는지에 따라서 그 약물 반응성에 큰 차이가 나타난다고 보고된 바 있다. 이처럼 암 조직 내부에서 여러 단백질 마커를 동시에 탐지하는 기술은 새로운 암 서브 타입의 발굴, 각 서브 타입을 표적으로 하는 신약 개발, 적합한 항암제 추천 등을 위해 필수적으로 요구된다.
그동안 암 조직 내부에서 여러 단백질 마커를 동시에 탐지하기 위해서 질량 분석 이미지 처리법 혹은 형광염색법이 사용돼왔다. 질량 분석 이미지 처리법은 하나의 조직에서 다수의 단백질 마커를 동시에 탐지할 수 있다는 장점이 있으나, 고가의 특수 장비가 필요하고, 분석 과정에서 조직이 파괴되며, 전체 과정이 오래 걸린다는 단점이 있다. 형광염색법은 이와 같은 단점은 없으나, 한 번에 3개의 단백질 마커만 관찰할 수 있다는 단점이 있다.
장 교수 연구팀은 이러한 형광염색법의 한계를 해결하기 위해 한 번에 15개 이상, 최대 20개까지의 단백질 마커를 동시에 탐지할 수 있는 기술인 `피카소(PICASSO)' 기술을 개발했다. `PICASSO는 “Process of ultra-multiplexed Imaging of biomoleCules viA the unmixing of the Signals of Spectrally Overlapping fluorophores'의 약자로, 기술을 통해 다양한 생체분자들의 이미지를 형형색색으로 얻어낼 수 있기에 일반인들에게 가장 친숙한 화가 피카소의 이름을 기술명으로 정했다. 연구팀은 이를 위해 발광 스펙트럼이 유사한 형광 분자들을 동시에 사용하고, 이러한 형광 분자들의 신호를 정확하게 분리할 수 있는 기술을 개발했다. 연구팀은 이 기술을 이용해 하나의 조직에서 15개의 단백질 마커를 탐지하는 과정을 세 번 반복해 총 45개의 단백질 마커를 탐지하는 데 성공했다.
장 교수 연구팀이 개발한 `피카소(PICASSO)' 기술은 기존 멀티 마커 동시 탐지 기술 중 가장 낮은 비용으로, 가장 많은 수의 단백질 마커를, 가장 빠르게 탐지할 수 있는 기술로, 향후 암 진단 및 제약 등에 활용될 가능성이 매우 크다. 연구팀은 이 기술 개발 과정에서 4건의 국내 특허, 3건의 미국 특허, 2건의 EPO(유럽 특허) 및 PCT(국제 특허)를 출원해 이번 기술의 지적 재산권을 확보했다고 밝혔다.
제1 저자인 서준영 연구원은 "`피카소(PICASSO)' 기술을 통해 그동안 관찰하기 어려웠던 조직 내 수많은 단백질 마커의 발현 정도 및 분포 관찰에 성공했다ˮ며, "특수한 시약이나 고가의 장비 없이 연구자들에게 친숙한 형광현미경만을 사용해 기술 구현이 가능하므로 접근성이 매우 높은 유용한 기술이 될 것이고, 새로운 생명현상 규명, 암 바이오마커 발굴, 정밀진단 및 치료제 개발 등에 활발히 사용될 수 있을 것이다ˮ 라고 말했다.
한편 이번 연구는 삼성미래기술육성사업의 지원을 받아 수행됐다.
2022.05.23
조회수 8722
-
실제 약물로 개발되는 단백질-리간드 상호작용 예측 인공지능 모델 개발
우리 대학 연구진이 물리화학적 아이디어를 인공지능 딥러닝에 접목해 기존의 방법보다 일반화 성능이 높은 단백질-리간드 상호작용 예측 모델을 개발했다. 리간드란 수용체와 같은 큰 생체 분자에 특이적으로 결합하는 물질을 말하며, 생체 내의 중요한 요소이자 의약품의 개발 등에 큰 역할을 한다.
