본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%A0%84%EC%82%B0%ED%95%99%EB%B6%80
최신순
조회순
위치인식 기술의 혁신, 인공지능 활용한 실내외 통합 GPS 시스템 개발
우리 대학 전산학부 한동수 교수 연구팀(지능형 서비스 통합 연구실)이 실내외 환경 구분 없이 정밀한 위치인식이 가능한 `실내외 통합 GPS 시스템'을 개발했다고 8일 밝혔다. 이번에 개발된 실내외 통합 GPS 시스템은 실외에서는 GPS 신호를 사용해 위치를 추정하고 실내에서는 관성센서, 기압센서, 지자기센서, 조도센서에서 얻어지는 신호를 복합적으로 사용해 위치를 인식한다. 이를 위해 연구팀은 인공지능 기법을 활용한 실내외 탐지, 건물 출입구 탐지, 건물 진입 층 탐지, 계단/엘리베이터 탐지, 층 탐지 기법 등을 개발했다. 아울러 개발된 각종 랜드마크 탐지 기법들을 보행자 항법 기법(PDR)과 연계시킨 소위 센서 퓨전 위치인식 알고리즘도 새롭게 개발했다. 지금까지는 GPS 신호가 도달하지 않는 공간에서는 무선랜 신호나 기지국 신호를 기반으로 위치를 인식하는 것이 보통이었다. 하지만 이번에 개발된 실내외 통합 GPS 시스템은 신호가 존재하지 않고 실내지도가 제공되지 않는 건물에서도 위치인식을 가능하게 하는 최초의 기술이다. 연구팀이 개발한 알고리즘은 구글, 애플의 위치인식 서비스에서는 제공하지 않는 건물 내에서의 정확한 층 정보를 제공할 수 있다. 비전이나 지구 자기장, 무선랜 측위 방식과 달리 사전 준비 작업이 필요치 않은 장점도 있다. 전 세계 어디에서나 사용할 수 있는 범용적인 실내외 통합 GPS 시스템을 구축할 수 있는 기반이 마련됐다. 연구팀은 GPS, 와이파이, 블루투스 신호 수신 칩과 관성센서, 기압센서, 지자기센서, 조도센서 등을 탑재시킨 실내외 통합 GPS 전용 보드도 제작했다. 또한 제작된 하드웨어(HW) 보드에 개발된 센서퓨전 위치인식 알고리즘을 탑재했다. 제작된 실내외 통합 GPS 전용 하드웨어(HW) 보드의 위치인식 정확도를 대전 KAIST 본원 N1 건물에서 측정한 결과, 층 추정에 있어서는 약 95%의 정확도를, 수평 방향으로는 약 3~6미터의 정확도를 달성했다. 실내외 전환에 있어서는 약 0.3초의 전환 속도를 달성했다. 보행자 항법(PDR) 기법을 통합시켰을 때는 1미터 내외의 정확도를 달성하였다. 연구팀은 위치인식 보드가 내장된 태그를 제작하고 박물관, 과학관, 미술관 방문객들을 위한 위치기반 전시 안내 서비스에 적용할 예정이다. 개발된 실내외 통합 GPS 태그는 어린이나 노약자를 보호하는 목적으로도 활용할 수 있으며 소방관 혹은 작업장 작업자의 위치 파악에도 활용할 수 있다. 한편 지하 주차장과 같은 실내로 진입하는 차량의 위치를 추정하는 차량용 센서 퓨전 위치인식 알고리즘과 위치인식 보드도 개발하고 있다. 연구팀은 차량용 실내외 통합 GPS 위치인식 보드가 제작되면 자동차 제조사, 차량 대여 업체들과의 협력을 모색할 예정이며, 스마트폰에 탑재될 센서 퓨전 위치인식 알고리즘도 개발할 예정이다. 개발된 알고리즘이 내장된 실내외 통합 GPS 앱이 개발되면 위치인식 분야에서 다양한 사업화를 모색하는 통신사와의 협력도 가능할 것으로 기대된다. 연구팀을 이끄는 전산학부 한동수 교수는 "무선 신호가 존재하지 않고 실내지도도 주어지지 않는 건물에서 위치인식이 가능한 실내외 통합 GPS 시스템 개발은 이번이 처음이며, 그 응용 분야도 무궁무진하다. 2022년부터 개발이 시작된 한국형 GPS(KPS) 시스템, 한국형 항공위성서비스(Korea Augmentation Satellite System, KASS)와 통합되면 한국이 실내외 통합 GPS 분야에서 선도 국가로 나설 수 있으며 향후 기술 격차를 더 벌릴 수 있도록 실내외 통합 GPS 반도체 칩도 제작할 계획이다ˮ라고 말했다. 또 "개발된 실내외 통합 GPS 태그를 사용한 과학관, 박물관, 미술관 위치기반 안내 서비스는 관람객의 동선 분석에도 유용하게 활용될 수 있다. 전시물 교체를 결정할 때 요구되는 꼭 필요한 유용한 정보다. 국립중앙과학관에 우선 적용될 수 있도록 노력하겠다”라고 말했다. 한편 실내외 통합 GPS 시스템, 그리고 위치기반 관람객 동선 분석 시스템 개발은 과기정통부의 과학문화전시서비스 역량강화지원사업의 지원으로 개발됐다.
