-
항체를 활용한 신개념 생체 형틀법 최초 개발
우리 대학 신소재공학과 장재범 교수 연구팀이 다세포 생물이 갖는 특정 단백질 구조체를 활용할 수 있는 새로운 개념의 생체 형틀법을 최초로 개발했다고 10일 밝혔다. 긴 시간 동안 특정 기능에 최적화된 생명체가 갖는 복잡하고 정교한 구조체를 형틀로 삼아 이를 모방한 무기물 구조체를 만드는 방법을 생체 형틀법 이라고 한다. 이는 에너지, 광학, 마이크로로봇 분야 등에 응용돼왔다.
장 교수 연구팀은 항원-항체 반응에 착안해 특정 단백질을 항체로 표적화한 뒤, 항체에 붙어 있는 1.4 나노미터(nm) 크기의 금 입자에서 다양한 금속 입자들을 성장시킴으로써 특정 단백질 구조체를 모방한 금속 구조체를 합성하는 데 성공했다. 개발된 생체 형틀법은 일반적인 항원-항체 반응과 금속 입자 성장법을 기반으로 하기 때문에 다양한 생명체에 폭넓게 응용 및 적용될 수 있을 것으로 기대된다.
신소재공학과 송창우, 송대현 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 머티리얼즈(Advanced Materials)'에 7월 7일 字 온라인 출판됐다. (논문명 : Multiscale Functional Metal Architectures by Antibody-Guided Metallization of Specific Protein Assemblies in Ex Vivo Multicellular Organisms).
생명체가 갖는 특정 기능에 최적화된 다양한 구조체들은 복잡하고 계층적 구조를 기반으로 하여 인공적인 합성 방법을 통해 재현하기 어렵다. 따라서 이러한 생체 구조체를 형틀로 해 동일한 모양의 무기물 구조체를 합성하는 생체 형틀법이 개발돼왔으며, 합성된 생체 재료들은 촉매, 에너지 저장 및 생산, 센서 등 다양하게 활용돼왔다.
하지만 개발된 생체 형틀법 중 특정 단백질 구조체를 형틀로 사용한 경우는 적으며, 있다 하더라도 바이러스나 효모와 같은 단세포 생물의 특정 단백질 구조체를 형틀로 활용한 연구들 뿐이었다.
생명체의 특정 단백질 구조체를 활용하는 생체 형틀법은 원하는 생체 구조체만을 활용 가능하며 합성하고자 하는 생체 재료의 목적에 맞는 단백질을 선택해 사용할 수 있다는 장점이 있다.
연구팀은 기존의 생체 형틀법 한계를 해결을 위해 특정 단백질을 이미징할 때 활용하는 항원-항체 반응을 생체 형틀법에 적용했다.
연구팀이 사용한 항체는 1.4 나노미터(nm) 크기의 금 입자가 달려있고 이는 금속 입자 성장을 위한 종자(seed) 역할을 하게 되어 특정 단백질을 표적화한 항체로부터 다양한 금속 입자를 성장시킬 수 있다.
연구팀은 인간 세포 내부의 미세소관, 미토콘드리아, 핵, 세포막, 세포질에 존재하는 특정 단백질에서만 금 입자를 성장시키는 데 성공했으며, 세포 수준뿐만 아니라 조직 수준인 쥐의 뇌, 신장, 심장에서도 개발한 방법을 적용할 수 있다는 것을 보였다.
나아가 연구팀은 금 입자뿐만 아니라 은, 금-백금, 금-팔라듐 입자를 세포 내부 미세소관 구조체를 따라 합성함으로써 합성된 세포를 액상 반응의 촉매로 활용 가능하다는 것을 증명했다. 또한, 세포 표면에 철 입자를 성장시킨 후 자석으로 조절할 수 있음을 보여 향후 이러한 금속 입자가 성장된 세포들을 조절하거나 군집 행동을 구현하는 것이 가능함을 보였다.
연구팀이 개발한 신개념 생체 형틀법은 다세포 생물뿐만 아니라 항체 염색이 가능한 식물, 균류, 바이러스 등의 생명체에도 활용 가능해 다양한 생체 구조체를 모방한 생체 재료 합성에 이용될 것으로 기대된다.
제1 저자인 송창우 박사과정은 "이번 연구는 기존의 생체 형틀법으로 구현할 수 없었던 다세포 생물의 특정 구조체를 모방한 금속 구조체를 합성한 최초의 사례이며, 이를 통해 생체 형틀법을 활용할 수 있는 생체 구조체의 범위를 넓혔다ˮ 라며 "합성된 생체 재료는 이번 연구에서 보여준 촉매뿐만 아니라 전기화학 및 바이오센서에도 활용 가능할 것으로 예상된다ˮ 라고 말했다.
한편 이번 연구는 한국연구재단 과학난제도전 융합연구개발사업, 우수신진연구사업, 뇌과학원천기술개발사업 등의 지원을 받아 수행됐다.
2022.08.10
조회수 7265
-
노화된 뇌에서 생겨난 비정상적 별아교세포 '아프다(APDA)' 발견
우리 연구진이 노화 및 치매 뇌에서 기억 중추인 해마 특이적으로 비정상적 별아교세포가 생겨나는 것을 최초로 관찰하고 그 원인을 규명했으며 이들은 신경 세포의 연결점인 시냅스의 숫자 및 기능 유지에 악영향을 줄 수 있음을 밝혔다. 이는 노화에 따른 인지 기능 저하를 일으키는 새로운 원인을 제시해 뇌 기능 회복에 활용이 기대된다.
우리 대학 생명과학과 정원석 교수와 이은별 박사, 정연주 박사 연구팀이 노화된 뇌에서 기존에 알려지지 않은 새로운 종류의 별아교세포를 발견했고, 이들이 세포 내 단백질 항상성이 손상돼 시냅스 생성 및 제거와 같은 기본적 능력이 결여돼있음을 밝혀 노화 관련 네이처 자매지인 `네이처 에이징(Nature Aging)'에 공개했다고 8일 밝혔다.
정원석 교수 연구팀은 이전 연구를 통해 비신경세포인 별아교세포가 신경세포의 시냅스를 만들 수도 또는 제거할 수도 있음을 밝힌 바 있다. 하지만, 이 같은 별아교세포의 기능이 노화 과정에서 어떻게 변화하는지는 알려지지 않았다.
☞ 시냅스(synapse): 뉴런(신경세포) 간 또는 뉴런과 다른 세포 사이의 접합 관계나 접합 부위를 말한다. 뉴런이 모여 있는 곳, 즉 뇌와 척수에 집중되어 있다.
연구팀은 노화된 뇌에서 별아교세포의 기능 변화를 이해하고자 단일 세포RNA 시퀀싱을 수행했고, 그 결과 기존에 노화 및 질병 뇌에서 존재한다고 알려진 염증성 별아교세포가 아닌 새로운 종류의 별아교세포가 존재함을 발견했다.
흥미롭게도 이들은 뇌에서 단기 기억을 저장한다고 알려진 해마에서만 노화 과정에서 선택적으로 생겨났으며, 이들 세포 내에는 불필요한 단백질을 제거하는 기전으로 알려진 자가포식(autophagy) 과정에서 생겨나는 오토파고좀(autophagosome)이 무분별하게 축적돼 있음을 밝혔다. 오토파고좀은 자가포식 과정에서 생겨나는 주머니 형태의 세포 소기관으로 세포내 불필요한 물질을 제거하기 위한 자가포식소체를 일컫는다. 이 같은 특징을 나타내기 위해서 연구진들은 중의적인 표현으로 새로 발견한 별아교세포를 `아프다(APDA: AutoPhagy-Dysregulated Astrocyte)' 세포로 명명했다.