화학과 김우연 교수 연구팀이 교원창업 인공지능 신약 개발 스타트업 HITS 연구진과 함께 물리 기반 삼차원 그래프 심층 신경망을 이용해 일반화 성능을 높인 단백질-리간드 상호작용 예측 모델을 개발했다고 17일 밝혔다.
약물 후보 분자를 발굴하기 위해서 타깃 단백질과 강하게 결합하는 리간드를 찾는 것이 중요하다. 하지만 유효 물질을 찾기 위해 수백만에서 수천만 개의 무작위 리간드 라이브러리를 대상으로 실험 전수 조사를 수행하는 것은 천문학적인 시간과 비용이 필요하다. 이러한 시간과 비용을 절감하기 위해 최근 단백질-리간드 상호작용 예측에 기반한 가상탐색(virtual screening) 기술이 주목받고 있다.
기존의 상호작용 예측 인공지능 모델들은 학습에 사용한 구조에 대해서는 높은 예측 성능을 보여주지만, 새로운 단백질 구조에 대해서는 낮은 성능을 보이는 과적합(over-fitting)이 문제가 됐다. 과적합 문제는 일반적으로 모델의 복잡도에 비해 데이터가 적을 때 발생한다. 이번 연구는 이러한 과적합 문제를 해결함으로써 다양한 단백질에 대해 고른 성능을 보여주는 예측 모델을 개발하는데 주안점을 뒀다.
연구진은 물리화학적 아이디어들을 딥러닝 모델에 적용해 모델의 복잡도를 줄임과 동시에 물리 시뮬레이션을 통해 부족한 데이터를 보강함으로써 과적합 문제를 해결하고자 하였다. 단백질 원자와 리간드 원자 사이의 거리에 따른 반데르발스 힘, 수소 결합력 등을 물리화학적 방정식으로 모델링하고, 매개변수를 딥러닝으로 예측함으로써 물리 법칙을 만족하는 예측을 가능하게 했다.
또한, 학습에 사용한 단백질-리간드 결정 구조가 실험적으로 판명된 가장 안정한 구조임에 착안했다. 부족한 실험 데이터를 보강하기 위해 불안정한 단백질-리간드 구조로 이루어진 수십만 개의 인공 데이터를 생성해 학습에 활용했고, 그 결과 생성된 구조에 비해 실제 구조를 안정하게 예측하도록 모델을 학습할 수 있었다.
연구진은 개발된 모델의 성능을 검증하기 위해 대조군으로 `CASF-2016 벤치마크'를 활용했다. 이 벤치마크는 다양한 단백질-리간드 구조들 사이에서 실험적으로 판명된 결정 구조에 근접한 구조를 찾는 도킹과 상대적으로 결합력이 큰 단백질-리간드 쌍을 찾는 스크리닝 등 실제 약물을 개발하는 과정에 필수적인 과제를 포함하고 있다. 검증 테스트 결과 기존에 보고된 기술에 비해 높은 도킹 및 스크리닝 성공률을 보여줬으며, 특히 스크리닝 성능은 기존에 보고된 최고 성능 대비 약 두 배 높은 수치를 보였다.
연구진이 개발한 물리 기반 딥러닝 방법론의 또 다른 장점은 예측의 결과를 물리적으로 해석 가능하다는 것이다. 이는 딥러닝으로 최적화된 물리화학 식을 통해 최종 상호작용 값을 예측하기 때문이다. 리간드 분자 내 원자별 상호작용 에너지의 기여도를 분석함으로써 어떤 작용기가 단백질-리간드 결합에 있어서 중요한 역할을 했는지 파악할 수 있으며, 이와 같은 정보는 추후 약물 설계를 통해 성능을 높이는 데 직접 활용할 수 있다.
공동 제1 저자로 참여한 화학과 문석현, 정원호, 양수정(현재 MIT 박사과정) 박사과정 학생들은 "데이터가 적은 화학 및 바이오 분야에서 일반화 문제는 항상 중요한 문제로 강조돼왔다ˮ며 "이번 연구에서 사용한 물리 기반 딥러닝 방법론은 단백질-리간드 간 상호작용 예측 뿐 아니라 다양한 물리 문제에 적용될 수 있을 것ˮ이라고 말했다.