2022.07.08
조회수 9756
초대규모 인공지능 모델 처리하기 위한 세계 최고 성능의 기계학습 시스템 기술 개발
우리 연구진이 오늘날 인공지능 딥러닝 모델들을 처리하기 위해 필수적으로 사용되는 기계학습 시스템을 세계 최고 수준의 성능으로 끌어올렸다. 우리 대학 전산학부 김민수 교수 연구팀이 딥러닝 모델을 비롯한 기계학습 모델을 학습하거나 추론하기 위해 필수적으로 사용되는 기계학습 시스템의 성능을 대폭 높일 수 있는 세계 최고 수준의 행렬 연산자 융합 기술(일명 FuseME)을 개발했다고 20일 밝혔다. 오늘날 광범위한 산업 분야들에서 사용되고 있는 딥러닝 모델들은 대부분 구글 텐서플로우(TensorFlow)나 IBM 시스템DS와 같은 기계학습 시스템을 이용해 처리되는데, 딥러닝 모델의 규모가 점점 더 커지고, 그 모델에 사용되는 데이터의 규모가 점점 더 커짐에 따라, 이들을 원활히 처리할 수 있는 고성능 기계학습 시스템에 대한 중요성도 점점 더 커지고 있다. 일반적으로 딥러닝 모델은 행렬 곱셈, 행렬 합, 행렬 집계 등의 많은 행렬 연산자들로 구성된 방향성 비순환 그래프(Directed Acyclic Graph; 이하 DAG) 형태의 질의 계획으로 표현돼 기계학습 시스템에 의해 처리된다. 모델과 데이터의 규모가 클 때는 일반적으로 DAG 질의 계획은 수많은 컴퓨터로 구성된 클러스터에서 처리된다. 클러스터의 사양에 비해 모델과 데이터의 규모가 커지면 처리에 실패하거나 시간이 오래 걸리는 근본적인 문제가 있었다. 지금까지는 더 큰 규모의 모델이나 데이터를 처리하기 위해 단순히 컴퓨터 클러스터의 규모를 증가시키는 방식을 주로 사용했다. 그러나, 김 교수팀은 DAG 질의 계획을 구성하는 각 행렬 연산자로부터 생성되는 일종의 `중간 데이터'를 메모리에 저장하거나 네트워크 통신을 통해 다른 컴퓨터로 전송하는 것이 문제의 원인임에 착안해, 중간 데이터를 저장하지 않거나 다른 컴퓨터로 전송하지 않도록 여러 행렬 연산자들을 하나의 연산자로 융합(fusion)하는 세계 최고 성능의 융합 기술인 FuseME(Fused Matrix Engine)을 개발해 문제를 해결했다. 현재까지의 기계학습 시스템들은 낮은 수준의 연산자 융합 기술만을 사용하고 있었다. 가장 복잡한 행렬 연산자인 행렬 곱을 제외한 나머지 연산자들만 융합해 성능이 별로 개선되지 않거나, 전체 DAG 질의 계획을 단순히 하나의 연산자처럼 실행해 메모리 부족으로 처리에 실패하는 한계를 지니고 있었다. 김 교수팀이 개발한 FuseME 기술은 수십 개 이상의 행렬 연산자들로 구성되는 DAG 질의 계획에서 어떤 연산자들끼리 서로 융합하는 것이 더 우수한 성능을 내는지 비용 기반으로 판별해 그룹으로 묶고, 클러스터의 사양, 네트워크 통신 속도, 입력 데이터 크기 등을 모두 고려해 각 융합 연산자 그룹을 메모리 부족으로 처리에 실패하지 않으면서 이론적으로 최적 성능을 낼 수 있는 CFO(Cuboid-based Fused Operator)라 불리는 연산자로 융합함으로써 한계를 극복했다. 이때, 행렬 곱 연산자까지 포함해 연산자들을 융합하는 것이 핵심이다. 김민수 교수 연구팀은 FuseME 기술을 종래 최고 기술로 알려진 구글의 텐서플로우나 IBM의 시스템DS와 비교 평가한 결과, 딥러닝 모델의 처리 속도를 최대 8.8배 향상하고, 텐서플로우나 시스템DS가 처리할 수 없는 훨씬 더 큰 규모의 모델 및 데이터를 처리하는 데 성공함을 보였다. 