별아교세포는 미세한 잔가지들을 통해서 수만 개의 시냅스를 감싸고 있으며, 글루타메이트(glutamate) 및 가바(GABA)와 같은 신경 전달 물질 및 다양한 이온들의 농도를 조절하는 역할을 수행함이 알려져 있다. 놀랍게도 APDA 세포들에서는 다양한 단백질들이 본래 위치에서 벗어나 오토파고좀에 갇혀 있는 현상이 발견됐으며 이로 인해 별아교세포가 시냅스를 만들거나 제거하는 능력이 모두 상실돼있음을 발견했다.
연구진은 자가포식 작용이 비정상적으로 조절되고 있음에 착안해 자가포식 작용에 영향을 주는 다양한 기전을 연구한 결과, 노화가 진행될수록 해마에 존재하는 별아교세포에서만 엠토르 (mTOR: 세포의 성장과 분열을 조절하는 단백질 합성의 신호체계)와 프로테아좀 (proteasome: 단백질 분해 효소 복합체) 활성도가 크게 감소함을 확인하였다. 이 두 기전은 원래 자가포식 작용을 제어하는 기전으로 알려져 있었는데 노화가 진행됨에 따라 다른 세포보다도 별아교세포에서 엠토르와 프로테아좀 기능이 감소함에 따라 자가포식 작용이 무분별하게 발생함을 밝힌 것이다. 그뿐만 아니라 이렇게 만들어진 오토파고좀들이 원래는 리소좀(lysosome)에 의해 분해돼 제거되나, APDA 세포들은 리소좀의 활성마저도 감소해 있음을 보였다.
이로써 세포 내 단백질 항상성을 조절하는 중요한 세 가지 기전 (엠토르, 프로테아좀, 리소좀)들이 모두 해마에 존재하는 별아교세포에서 노화에 따라 선택적으로 감소함에 따라, APDA 세포가 생겨남을 연구진은 보였다. 연구진은 실제 노화가 일어나지 않은 9개월령 쥐에게서도 엠토르 및 프로테아좀을 약물로써 감소시켰을 때 인위적으로 노화된 뇌에서 발견되는 APDA 세포를 만들 수 있음을 확인했다.
놀랍게도 연구진은 이러한 비정상적인 APDA 세포의 주변에 있는 시냅스들이 제대로 배열돼 있지 못하고 또한 그 숫자가 감소해 있음을 발견해 노화된 뇌에서 발생하는 시냅스 손상 및 뇌인지 기능 저하가 비정상적인 기능을 가진 APDA 세포에서 기인 할 수 있음을 제시했다. 또한 연구진은 치매 모델 쥐에서는 이 같은 APDA 세포가 정상 쥐의 노화 과정에서 보다 훨씬 더 빨리 해마에서 생겨남을 발견해 이들이 치매에서 나타나는 인지 기능 저하에도 역할을 할 수 있음을 보였다.
현재 노화된 뇌나 퇴행성 뇌 질환에서 교세포의 연구는 주로 염증성 교세포와 이들의 역할에 집중돼왔다. 연구팀의 이번 발견은 노화 및 치매 뇌에서 염증성 별아교세포와는 전혀 다른 종류의 비정상적 별아교세포가 존재함을 밝힌 첫 번째 연구 결과이며, 이들이 시냅스의 항상성을 무너뜨릴 수 있음을 제시했다.
연구팀은 이번 연구가 현재 노화를 극복하기 위해 엠토르를 전체적으로 억제하려는 현재 패러다임이 오히려 비정상적인 APDA 세포의 생성을 촉진할 수도 있음을 시사한다고 언급하며, 향후 연구에서는 노화 극복 방안이 세포 특이적으로 세분화돼야 함을 강조했다.
우리 대학 생명과학과 이은별 박사과정 학생과 정연주 박사 후 연구원이 공동 제1 저자로 참여하고, 정원석 교수가 교신저자로 참여한 이번 연구는 국제학술지 `네이쳐 에이징 (Nature Aging)'에 지난 8월 1일 자로 온라인 공개됐으며 (논문명: A distinct astrocyte subtype in the aging mouse brain characterized by impaired protein homeostasis), 같은 저널에 News & Views (Astrocytic traffiic jams in the aging brain)에도 소개됐다.
한편, 이번 연구는 삼성미래기술육성재단과 치매극복연구개발사업단의 도움을 받아 진행됐다.
2022.08.08
조회수 7476
-
KAIST, 인공지능 반도체 생태계를 선도하다
인공지능 반도체(이하 AI 반도체)가 국가적인 전략기술로 두드러지면서 KAIST의 관련 성과도 주목받고 있다. 과학기술정보통신부는 지난해 2030년 세계 AI 반도체 시장 20% 점유를 목표로 인공지능 반도체 지원사업에 본격적으로 착수한 바 있다. 올해에는 산학연 논의를 거쳐 5년간 1조 200억 원을 투입하는 `인공지능 반도체 산업 성장 지원대책'으로 지원을 확대했다. 이에 따라 AI 반도체 전문가 양성을 위해 주요 대학들의 행보도 분주해졌다.
KAIST는 반도체와 인공지능 양대 핵심 분야에서 최상급의 교육, 연구 역량을 쌓아 왔다. 반도체 분야에서는 지난 17년 동안 메사추세츠 공과대학(이하 MIT), 스탠퍼드(Stanford)와 같은 세계적인 학교를 제치고 국제반도체회로학회(이하 ISSCC, International Solid State Circuit Conference)에서 대학 중 1위를 지켜 왔다는 점이 돋보인다. ISSCC는 1954년 설립된 반도체 집적회로 설계 분야 세계 최고 권위 학회다. 참가자 중 60% 이상이 삼성, 퀄컴, TSMC, 인텔을 비롯한 산업계 소속일만큼 산업적인 실용성을 중시해서 `반도체 설계 올림픽'이라는 별명도 있다.
KAIST는 ISSCC에서 채택 논문 수 기준 매년 전 세계 대학교 중 1~2위를 유지했다. 최근 17년간 평균 채택 논문 수를 살펴보면 압도적인 선두다. 해당 기간 채택된 KAIST의 논문은 평균 8.4편으로, 경쟁자인 MIT(4.6편)와 캘리포니아대학교 로스앤젤레스(UCLA)(3.6편)에 비해 두 배 가까운 성과다. 국내에서는 반도체 설계 분야 부동의 1위인 삼성에 이어 종합 2위 자리를 유지하고 있다. 그럴 뿐만 아니라 ISSCC와 쌍벽을 이루는 집적회로 분야 학술대회인 초고밀도집적회로학회에서도 KAIST는 2022년 전 세계 대학 중 1위를 기록했다.
KAIST의 연구진들이 반도체 산업 핵심 분야 전반에서 신기술을 발표해 연구의 질적인 수준도 높다. 전기및전자공학부 정명수 교수 연구팀은 고성능 저전력을 추구하는 현재 업계의 수요에 대응해 전력 공급 없이도 동작을 유지하는 컴퓨터를 개발했다. 소재 분야에서는 신소재공학과의 박병국 교수 연구팀이 기존의 메모리에 비해 동작 속도가 10배 이상 빠른 `스핀궤도토크 자성메모리' 소자를 개발해서 기존 `폰노이만 구조'의 한계를 극복하는 방안을 제시하기도 했다.
이처럼 현재 반도체 산업의 주요 과제에 솔루션을 제공하는 한편으로 미래의 새로운 반도체 분야를 선점하는 데 필요한 신기술 개발도 활발하다. 암호 및 비선형 연산 분야에서 차세대 컴퓨팅으로 주목받는 양자컴퓨팅 분야에서는 전기및전자공학부 김상현 교수 연구팀이 3차원 집적 기술을 세계 최초로 선보였다. 신경계의 원리를 활용해 인공지능 분야에서 발군의 성능을 보일 것으로 기대되는 뉴로모픽 컴퓨팅에서는 전기및전자공학부 최신현 교수 연구팀이 신경세포를 모사하는 차세대 멤리스터를 개발 중이다.