한국연구재단의 지원을 받아 수행된 이번 연구는 국제 학술지 `Chemical Science(IF=9.825)' 2022년 4월 13호에 표지 논문 및 `금주의 논문(Pick of the Week)'으로 선정됐다. (논문명 : PIGNet: a physics-informed deep learning model toward generalized drug–target interaction predictions, 논문 링크 : https://doi.org/10.1039/D1SC06946B)
2022.05.17
조회수 9549
-
움직이는 가상 물질을 입체적으로 쥘 수 있는 새로운 가상현실 컨트롤러 개발
우리 대학 산업디자인학과 안드리아 비앙키(Andrea Bianchi) 교수 연구팀이 회전하는 원판을 활용한 6-자유도 햅틱 컨트롤러를 개발했다고 12일 밝혔다.
비앙키 교수 연구팀은 마이크로소프트(Microsoft Research)와 협업해 움직이는 물체의 이동 속도, 방향과 두께감을 표현하는 `SpinOchhio(스피노키오)' 컨트롤러를 개발했다. 이 컨트롤러는 한 쌍의 회전 원판과 피버팅(2차적 축 회전) 메커니즘을 활용해 가상 환경(VR Environment)에서 사용자가 엄지와 검지로 쥐고 있는 물체가 손가락 사이를 지나가는 속도, 방향과 두께의 감촉을 사실적으로 체험할 수 있게 한다.
산업디자인학과 김명진 박사과정이 제1 저자로 참여한 이번 연구는 지난 5월 4일에 `ACM CHI 2022 (2022 CHI Conference on Human Factors in Computing Systems)' 국제학회에서 발표됐다. (논문명: SpinOcchio: Understanding Haptic-Visual Congruency of Skin-Slip in VR with a Dynamic Grip Controller)
기존의 가상현실(VR) 컨트롤러는 가상 물체와의 상호작용을 표현하는 방법으로 진동 피드백만을 활용해, 손에 쥔 물체의 움직이는 속도, 방향, 또는 두께감에 대한 촉감 피드백을 표현하는 데에 한계가 있었다.
손가락으로 쥐고 있는 가상 물체의 움직임과 다양한 두께감을 사실적으로 재현하기 위해서는 각 손가락에 닿는 표면의 움직임과 표면 간의 거리를 고려해야 한다. 연구팀이 개발한 `스피노키오'는 한 쌍의 피버팅 하는 회전 원판을 엄지와 검지 각 손가락 끝에 접촉하게 함으로써, 손가락 사이에 있는 물체가 다양한 방향으로 미끄러지거나 회전하는 감각을 재현한다. 또한 연구팀은 두 원판 간의 거리를 조절함으로 가상 환경에서 실시간으로 다양한 물체의 두께와 형태의 촉감을 구현했다. 엄지와 검지 각 손가락 끝에 접촉한 표면의 움직이는 방향(1), 속도(2)와 폭(3)을 개별적으로 제어하여 `스피노키오'는 총 6-자유도 햅틱 피드백을 구현한다.
연구팀은 `스피노키오'를 활용해 표면의 움직임의 방향 변화에 대한 사용자들의 인지능력을 측정했고, 가상 물체를 재현했을 때 가상현실의 시각적 피드백이 촉각 피드백 인지에 큰 영향을 끼치는 것을 실험적으로 확인했다.
`스피노키오'의 활용 예시로 연구팀은 가상 환경에서 사용자가 손가락으로 힘을 주어 물체를 집어 올리거나 잡아당기거나 꼬집어 변형시키는 상호작용과 더불어 힘을 빼고 물체를 쓰다듬거나 떨어뜨리는 등 다양한 물체와의 상호작용을 제안했다.
연구를 주도한 안드리아 비앙키 교수는 "이번에 개발한 스피노키오는 이전과 달리 사용자가 움직이는 가상의 물체를 입체적으로 손으로 쥐는 햅틱 경험을 구현한 특징이 있으며, 3D 모델링 작업과 가상 교육 환경 등에 특히 응용되어 산업적 가치를 지닌다ˮ라고 설명했다.
한편 이번 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행됐다.
2022.05.12
조회수 6468