< 사진 1. (왼쪽부터) 이의진 교수, 이두리 박사과정, 박은지 교수, 한윤조 석사 >
감정노동이 필수적인 직무를 수행하는 상담원, 은행원 근로자들은 실제로 느끼는 감정과는 다른 감정을 표현해야 하는 상황에 자주 놓이게 된다. 이런 감정적 작업 부하에 장시간 노출되면 심각한 정신적, 심리적 문제뿐만 아니라 심혈관계 및 소화기계 질환 등 신체적 질병으로도 이어질 수 있어 이는 심각한 사회 문제로 여겨지고 있다. 한미 공동 연구진은 인공지능을 활용해서 근로자의 감정적 작업 부하를 자동으로 측정하고 실시간으로 모니터링할 수 있는 새로운 방법을 제시했다.
우리 대학 전산학부 이의진 교수 연구팀은 중앙대학교 박은지 교수팀, 미국 애크런 대학교의 감정노동 분야 세계적인 석학인 제임스 디펜도프 교수팀과 다학제 연구팀을 구성해 근로자들의 감정적 작업 부하를 실시간으로 추정해 심각한 정신적, 신체적 질병을 예방할 수 있는 인공지능 모델을 개발했다고 11일 밝혔다.
연구팀은 이번 연구를 통해 근로자가 감정적 작업 부하가 높은 상황과 그렇지 않은 상황을 87%의 정확도로 구분해 내는데 성공했다. 이 시스템은 기존의 설문이나 인터뷰 같은 주관적인 자기 보고 방식에 의존하지 않고도 감정적 작업 부하를 실시간으로 평가할 수 있어 근로자들의 정신건강 문제를 사전에 예방하고 효과적으로 관리할 수 있다는 장점이 있다. 또한, 이 시스템은 콜센터뿐만 아니라 고객 응대가 필요한 다양한 직종에 적용될 수 있어 감정 노동자들의 장기적인 정신건강 보호에 크게 기여할 것으로 기대된다.
< 감정적 작업 부하 (Emotional workload) 는 직장에서 요구되는 규칙에 따라 감정을 조절하는 과정에서 발생하는 심리적 부하를 의미한다. 감정적 작업 부하는 특히 콜센터 근무자와 같은 고객을 대면하는 근로자들 (주로 서비스 근로자) 에게 자주 발생한다. 이들의 직무는 ‘고객’과의 관계에서, 매일 반복적으로 본인의 감정을 조절하는 것으로, 이 과정에서 요구되는 감정적 작업 부하로 근로자에게 많은 정서적 자원의 사용을 요구하는 주요한 스트레스 원인이다. 과도한 정서적 자원의 사용은 장기적으로 근로자의 번아웃을 유발하는 것으로 알려져 있으며, 실제로 콜센터 근무자의 과도한 번아웃으로 인한 높은 우울감은 중요한 사회적 화두로 대두되고 있다. 기존의 연구들은 다양한 직종의 근로자들의 과도한 작업 부하에 따른 잠재적인 위험을 방지하기 위해서, 근로자의 안전을 보장하기 위한 다양한 인터벤션 기술 (예: 정서적 과부하 상황에서 디지털 치료제 중재 제공) 들을 연구 해 왔다. 그러나 기존 연구에서는 노동자의 인지적 작업 부하 (cognitive workload) 에 초점을 주로 맞추어 왔으며, 감정적 작업 부하 (emotional workload) 를 자동으로 측정하는 거의 수행되지 않았다. >
기존 연구는 주로 사무실에서 컴퓨터를 사용해 서류 업무를 주로 다루는 직장인의 인지적 작업 부하(정보를 처리하고 의사결정을 내리는 데 필요한 정신적 노력)를 다뤘으며, 고객을 상대하는 감정 노동자들의 작업 부하를 추정하는 연구는 전무한 상황이었다.
감정 노동자들의 감정적 작업 부하는 고용주로부터 요구되는 정서 표현 규칙과 관련이 깊다. 특히 감정노동이 요구되는 상황에서는 자신의 실제 감정을 억제하고 친절한 응대를 해야 하기 때문에 대체적으로 근로자의 감정이나 심리적 상태가 표면적으로 드러나 있지 않다.
기존의 감정-탐지 인공지능 모델들은 주로 인간의 감정이 표정이나 목소리에 명백하게 드러나는 데이터를 활용해 모델을 학습해왔기 때문에 자신의 감정을 억제하고 친절한 응대를 강요받는 감정 노동자들의 내적인 감정적 작업 부하를 측정하는 것은 어려운 일로 여겨져 왔다.