인공지능 분야에서도 비약적으로 성장했다. 인공지능 분야의 양대 세계 최고 권위 학회인 국제머신러닝학회(ICML)과 인공신경망학회(NeurIPS) 논문 수 기준으로 KAIST는 2020년 세계 6위, 아시아에서는 1위를 기록했다. KAIST의 순위는 2012년부터 꾸준히 우상향 그래프를 그려 8년만에 37위에서 6위로, 무려 31계단이나 도약했다. 2021년에는 인공지능 분야 톱 학회 11개에 발표된 한국 논문 중 약 40%에 달하는 129편이 KAIST에서 나왔다. KAIST의 이러한 활약에 힘입어 2021년 한국은 글로벌 인공지능 톱 학회 등재 논문 수 기준으로 미국, 중국, 영국, 캐나다, 독일에 이어 6위에 올랐다.
내용 면에서도 KAIST의 인공지능 연구는 최전선에 있다. 전기및전자공학부 유회준 교수 연구팀은 모바일기기에서 인공지능 실시간 학습을 구현해 에지 네트워크의 단점을 보완했다. 인공지능을 구현하려면 데이터 축적관 막대한 양의 연산이 필요한데, 이를 위해 고성능 서버가 방대한 연산을 담당하고 사용자 단말은 데이터 수집과 간단한 연산만 하는 `에지 네트워크'가 사용된다. 유 교수의 연구는 사용자 단말에 학습 능력을 부여함으로써 인공지능의 처리 속도와 성능을 크게 높일 수 있다.
지난 6월에는 전산학부 김민수 교수 연구팀이 초대규모 인공지능 모델 처리에 꼭 필요한 솔루션을 제시했다. 연구팀이 개발한 초대규모 기계학습 시스템은 현재 업계에서 주로 사용되는 구글의 텐서플로우(Tensorflow)나 IBM의 시스템DS 대비 최대 8.8배나 빠른 속도를 달성할 수 있을 것으로 기대된다.
KAIST는 반도체와 인공지능이 결합된 AI 반도체 분야에서도 주목할만한 성과를 내고 있다. 2020년 전기및전자공학부 유민수 교수 연구팀은 세계 최초로 추천시스템에 최적화된 AI 반도체를 개발하는 데 성공했다. 인공지능 추천시스템은 방대한 콘텐츠와 사용자 정보를 다룬다는 특성상 범용 인공지능 시스템으로 운영하면 병목현상으로 성능에 한계가 있다. 유민수 교수팀은 `프로세싱-인-메모리(이하 PIM, Processing-In-Memory)' 기술을 기반으로 기존 시스템 대비 최대 21배 빠른 속도를 낼 수 있는 반도체를 개발했다. PIM은 처리할 데이터를 임시로 저장하기만 하던 `램'에서 연산까지 수행해 효율을 높이는 기술이다. PIM 기술이 본격적으로 상용화되면 메모리 분야에서 강세인 한국 기업의 AI 반도체 시장 경쟁력이 비약적으로 높아질 것으로 기대된다.
KAIST는 그간의 성과에 안주하지 않고 인공지능 및 반도체, 그리고 AI 반도체 분야 초격차를 유지하고자 다각적인 노력을 기울이고 있다. 1990년 국내 최초로 인공지능연구센터를 설립한 데 이어 2019년에는 김재철AI대학원을 개설해 전문인력을 양성 중이다. 2020년에는 인공지능과 반도체 연구를 융합해 ITRC 인공지능반도체시스템 연구센터가 출범했으며, 2021년에는 인공지능을 다양한 분야에 접목하는 `AI+X' 연구를 활성화하고자 김재철AI대학원과 별도로 AI 연구원을 설립했다.
KAIST는 이러한 노력으로 축적된 내적 역량을 바탕으로 네이버 등 기업과 공동연구센터를 설립하는 한편, 화성시와 같은 지자체와 협력해 동시다발적인 전문인력 양성에 나섰다. 지난 2021년에는 삼성전자와 함께 반도체시스템공학과 설립 협약을 체결하고 새로운 반도체 전문인력 교육과정을 준비하고 있다. 새로 설립되는 반도체시스템공학과는 2023년부터 매년 100명 내외의 신입생을 선발하고, 이들이 전문역량을 꽃피울 수 있도록 학생 전원에게 특별장학금을 지급할 예정이다. 또한 산업계와의 긴밀한 협력을 통해 삼성전자 견학과 인턴십, 공동 워크숍을 지원해 현장에 밀착한 교육을 제공할 예정이다.
KAIST는 국내 반도체 분야 박사 인력의 25%, 박사 출신 중견 및 벤처기업 CEO의 20%를 배출하며 한국 반도체 산업 생태계가 성장하는 데 중대한 공헌을 했다. 본격적으로 열린 AI 반도체 경쟁 체제를 앞두고 KAIST가 다시 산업 생태계의 구심점 역할을 할지 귀추가 주목된다.
2022.08.04
조회수 14968
-
성장 조절하는 인슐린 유사성장 인자의 비밀을 밝히다
인슐린유사성장인자(Insulin-like Growth Factor, IGF)는 인슐린과 유사한 분자구조를 가진 호르몬으로, 신체의 유지와 신진대사에 관여하며, 특히 태아 및 소아·청소년기 성장에 중요한 역할을 한다. 인슐린유사성장인자의 결핍은 느린 성장, 작은 체구, 지연된 발육과 같은 성장기 발달 장애, 그리고 성인에게는 골밀도와 근육강도 저하 등의 증상으로 나타난다. 인슐린유사성장인자의 과잉은 거인증 혹은 말단 비대증을 유발하고 다양한 성인병 위험도를 증가시킨다. 인슐린유사성장인자는 신체의 발달을 촉진시키는 작용 외에도 인슐린과 협동하여 혈당을 조절하는 작용도 하며, 종양의 발생에도 관여함이 알려져 있어, 인슐린유사성장인자의 작동 원리를 밝히기 위한 다양한 연구가 국내외에서 활발하게 진행 중이다.
우리 대학 의과학대학원 김호민 교수(기초과학연구원 (IBS), 바이오분자 및 세포구조연구단, Chief Investigator)는 인슐린유사성장인자 복합체의 3차원 분자구조를 규명하고, 인슐린유사성장인자 복합체의 조립과정 및 인슐린유사성장인자 활성화 메커니즘을 제시했다. 본 연구 결과는 성장과 대사에 관련된 다양한 질병에 대한 이해를 높이고 진단·치료제 개발에도 기여할 것으로 기대된다.
인슐린유사성장인자는 다양한 조직 세포막에 분포하는 인슐린유사성장인자 수용체를 활성화시켜 세포분열, 세포 증식·분화와 생존을 조절한다. 하지만 인슐린유사성장인자는 단독으로는 매우 불안정하여 체내반감기가 10분이 채 되지 않는다. 이 때문에 혈중 인슐린유사성장인자의 70% 이상은 체내에서 12시간 이상 머무를 수 있도록 인슐린유사성장인자 결합단백질들인 IGFBP 단백질(IGF Binding Protein), ALS 단백질(Acid labile subunit)과 결합하여 안정한 삼중복합체 형태로 존재한다.