모델 개발을 위해서는 현실을 충실히 반영한 고품질의 상담 시나리오 데이터셋 구축이 필수적어서 연구팀은 현업에 종사 중인 감정 노동자들을 대상으로 고객상담 데이터셋을 구축했다. 일반적인 콜센터 고객을 응대 시나리오를 개발하여 31명의 상담사로부터 음성, 행동, 생체신호 등 다중 모달 센서 데이터를 수집했다.
< 연구에 사용된 이론적 배경과, 이를 측정하기 위한 데이터 수집에 대한 설명을 제공하는 그림이다. 상단의 그림은 감정적 작업 부하가 고객의 고함이나 욕설 등의 상황적 자극에 의해 발생하고, 그에 따른 두 가지 유형화된 반응 (조절된 반응 vs. 조절되지 않는 반응)으로 나타남을 보여준다. 하단의 그림은 이러한 요소들을 고려하여, 상황적 자극을 발생시키는 데이터 수집 시나리오의 설계와 두 가지 상이한 반응을 측정하는 데이터의 수집 장치를 시각적으로 보여준다. >
연구팀은 인공지능 모델 개발을 위해 고객과 상담사의 음성 데이터로부터 총 176개의 음성특징을 추출했다. 음성 신호 처리를 통해서 시간, 주파수, 음조 등 다양한 종류의 음성특징이 추출하며, 대화 내용은 고객의 개인정보 보호를 위하여 사용하지 않았다. 정서 표현 규칙으로 인한 상담사의 억제된 감정 상태를 추정하기 위하여 상담사로부터 수집된 생체신호로부터 추가적인 특징을 추출했다.
피부의 전기적 특성을 나타내는 피부 전도도(EDA, Electrodermal activity) 13개의 특징, 뇌의 전기적 활성도를 측정하는 뇌파(EEG, Electroencephalogram) 20개의 특징, 심전도(ECG, Electrocardiogram) 7개의 특징, 그 외 몸의 움직임, 체온 데이터로부터 12개의 특징을 추출했다. 총 228개의 특징을 추출해 9종의 인공지능 모델을 학습하여 성능 비교 평가를 수행했다.
결과적으로, 학습된 모델은 상담사가 감정적 작업 부하가 높은 상황과 그렇지 않은 상황을 87%의 정확도로 구분해 냈다. 흥미로운 점은 기존 감정-탐지 모델에서 대상의 목소리가 성능 향상에 기여하는 주요한 요인이었지만 본인의 감정을 억누르고 친절함을 유지해야 하는 감정노동의 상황에서는 상담사의 목소리가 포함될 경우 오히려 모델의 성능이 떨어지는 현상을 보였다는 것이다. 그 외에 고객의 목소리, 상담사의 피부 전도도 및 체온이 모델 성능 향상에 중요한 영향을 미치는 특징으로 밝혀졌다.
< 연구의 전체적인 수행과정을 설명하는 그림이다. 음성데이터와 신체반응 데이터의 수집, 인공지능 모델 학습 및 결과 분석의 과정을 시각적으로 보여준다. 성능 분석 결과는 감정노동 수행 중 표현을 억제하는 상담사 목소리의 경우, 감정적 작업 부하 측정에 낮은 영향을 주었지만, 다른 데이터들은 높은 영향을 주었음을 나타낸다. >
이의진 교수는 "감정적 작업 부하를 실시간으로 측정할 수 있는 기술을 통해 감정노동의 직무 환경 개선과 정신건강을 보호할 수 있다”며 "개발된 기술을 감정 노동자의 정신건강을 관리할 수 있는 모바일 앱과 연계하여 실증할 예정이다”고 말했다.