IGFBP 단백질과 ALS 단백질은 인슐린유사성장인자와 결합하는 운반체 역할 뿐만 아니라 인슐린유사성장인자의 생물학적 작용을 조절하는 중요한 기능도 수행한다. 즉, 인슐린유사성장인자 삼중복합체(IGF1/IGFBP3/ALS)는 생체 내에서 아주 정교하게 조립되고, 필요시에만 활성화되어 적절하게 성장조절 효과를 나타낼 수 있게 된다. 이 때문에 인슐린유사성장인자와 이들 결합단백질의 혈중 농도는 성장호르몬결핍증, ALS 결핍증과 같은 성장관련 질환을 평가하는데 검사항목으로도 이용되고 있다.
연구진은 인슐린유사성장인자 삼중복합체의 3차원 분자구조를 초저온투과전자현미경(cryo-EM)을 활용하여 규명하고, 각 구성요소 간의 상호작용을 밝혀냈다. 특히, 인슐린유사성장인자가 IGFBP 단백질에 둘러쌓여 이중복합체를 이루고 있으며, 말발굽 모양의 ALS 단백질이 이중복합체를 한번 더 감싸는 안정된 구조로 인해 인슐린유사성장인자가 체내에서 쉽게 분해되지 않는 것을 발견했다.
또한, 다양한 생화학적 실험 방법을 통해 인슐린유사성장인자 삼중복합체의 순차적 조립과정과 삼중복합체로부터 인슐린유사성장인자가 분리되어 인슐린유사성장인자 수용체를 활성화시키는 분자 메커니즘을 규명했다. 인슐린유사성장인자 삼중복합체에 포함된 IGFBP 단백질이 생체 내 단백질분해효소에 의해 잘리면, IGFBP 단백질의 C-말단이 떨어져나가면서 불안정한 중간 삼중복합체가 형성된다. 이 과정이 인슐린유사성장인자가 활성을 나타내게 하는 핵심 과정임을 새롭게 발견했다.
김호민 교수는 “첨단 초저온투과전자현미경을 활용하여 고해상도 분자구조를 규명한 연구성과”라며, “인슐린유사성장인자 삼중복합체의 분자구조와 활성화 메커니즘은 향후 청소년기 성장 관련 연구 또는 인슐린유사성장인자 관련 질환의 진단 및 치료제 개발에 크게 기여할 것으로 기대한다.”라고 말했다.
이번 연구는 국제학술지 ‘네이처 커뮤니케이션즈(Nature Communications, IF 17.69)’ 온라인 판 7월 30일 자에 게재되었다.
2022.08.04
조회수 12877
-
탄소중립을 위한 차세대 에너지 변환기술인 고성능 프로토닉 세라믹 연료전지 개발 성공
우리 대학 기계공학과 이강택 교수 연구팀이 마이크로파를 이용한 초고속 소결 공정을 통해 고성능 프로토닉 세라믹 연료전지(PCFC) 개발에 성공했다고 3일 밝혔다.
기존의 산소 이온 전도성 고체 산화물 연료전지(SOFC)와 달리, 프로토닉 세라믹 연료전지는 양성자 전도성 세라믹 전해질의 높은 이온 전도도와 낮은 활성화 에너지 특성으로 인해, 600oC 이하 저온에서 고효율로 전력 변환 및 수소 생산이 가역적으로 가능한 에너지 변환 시스템으로 이는 수소전기차, 수소 충전소, 건물 및 선박용 발전시스템 등에 활용이 가능한 탄소중립 사회를 위한 차세대 핵심 기술로 떠오르고 있다.
이러한 프로토닉 세라믹 연료전지는 난소결성 바륨 기반 산화물 전해질을 사용하는데, 이를 치밀화하기 위해서 1,500oC 이상 고온에서 장시간 소결(세라믹 입자를 가열하여 단단하게 결합시키는) 공정이 필수적이다. 하지만, 이러한 극한 공정 중에 산화물 내부에서 발생하는 양이온 확산으로 화학적 조성이 불안정해지는 치명적인 문제가 있었다. 이를 해결하기 위해 다양한 연구가 진행되고 있지만, 대부분 실험실에서 국소적으로 가능한 방법들이 보고되고 있으며, 실용적으로 상용화가 가능한 새로운 제조 공정의 연구가 시급한 실정이다.
연구팀은 이러한 문제점을 해결할 방법으로 기존에 복사열로 장시간 (300분) 소결하는 방법 대신 흔히 전자레인지나 오븐 등에 쓰이는 마이크로파를 사용해 5분 만에 초고속 소결을 해 이론적 화학조성의 전해질을 갖는 프로토닉 세라믹 연료전지를 개발하는 데 성공했다. 이와 동시에, 초고속 온도 상승으로 연료극이 나노 구조화돼 전기화학적 활성 영역 또한 크게 확장됨을 증명했다. 연구팀은 이와 더불어 3차원 형상 복원 기술을 통해, 연료극 입자 미세화로 인한 삼상계면 길이의 증가가 전극 표면 활성 반응을 가속화하는 미세구조와 전기화학 특성 간의 상관관계를 규명했다.
연구팀이 개발한 프로토닉 세라믹 연료전지는 현재까지 보고된 동일 소재의 연료전지 중 가장 우수한 성능을 보였으며, 장시간 (800시간) 구동에도 매우 높은 안정성이 확인돼, 마이크로파 기반 초고속 제조 공정 도입의 이점을 효과적으로 증명했다.
우리 대학 기계공학과 김동연, 배경택 박사과정생이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지인 `에이씨에스 에너지 레터스, ACS Energy Letters' (IF:23.991) 6월 29일 字 온라인판에 게재됐다. (논문명: High-Performance Protonic Ceramic Electrochemical Cells)
이강택 교수는 "이번 연구를 통해 마이크로파를 이용한 초고속 제조 공정이 기존 공정의 난제를 해결하고 프로토닉 세라믹 연료전지 성능을 극대화할 수 있음을 실험적으로 증명했고, 이는 탄소중립 사회 실현을 앞당길 수 있는 고성능 차세대 에너지 변환기술 발전의 촉매 역할을 할 것ˮ 이라고 말했다.
한편 이번 연구는 과학기술정보통신부 수소에너지혁신기술개발사업, 중견연구자지원사업 그리고 나노 및 소재 기술개발사업의 지원으로 수행됐다.
2022.08.03
조회수 13783
-
스마트폰 위 인공지능(AI) 연합학습 속도 4.5배 획기적 향상기법 개발
우리 대학 전기및전자공학부 이성주 교수 연구팀이 국제공동연구를 통해 다수의 모바일 기기 위에서 인공지능(AI) 모델을 학습할 수 있는 연합학습 기술의 학습 속도를 4.5배 가속할 수 있는 방법론을 개발했다고 2일 밝혔다.
이성주 교수 연구팀은 지난 6/27~7/1에 열린 세계컴퓨터연합회(ACM) 주최로 진행된 제20회 모바일 시스템, 어플리케이션, 및 서비스 국제학술대회(MobiSys, International Conference on Mobile Systems, Applications, and Services)에서 연합학습(Federated Learning)의 학습 속도 향상(4.5배 가속)을 위한 데이터 샘플 최적 선택 및 데드라인 조절 방법론을 발표했다. 이 학회는 2003년에 시작됐으며 모바일 시스템, 소프트웨어, 어플리케이션, 서비스를 위한 최신 연구를 소개하는 데 초점을 맞추고 있으며, 모바일 컴퓨팅 및 시스템 분야의 최우수 학회 중 하나로 오랫동안 주목받고 있다.
이번 논문(FedBalancer: Data and Pace Control for Efficient Federated Learning on Heterogeneous Clients)은 KAIST 전산학부 신재민 박사과정이 제1 저자로 참여했으며, 중국 칭화대학과의 국제협력으로 이루어진 성과다 (칭화대학교 위안춘 리(Yuanchun Li) 교수, 윤신 리우(Yunxin Liu) 교수 참여).
최근 구글에 의해 제안된 연합학습은 새로운 기계학습 기술로, 개인정보의 유출 없이 방대한 사용자 기기 위 데이터를 활용할 수 있게 하여 의료 인공지능 기술 등 새로운 인공지능 서비스를 개발할 수 있게 해 각광받고 있다. 연합학습은 구글을 비롯해 애플, 타오바오 등 세계적 빅테크 기업들이 널리 도입하고 있으나, 실제로는 인공지능 모델 학습이 사용자의 스마트폰 위에서 이뤄져, 기기에 과부하를 일으켜 배터리 소모, 성능 저하 등이 발생할 수 있는 우려를 안고 있다.
이성주 교수 연구팀은 연합학습에 참여하는 사용자 기기 위 데이터 샘플 각각의 학습 기여도 측정을 기반으로 최적의 샘플을 선택함으로써 연합학습 속도 향상을 달성했다. 또한, 샘플 선택으로 줄어든 학습 시간에 대응해, 연합학습 라운드의 데드라인 또한 최적으로 조절하는 기법을 제안해 모델 정확도의 저하 없이 학습 속도를 무려 4.5배 높였다. 이러한 방법론의 적용을 통해 연합학습으로 인한 사용자 스마트폰 과부하 문제를 최소화할 수 있을 것으로 기대된다.
이성주 교수는 "연합학습은 많은 세계적 기업들이 사용하는 중요한 기술이다ˮ며 "이번 연구 결과는 연합학습의 학습 속도를 향상하고 활용도를 높여 의미가 있으며, 컴퓨터 비전, 자연어 처리, 모바일 센서 데이터 등 다양한 응용에서 모두 좋은 성능을 보여, 빠른 파급효과를 기대한다ˮ라고 소감을 밝혔다.
한편 이 연구는 과학기술정보통신부의 재원으로 한국연구재단과 정보통신기술진흥센터의 지원을 받아 수행됐다.
2022.08.02
조회수 8265
-
기계공학과 박인규 교수, 팽창하는 입자를 이용한 불규칙한 마이크로 돔 구조 기반 고감도 압력센서 개발
우리 대학 기계공학과 박인규 교수 연구팀이 한국생산기술연구원 조한철 박사와 공동 연구를 통해 3D 마이크로 구조 기반의 표면 형태 제어 기술 및 고감도 압력센서 설계 관련 원천기술을 개발했다.
최근 인간과 전자기기 간의 상호작용 기술의 중요성 증가에 따라, 그 매개체 역할을 하는 센서 기술 개발에 대한 관심이 증가하고 있다. 고성능 센서 기술은 스마트 기기, 보안 및 안전, 의료 및 헬스케어 분야와 같은 고부가가치 산업에 주로 적용되고 있다. 최근에는 뛰어난 센서 특성과 함께 유연한 특성으로 인해 사람의 피부와 같은 굴곡진 부위에 쉽게 부착 가능한 유연 압력센서 및 웨어러블 센서 응용에 대한 관심이 급증하고 있다. 특히, 표면에 3D 마이크로 구조가 어레이된 필름을 사용하면 센서의 전반적인 특성을 향상시킬 수 있어, 3D 마이크로 구조의 크기 및 밀도를 제어할 수 있는 기술이 필수적으로 요구된다.
하지만, 기존의 연구들은 원하고자 하는 패턴의 역상으로 제작된 몰드에 액상의 엘라스토머를 부어 제작하기 때문에 몰드 제작 공정이 필수적으로 요구되며, 3D 마이크로 구조의 크기/밀도 등을 조절하는데 한계가 있어 제작 유연성에 있어 큰 한계점이 존재했다.
공동 연구진은 이러한 문제를 해결을 위해, 온도에 의해 팽창하는 입자를 이용하여 표면에 3D 마이크로 구조를 제작하는 기술을 개발하였다. 본 연구에서 핵심으로 사용한 물질은 온도에 의해 팽창하는 미소 입자이다. 이 입자는 상온에서는 초기 상태인 6~11 ㎛를 유지하는데, 특정 온도를 가하면 내/외부의 변화로 인해 약 30~50 ㎛로 크기가 변하게 된다. 해당 입자를 유연 엘라스토머와 혼합하여 유연 필름을 제작한 뒤에 열팽창을 시키는 표면에 3D 마이크로 구조가 어레이된 유연 필름의 제작이 가능하다 (그림 1).
이를 활용하여 고민감도의 유연 압력센서에 적용하였다 (그림 2). 본 센서는 기존에 제안되었던 3D 마이크로 구조 기반 압력센서에 비해 높은 감도를 보여주었으며 내구성/검출한계/응답속도 등에서도 뛰어난 성능을 보였다. 이를 활용하여 다양한 사용자 맞춤형 어플리케이션에 적용하였다. 첫 번째로 손가락형 압력센서에 적용하였다. 개발된 손가락형 압력센서는 높은 감도로 인해 미세한 압력 변화를 감지할 수 있었으며 이를 이용하여 손가락의 미세한 맥박 변화, 물체를 누르는 힘 등에 대해 정밀하게 감지/구분할 수 있음을 보였다. 두 번째로는 대면적 어레이 센서로 제작하여 인간-컴퓨터 상호작용에 적용하였다. 이를 통해 손목의 움직임을 감지하고 획득한 신호를 기계학습에 적용하여 마우스 커서를 움직일 수 있음을 증명하였다 (그림 3).
이번 연구는 제 1 저자로는 정영 박사후연구원(KAIST 기계공학과)과 최중락 박사과정 학생(KAIST 기계공학과)이, 교신저자로는 조한철 박사(한국생산기술연구원)와 박인규 교수(KAIST 기계공학과)가 참여했으며, 과학기술정보통신부의 재원으로 한국연구재단의 중견연구자 과제 (박인규 교수), 창의도전연구 과제 (정영 박사), 신진연구자 과제 (조한철 박사)의 지원을 받아 수행되었다. 본 연구 결과는 재료연구 분야 최상위 학술지 중 하나인 Advanced Functional Materials (Impact factor 18.81) 지 2022년 7월 4일자로 논문이 게재되었으며, 후면 표지논문 (Back cover)에 선정되었다. (논문명: “Irregular Microdome Structure-Based Sensitive Pressure Sensor Using Internal Popping of Microspheres”)
2022.08.01
조회수 7005
-
인공지능 및 빅데이터 시대를 이끌어갈 차세대 CXL2.0 메모리 확장 플랫폼 세계 최초 개발
우리 대학 전기및전자공학부 정명수 교수 연구팀(컴퓨터 아키텍처 및 메모리 시스템 연구실)이 대용량 메모리 장치부터 프로세스를 포함한 컴퓨트 익스프레스 링크(CXL) 2.0 기반의 차세대 메모리 확장 플랫폼 ‘다이렉트CXL(이하 DirectCXL)’을 세계 최초로 프로토타입 제작, 운영체제가 실장된 단대단(End-to-End) 시연에 성공했다고 1일 밝혔다.
오늘날 빅데이터 분석, 그래프 분석, 인메모리 데이터베이스 등 대규모 데이터에 기반한 응용처리가 증가함에 따라, 데이터 센터에서는 이를 더 빠르고 효율적으로 처리하기 위해 시스템의 메모리 확장에 많은 투자를 하고 있다.
그러나 우리가 흔히 알고 있는 메모리 확장 방식인 더블 데이터 대역폭(DDR) 인터페이스를 통한 메모리 확장은 추가할 수 있는 메모리 개수의 제한이 있어, 대규모 데이터 기반의 응용을 처리하기에 충분치 않다. 따라서 데이터 센터에서는 CPU와 메모리로 이루어진 메모리 노드들을 따로 구성하고, 응용을 수행하는 호스트의 메모리가 부족하면 네트워크로 연결된 메모리 노드를 자신의 메모리 공간으로 사용하는 원격 데이터 전송 기술(이하 RDMA) 기반의 메모리 확장을 사용한다.