중앙대학교 박은지 교수(KAIST 전산학부 박사 졸업)가 제1 저자이며 유비쿼터스 컴퓨팅 분야 국제 최우수 학술지인 「Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies」 2024년 9월호에 게재됐다. 또한, 이 연구는 인간-컴퓨터 상호작용 분야의 최우수 학술대회인 ACM UbiComp 2024에서 발표됐다. (논문제목: Hide-and-seek: Detecting Workers’ Emotional Workload in Emotional Labor Contexts Using Multimodal Sensing, https://doi.org/10.1145/3678593)
우리 대학은 대전 본원에서 대한상공회의소와 공동으로 ‘AI 미래세대와의 토크콘서트’를 개최했다. 이번 행사는 재계 · 학계 리더와 KAIST 출신의 AI 분야 창업자 및 청년 연구자들이 모여 AI가 연구 생태계와 산업 구조에 가져온 빠른 변화와 그 미래 방향성에 대해 자유롭게 소통하는 자리로 마련되었다. 이광형 총장과 최태원 대한상공회의소 회장의 인사로 막을 열었으며, 정송 김재철 AI대학원장이 좌장을 맡아 KAIST 출신 대표 AI 분야 창업자 및 청년 연구자 4인의 열띤 패널토론을 진행했다. 현장에는 KAIST 구성원 200여 명이 참석하여 다양한 인사이트를 공유하였다. AI 운영을 간소화할 수 있는 ML옵스 플랫폼*과 컨설팅을 제공하는 기업인 베슬AI의 안재만 대표는 미국 시장에서의 AI 기술을 활용한 창업 경험을 공유하며, 미국 시장에서의 성공요인으로 네트워킹과 세일즈 역량을 강조했다. *ML옵스 플랫폼 : ML(머신러닝)과 운영(
2025-04-03학부 1, 2학년으로만 구성된 4인 학생 팀의 논문이 인공지능 분야 국제 학술대회인 ‘International Conference on Learning Representations (ICLR) 2025’의 ‘Advances in Financial AI Workshop’에 채택됐다. 이번에 채택된 논문 “Optimizing Retrieval Strategies for Financial Question Answering Documents in Retrieval-Augmented Generation Systems”은 김현준, 김세종, 송현서, 서현우 학생(모두 공동 1저자)이 함께 작성했으며, 김현준 학생이 교신저자를 겸했다. 특히 모든 팀원이 논문 작성 경험이 전혀 없는 학부 저학년 학생들로만 구성되어 그 의미가 더욱 크다. 이 연구는 대규모 언어 모델(LLM)이 금융 질의응답 시스템에서 활용될 때 필요한 정보를
2025-04-01우리 대학이 2024년에 176건의 미국 특허를 등록해 미국에서 특허를 가장 많이 등록한 대학으로 세계 10위, 3년 연속 국내대학 1위를 달성했다고 25일 밝혔다. 미국 NAI(National Academy of Inventors, 국립발명학술원)에서 2013년부터 매년 발행하는 Top 100 Worldwide Universities 순위는 매년 미국 특허를 부여받은 상위 100개 대학의 순위를 매긴다. Top 100 Worldwide Universities 순위는 특허가 대학 연구와 혁신을 전환하는 데 중요한 역할을 하며, 대학이 혁신 생태계에서 하는 중요한 역할을 한다는 것을 강조한다. Top 100 Worldwide Universities 순위는 미국 특허청(USPTO)에 등록된 특허정보를 사용하여 정해진다. KAIST는 직무발명을 디바이스, 디지털, 모빌리티, 화학, 바이오/메디컬 등 5개 기술 분과로 분류하여 분과별 변리사, 기술이전 전문가(Technolo
2025-03-25우리 대학 항공우주공학과에서는 대전 본원에 위치한 항공우주공학과 우주동(N7-5)의 증축을 완료하고 19일 오후 준공식을 개최했다. 이번 증축은 2022년 5월 사업 승인을 받아 2023년 8월 착공했으며 올해 1월 완공되었다. 보다 쾌적한 연구 환경 조성과 우주분야 협력 강화를 위해 기존 3층 건물을 5층으로 확장하였으며, ▲ 4층에는 한국항공우주산업(KAI)의 대전연구센터가 입주하고, ▲ 5층에는 교원 및 학생연구실, 다목적홀 및 이희중 우주갤러리가 마련되었다. 오후 3시부터 약 1시간 30분간 진행된 준공식에는 이균민 교학부총장님을 비롯한 100여 명의 교직원과 학생이 참석하였으며, 입주자대표로 KAI 강구영 사장 및 이희중 작가의 유가족도 참석하였다. 또한, 이날 KAI와의 협력 강화를 위한 MOU 체결식과 발전기금 전달식이 진행되었다. 양 기관은 이번 협약을 통해 인재 양성, 연구개발, 전략적 거점 확대 등 상호 협력을 강화할 계획이다. 이균민 교학부총장은
2025-03-20우리 대학 인공지능반도체대학원 주최로 20일(목) 오전 대전 오노마 호텔에서 ‘제2회 한국인공지능시스템포럼(KAISF) 조찬 강연회’가 성황리에 개최되었다. 본 행사는 인공지능(AI) 기술의 최신 동향과 혁신 및 응용, 특히 AI-X(AI-특정산업)에 대해 다양한 분야의 전문가들이 모여 심도 있는 논의를 진행하는 자리로 LG AI 연구원의 최정규 상무가 LLM(거대언어모델)에 대해 개발에 대해 발표한다. 조찬 회의에는 총 65명의 AI 전문가가 참석하였으며, LG AI 연구원에서 최근 개발하고 공개한 대규모 언어 모델인 ‘엑사원(EXAONE)에 대해 Driving the Future of AI Innovation’라는 주제로 발제 발표가 진행되었다. 최정규 LG AI 연구원 상무는 LG 엑사원의 현재 연구 현황과 향후 글로벌 AI 시장에서의 계획을 발표하였으며 특히 최근 AI 생태계를 뜨겁게 달구고 있는 ‘딥시크(Deep
2025-03-20