여러 메모리 노드를 사용하는 RDMA 기반의 메모리 확장을 통해 데이터센터는 시스템의 메모리 크기를 늘릴 수 있었지만, 여전히 해결해야 할 문제들이 남아있었다. 우선 RDMA 기반 메모리 확장 시스템에서는 노드 간 데이터 이동 시 불필요한 데이터 복사, 소프트웨어의 개입 그리고 프로토콜 전환으로 인한 지연을 발생시켜 성능 저하가 발생했다. 또한 시스템의 메모리 확장 시 메모리만을 추가할 수 있는 것이 아닌, 메모리와 메모리를 제어할 CPU가 하나의 메모리 노드를 이루어 시스템에 추가되어야 했기 때문에, 추가적인 비용 소모가 발생했다.
최근 컴퓨트 익스프레스 링크(Compute Express Link, 이하 CXL) 프로토콜의 등장으로 많은 메모리 고객사와 제조사가 이러한 문제를 해결할 가능성을 확인하고 있다. CXL은 PCI 익스프레스(PCIe) 인터페이스 기반의 CPU-장치(Device) 간 연결을 위한 프로토콜로, 이를 기반으로 한 장치 연결은 기존보다 높은 성능과 확장성을 지원하는 것이 특징이다.
국내외 유수 기업들이 모여 CXL 인터페이스 표준 규약을 제안하는 CXL 컨소시엄은 지난 2019년 CXL 1.0/1.1을 처음 제안했고, 이후 CXL 2.0을 발표하며 CXL 1.0/1.1에서 하나의 포트당 하나의 지역 메모리 장치만을 연결할 수 있었던 확장성 문제를 스위치 네트워크를 통해 개선, 하나의 포트를 여러 포트로 확장할 수 있도록 했다. 따라서 CXL 1.0/1.1과 달리 CXL 2.0에서는 확장된 포트에 다수의 원격 CXL 메모리 장치를 연결하는 것이 가능해 더 높은 확장성을 지원할 수 있게 됐다.
그러나 CXL 2.0의 높은 확장성에도 불구하고, 아직 CXL 연구의 방향성을 제시해줄 수 있는 시제품 개발 및 연구들이 진행되지 않아, 메모리 업계와 학계에서는 여전히 CXL1.0/1.1을 기반으로 지역 메모리 확장 장치, 시제품 개발 및 연구를 진행하고 있는 실정이다. 따라서 새로운 CXL 2.0을 통한 메모리 확장 연구의 방향성 초석을 제시할 필요성이 커졌다.
정명수 교수 연구팀이 전 세계 최초로 프로토타입한 CXL 2.0 기반 메모리 확장 플랫폼 ‘DirectCXL’은 높은 수준의 메모리 확장성을 제공하며, 빠른 속도로 대규모 데이터 처리를 가능케 한다. 이를 위해 연구팀은 메모리를 확장해 줄 장치인 ‘CXL 메모리 장치’와 호스트 ‘CXL 프로세서 (CPU)’, 여러 호스트를 다수의 CXL 메모리 장치에 연결해주는 ‘CXL 네트워크 스위치’ 그리고 메모리 확장 플랫폼 전반을 제어할 리눅스 운영체제 기반의‘CXL 소프트웨어 모듈’을 개발해 플랫폼을 구성했다.
구성된 ‘DirectCXL’ 플랫폼을 사용한 시스템에서는 확장된 메모리 공간에 직접 접근해 데이터를 CPU의 캐시로 가져와 불필요한 메모리 복사와 소프트웨어의 개입이 없으며, PCIe 인터페이스만을 사용해 프로토콜 전환을 없애 지연시간을 최대한 줄였다. 또한 추가적인 CPU가 필요 없는 CXL 메모리 장치를 CXL 스위치에 연결하는 것만으로 메모리 확장이 가능해 효율적인 시스템의 구성이 가능했다. 국내외 소수 대기업에서 메모리 장치 일부 단품에 대한 구성을 보여준 준 사례는 있지만, CXL 2.0 기반, CPU부터 CXL 스위치, 메모리 장치가 장착된 시스템에서 운영체제를 동작시키고 데이터 센터와 응용을 실행하고 시연한 것은 정명수 교수 연구팀이 처음이다.
연구팀은 자체 제작한 메모리 확장 플랫폼 ‘DirectCXL’의 성능을 검증하기 위해 CXL 동작이 가능한 다수의 자체 개발 호스트 컴퓨터가 CXL 네트워크 스위치를 통해 연결된 다수 CXL 메모리 장치들을 제어하는 환경을 구성했다. 이후 구성된 플랫폼을 통해 CXL 메모리 장치의 성능을 기존 RDMA 기반 메모리 확장 솔루션과 비교했다. 연구팀이 제안한 ‘DirectCXL’은 확장된 메모리에 대한 접근 시간 검증에서 기존 RDMA 기반의 메모리 확장 솔루션 대비 8.3배의 성능 향상을 보였으며, 많은 메모리 접근을 요구하는 그래프 응용처리 및 인 메모리 데이터베이스 응용처리에서도 각각 2.3배, 2배의 성능 향상을 이뤄냈다.
정명수 교수는 "이번에 개발된 ‘DirectCXL’은 기존 RDMA기반 메모리 확장 솔루션보다 훨씬 적은 비용으로도 뛰어난 성능과 높은 확장성을 제공하는 만큼 데이터센터나 고성능 컴퓨팅 시스템에서의 수요가 클 것으로 기대한다ˮ며, "세계 최초로 개발된 CXL 2.0 기반의 단대단 프로토타입 플랫폼을 활용해 CXL이 적용된 새로운 운영체제(OS)는 물론 시스템 소프트웨어, 솔루션 시제품 고도화를 통해 향후 CXL을 활용한 시스템 구축에 초석을 제공할 것이다ˮ라고 말했다.
한편 이번 연구는 미국 칼스배드에서 지난 7월에 11에 열린 시스템 분야 최우수 학술대회인 유즈닉스 연례 회의 `USENIX Annual Technical Conference, 2022'에 ‘DirectCXL’이라는 논문명(Direct Access, High-performance Memory Disaggregation with DirectCXL)으로 발표되었다. 또한 미국 산호세에서 열리는 8월 2/3일에 플래시 메모리 정상회담(Flash Memory Summit)에서 CXL 컨소시움이 이끄는 CXL포럼에 발표될 예정이다.
‘DirectCXL’의 자세한 내용은 연구실 웹사이트(http://camelab.org)에서 확인할 수 있다. DirectCXL은 데이터센터와 클라우드 시스템에서 다양한 응용에 쉽게 적용 가능하며, 하나의 실시예로 메타(페이스북) 추천시스템 기계학습 데이터 가속에 대한 시연 영상을 연구실 유튜브(https://youtu.be/jm8k-JM0qbM) 에서 확인할 수 있다. 해당 영상은 각 개인의 대규모 특성 자료들(텐서)을 CXL 메모리 풀에 올려두고 빅데이터를 활용한 인공지능이 친구나 광고 등 개인 특성에 맞는 자료들을 추천하게 하는 시스템으로 기존 데이터 센터의 원격메모리에 비해 3.2배 이상의 사용자 수준 성능 향상을 보여주고 있다.
2022.08.01
조회수 7545
-
뇌 모방 스핀 소자 핵심기술 개발
우리 대학 물리학과 김갑진 교수와 신소재공학과 박병국 교수 공동연구팀이 뇌 모방 소자로 개발 중인 스핀토크발진기 주파수 대역을 증대시킬 핵심 기술을 개발했다고 18일 밝혔다.
두 연구팀은 비자성체/강자성체/산화물 3중층 구조의 자기발진소자에 게이트 전압을 인가하여 GHz 수준의 발진주파수 조절에 성공하였다. 이는 기존 기술보다 약 10배 이상 향상된 결과로 스핀토크 기반 뉴로모픽 소자가 가진 학습 효과의 휘발성, 좁은 주파수 대역 등의 문제를 해결할 핵심 기술로 제안되었다.
본 소자는 게이트 전압이 영구적으로 수직자기이방성을 변화시켜 소자에 전류가 흐르지 않아도 학습 내용이 저장되어 있는 비휘발성 특성을 가지고 있으며 그 폭이 GHz 수준으로 넓어 뉴로모픽 소자 활용성을 증대시켜줄 것으로 기대된다.
신소재공학과 최종국 박사과정과 물리학과 박재현 박사가 공동 제1저자로 참여하고, KAIST 신소재공학과 강민구 연구원, 고려대학교 이재성 교수와 김도윤 연구원, KAIST 물리학과 이경진 교수가 공동저자로 참여한 본 논문은 국제학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’에 6월 30일 온라인 게재됐다. (논문명 : Voltage-driven gigahertz frequency tuning of spin Hall nano-oscillators)
기존의 스핀토크발진기 기반 뉴로모픽 소자는 학습 대상을 주파수 대역에 대응시켜 학습하는 소자로, 전류가 흐르지 않으면 학습 내용이 사라지는 휘발성과 200MHz 이내의 제한적인 학습 가능 대역폭을 가지고 있어 이에 대한 개선이 필요한 상황이다.
이번 연구에서 연구팀은 게이트 전압 인가가 소자의 수직자기이방성을 영구적으로 조절하고 이를 통해 자기공명주파수가 조절된다는 사실을 이용하여 기존 보고의 10배 이상인 2.1 GHz 이상의 광대역 조절 가능한 발진기를 실현하였다. 본 기술은 스핀-홀 나노 발진기 기반 뉴로모픽 소자 개발에 핵심 기술로 활용될 것이라 기대된다.
한편 이번 연구는 KAIST 글로벌 특이점 연구사업, 삼성미래기술육성사업, 한국연구재단 선도연구센터/중견연구자지원사업의 지원을 받아 수행됐다.
2022.07.29
조회수 7174
-
천 개~수천만 개 이상의 대규모 사물인터넷 동시 통신기술 최초 개발
우리 대학 전기및전자공학부 김성민 교수 연구팀이 세계 최초로 천 개에서 수천만 개에 이르는 대규모 사물인터넷(IoT) 동시 통신을 위한 `밀리미터파 후방산란 시스템'을 개발했다고 28일 밝혔다.
밀리미터파 후방산란 기술은 대규모 통신을 지원하기 위한 기술로 주목받고 있다. 밀리미터파 통신은 30~300기가헤르츠(GHz)의 반송파 주파수 대역을 활용하는 통신으로, 5G/6G 등 표준에서 도입을 준비 중인 차세대 통신 기술이다. 이는 넓은 주파수 대역폭(10GHz 이상)을 확보할 수 있어 높은 확장성을 제공한다.
또한, 후방산란 기술은 기기가 직접 무선 신호를 생성하지 않고 공중에 존재하는 무선 신호를 반사해 정보를 전달하는 방식으로, 무선 신호를 생성하는데 전력을 소모하지 않기 때문에 초저전력 통신을 가능하게 할 수 있는 기술이다. 이는 낮은 설치비용으로 대규모 사물인터넷 기기의 광범위한 인터넷 연결성을 제공할 수 있다.
김성민 교수 연구팀은 밀리미터파 후방산란을 이용해 수천만 개의 사물인터넷 기기들이 실내에 배치된 복잡한 통신 환경에서 모든 신호가 동시에 복조되도록 설계하는 데 성공했다.
전기및전자공학부 배강민 박사과정이 제1 저자로 참여한 이번 연구는 모바일 시스템 분야의 최고 권위 국제 학술대회인 `ACM 모비시스(ACM MobiSys)' 2022에 이번 6월 발표됐으며, 최우수논문상을 수상했다. (논문명: OmniScatter: extreme sensitivity mmWave backscattering using commodity FMCW radar). 이는 작년 우리 대학 전기및전자공학부에서 아시아 대학 최초로 ACM 모비시스 2021 최우수논문상을 받은 이후 연속된 수상으로 더욱 의미가 깊다.
5G/6G 네트워크의 핵심 구성 요소 중 하나인 사물인터넷은 기하급수적인 성장세를 보이고 있으며, 2035년까지 1조 개 이상의 기기가 생산될 전망이다. 대규모 사물인터넷 기기들의 인터넷 연결을 지원하기 위해서 5G, 6G 표준 각각 4G 대비 10배 및 100배의 네트워크 밀도를 지원하는 것을 목표로 하고 있다. 따라서, 대규모 통신을 위한 실용적인 시스템의 필요성이 대두되고 있다.
그러나 현재 밀리미터 후방산란 시스템은 밀리미터파의 높은 주파수에 따른 신호 감쇄와 후방산란 시스템의 반사 손실이 합쳐져 제한적인 환경에서만 통신이 가능하다. 즉, 다양한 장애물과 반사체가 설치된 복잡한 통신 환경에서 작동하지 않아 상대적으로 자유로운 설치가 필요한 대규모 사물인터넷 기기에 광범위한 인터넷 연결성을 제공하는 데 한계가 있다.
연구팀은 FMCW(주파수 변조 연속파) 레이더의 높은 코딩 이득에서 해답을 찾았다. 연구팀은 레이더의 코딩 이득을 그대로 유지하는 동시에, 후방산란 신호와 주변 잡음을 원천적으로 분리해내는 신호 처리 방법을 개발해 기존 FMCW 레이더 대비 십만 배 이상 개선된 수신감도를 달성했다. 이는 실용적인 환경에서의 통신을 지원한다. 더욱이, 연구팀은 태그의 물리적인 위치에 따라 복조된 신호의 주파수가 달라지는 레이더 특성을 활용해 위치에 따라 통신 채널을 자연적으로 할당 받는 후방산란 시스템을 설계했다. 이는 초저전력 후방산란 통신이 10GHz 이상의 밀리미터파 주파수 대역폭을 전부 활용할 수 있게 하여 수천만 사물인터넷 기기들의 동시 통신을 지원한다.
개발된 시스템은 상용 기성품 레이더를 게이트웨이로 활용할 수 있어 적용 용이성이 높다. 또한, 연구팀의 후방산란 기술은 10마이크로와트(μW) 이하의 초저전력으로 작동해 코인 전지 하나로 40년 이상 구동 가능해 설치 및 유지보수 비용을 크게 줄일 수 있다.
연구팀은 다양한 장애물과 반사체가 설치된 사무실 환경에 무작위로 설치된 밀리미터파 후방산란 기기들의 통신이 가능함을 확인했다. 나아가 연구팀은 실험을 통해 총 1,100개의 기기가 송신하는 정보를 동시에 수신하는 것이 가능함을 확인하여 대규모 사물인터넷 구동을 검증했다.
이번 성과는 5G/6G 등 차세대 통신에서 요구하는 네트워크 밀도를 훨씬 웃도는 연결성을 자랑한다. 이에, 이번 시스템은 향후 도래할 초연결 시대를 위한 디딤돌 역할을 할 수 있을 것으로 기대된다.
김성민 교수는 "밀리미터파 후방산란은 대규모로 사물인터넷 기기들을 구동할 수 있는 꿈의 기술이며 이는 기존 어떠한 기술보다도 더욱 대규모의 통신을 초저전력으로 구동할 수 있다ˮ라며 "이 기술이 앞으로 도래할 초연결 시대에 사물인터넷의 보급을 위해 적극적으로 활용되길 기대한다ˮ라고 말했다.
한편 이번 연구는 삼성미래기술육성사업과 정보통신기획평가원의 지원을 받아 수행됐다.
2022.07.28
조회수 5774
-
스스로 진화하는 흉부 엑스선 인공지능 진단기술 개발
우리 대학 김재철AI대학원 예종철 교수 연구팀이 서울대학교 병원, 서울 아산병원, 충남대학교 병원, 영남대학교 병원, 경북대학교 병원과의 공동연구를 통해 결핵, 기흉, 코로나-19 등의 흉부 엑스선 영상을 이용한 폐 질환의 자동 판독 능력을 스스로 향상할 수 있는 자기 진화형 인공지능 기술을 개발했다고 27일 밝혔다.
현재 사용되는 대부분의 의료 인공지능 기법은 지도학습 방식 (Supervised learning)으로서 인공지능 모델을 학습하기 위해서는 전문가에 의한 다량의 라벨이 필수적이나, 실제 임상 현장에서 전문가에 의해 라벨링 된 대규모의 데이터를 지속해서 얻는 것이 비용과 시간이 많이 들어 이러한 문제가 의료 인공지능 발전의 걸림돌이 돼왔다.
이러한 문제를 해결하기 위해, 예종철 교수팀은 병원 현장에서 영상의학과 전문의들이 영상 판독을 학습하는 과정과 유사하게, 자기 학습과 선생-학생 간의 지식전달 기법을 묘사한 지식 증류 기법을 활용한 자기 지도학습 및 자기 훈련 방식(Distillation for self-supervised and self-train learning, 이하 DISTL) 인공지능 알고리즘을 개발했다. 제안하는 인공지능 알고리즘은 적은 수의 라벨데이터만 갖고 초기 모델을 학습시키면 시간이 지남에 따라 축적되는 라벨 없는 데이터 자체만을 가지고 해당 모델이 스스로 성능을 향상해 나갈 수 있는 것을 보였다.
실제 의료 영상 분야에서 전문가들이 판독한 정제된 라벨 획득의 어려움은 영상 양식이나 작업과 관계없이 빈번하게 발생하는 문제점이고, 이러한 영상 전문의의 부족 현상은 저소득 국가들과 개발도상국과 같이 결핵과 같은 다양한 전염성 질환이 많이 발생하는 지역에 많다는 점을 고려할 때, 예 교수팀에서 개발한 인공지능 알고리즘은 해당 지역에서 인공지능 모델을 자기 진화시키는 방식으로 진단 정확도를 향상하는 데 큰 도움을 줄 것으로 기대된다.
예종철 교수는 “지도학습 방식으로 성능을 향상하기 위해서는 전문가 라벨을 지속해서 획득해야 하고, 비 지도학습 방식으로는 성능이 낮다는 문제점을 극복한 DISTL 모델은 영상 전문의들의 인공지능 학습을 위한 레이블 생성 비용과 수고를 줄이면서도 지도학습 성능을 뛰어넘었다는 점에서 의미가 있고, 다양한 영상 양식 및 작업에 활용할 수 있을 것으로 기대된다”라고 말했다.
예종철 교수 연구팀의 박상준 박사과정이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `네이처 커뮤니케이션스(Nature Communications)'에 7월 4일 자로 게재됐다.
한편 이번 연구는 중견연구자지원사업, 범부처전주기의료기기연구개발사업 및 한국과학기술원 중점연구소 사업등의 지원을 받아 수행됐다.
*논문명: Self-evolving vision transformer for chest X-ray diagnosis through knowledge distillation
논문 링크: https://www.nature.com/articles/s41467-022-31514-x
2022.07.27
조회수 6595
-
신경전달물질 소마토스타틴의 알츠하이머 독성 개선효과 발견
우리 대학 화학과 임미희 교수 연구팀, 생명과학과 이승희 교수 연구팀, 화학과 박기영 교수 연구팀이 단백질 기반 신경전달물질인 소마토스타틴(성장 억제 호르몬)이 알츠하이머 발병 메커니즘에서 독성을 개선할 수 있다는 새로운 역할을 발굴했다고 25일 밝혔다.
이 연구는 국제 저명 학술지인 `네이처 케미스트리(Nature Chemistry, Impact factor: 24.427, 화학 분야 상위 3.9%)'에 7월 게재됐다. (논문명: Conformational and functional changes of the native neuropeptide somatostatin occur in the presence of copper and amyloid-β)
전 세계적으로 치매 인구는 5,000만 명에 육박하고, 그중 알츠하이머병은 가장 흔한 신경퇴행성 질환으로 언어 구사 능력과 기억력 등 전반적인 사고 능력 손상이 대표적인 증상으로 여겨진다. 장노년 인구의 급격한 증가와 기대 수명 연장에 따라 치료제 개발의 중요성이 대두되고 있으나, 현재까지 그 발병 원인조차 명확하게 밝혀지지 않은 실상이다.
아밀로이드 가설에 따르면 아밀로이드 베타 단백질의 비정상적인 침적은 신경세포의 사멸을 일으킨다. 아밀로이드 베타 응집체는 섬유화를 거쳐 노인성 플라크의 대부분을 차지하는데, 최근 연구에 따르면 특히 알츠하이머 환자의 플라크에서 고농도의 전이 금속이 검출된다. 이는 금속 이온과 아밀로이드 베타 간의 긴밀한 상호작용 가능성을 시사한다. 금속 이온은 아밀로이드 베타와 상호작용해 단백질의 섬유화를 촉진하며, 특히 산화환원 활성 전이 금속인 구리의 경우에는 활성 산소를 다량 생성해 세포 소기관에 심각한 산화 스트레스를 일으킬 수 있다.
아밀로이드 베타 단백질과 전이 금속은 시냅스(신경세포 접합부)에서 신경전달물질과 밀접하게 상호작용할 수 있으나, 아직 이러한 병적 요인들이 신경전달물질의 구조 및 신호 전달 기능에 직접적으로 미치는 영향에 관해서는 자세히 연구된 바 없다.
연구팀은 구리, 아밀로이드 베타, 금속-아밀로이드 베타 복합체에 의해 단백질 기반 신경전달물질인 소마토스타틴이 자가 응집되는 동시에 세포 신호 전달과 같은 본연의 기능을 잃는 대신, 금속-아밀로이드 베타의 응집과 독성을 조절한다는 연구 내용을 발표했다.
화학과 한지연 박사가 제1 저자로 참여한 이번 연구는 구리와 소마토스타틴의 배위 구조 후보군을 분자적 수준에서 밝혀 응집 메커니즘을 제안하고, 소마토스타틴이 아밀로이드 베타의 응집 경로에 미치는 영향을 금속의 유무에 따라 규명했다. 더 나아가 실제 신경모세포종에서 소마토스타틴의 수용체 결합, 세포막 상호 작용, 세포 독성 변화를 최초로 입증하여 세계적으로 주목받고 있다.
임미희 교수는 “이번 연구 결과는 알츠하이머 질환의 발병 기전 내 신경전달물질의 새로운 역할을 규명한 데에 큰 의의가 있다”고 말하며, “이 연구 성과는 노화에 의한 신경퇴행성 질환의 병적 네트워크를 규명하는 데에 실마리를 제공하고, 향후 바이오마커 및 치료제 개발에도 크게 기여할 것으로 기대된다”고 밝혔다.
한편 이번 연구는 한국연구재단 기초연구사업과 KAIST의 지원을 받아 진행됐다.
2022.07.25
조회수 5987