또한, FuseME의 CFO 융합 연산자는 종래의 최고 수준 융합 연산자와 비교해 처리 속도를 최대 238배 향상시키고, 네트워크 통신 비용을 최대 64배 감소시키는 사실을 확인했다. 김 교수팀은 이미 지난 2019년에 초대규모 행렬 곱 연산에 대해 종래 세계 최고 기술이었던 IBM 시스템ML과 슈퍼컴퓨팅 분야의 스칼라팩(ScaLAPACK) 대비 성능과 처리 규모를 훨씬 향상시킨 DistME라는 기술을 개발해 데이터베이스 분야 최고 국제학술대회 중 하나인 ACM SIGMOD에서 발표한 바 있다. 이번 FuseME 기술은 연산자 융합이 가능하도록 DistME를 한층 더 발전시킨 것으로, 해당 분야를 세계 최고 수준의 기술력을 바탕으로 지속적으로 선도하는 쾌거를 보여준 것이다. 교신저자로 참여한 김민수 교수는 "연구팀이 개발한 새로운 기술은 딥러닝 등 기계학습 모델의 처리 규모와 성능을 획기적으로 높일 수 있어 산업적 측면에서 파급 효과가 매우 클 것으로 기대한다ˮ 라고 말했다. 이번 연구에는 김 교수의 제자이자 현재 GraphAI(그래파이) 스타트업의 공동 창업자인 한동형 박사가 제1 저자로, 김 교수가 교신저자로 참여했으며 지난 16일 미국 필라델피아에서 열린 데이터베이스 분야 최고 국제학술대회 중 하나인 ACM SIGMOD에서 발표됐다. (논문명 : FuseME: Distributed Matrix Computation Engine based on Cuboid-based Fused Operator and Plan Generation). 한편, 이번 연구는 한국연구재단 선도연구센터 사업 및 중견연구자 지원사업, 과기정통부 IITP SW스타랩 사업의 지원을 받아 수행됐다.
2022.06.20
조회수 5960
인공지능 엔진으로 영상 위변조 탐지 기술 개발
우리 연구진이 영상 내 변형 영역을 더욱 정밀하게 탐지하기 위해 영상내 색상 정보와 주파수 정보를 함께 활용하는 인공지능 엔진 기술을 학계 처음으로 개발했다. 이번 개발 기술은 기존 기술보다 정밀도와 정확도를 크게 높여 위변조 탐지 기술의 기술 유용성을 일정 수준 확보할 수 있는 기반을 제공한다는 점에서 그 의미가 크다. KAIST에서 각종 위변조 영상들을 잡아낸다는 의미를 지닌 `카이캐치(KaiCatch)' 소프트웨어는 이미지, 영상뿐만 아니라 CCTV 비디오 변형 여부도 분석할 수 있다. 우리 대학 전산학부 이흥규 교수 연구팀이 새로운 인공지능 구조와학습 방법론, 그리고 실험실 환경에서는 구하기 힘든 고급 변형 이미지 영상들을 사용해 영상 이미지 위변조 탐지 소프트웨어인 `카이캐치(KaiCatch)'의 영상 이미지 정밀도와 정확도를 크게 높일 뿐만 아니라 비디오 편집 변형도 탐지할 수 있는 카이캐치 2.1 버전을 개발했다고 13일 밝혔다. 카이캐치 소프트웨어는 `이상(異常) 유형 분석 엔진'과 `이상(異常) 영역 추정 엔진' 두 개의 인공지능 엔진으로 구성된다. `이상 유형 분석 엔진'은 블러링, 노이즈, 크기 변화, 명암 대비 변화, 모핑, 리샘플링 등을 필수 변이로 정의해 이를 탐지하며 `이상 영역 추정 엔진'은 이미지 짜깁기, 잘라 붙이기, 복사 붙이기, 복사 이동 등을 탐지한다. 이번에 새로 개발한 기술은 `이상 영역 추정 엔진'으로 기존 기술에서는 이상 영역 탐지 시 그레이 스케일(회색조)로 이상 유무를 탐지하였으나 분석 신호의 표현력이 낮고 탐지 오류가 많아 위변조 여부 판정에 어려움이 많았다. 이번에 개발된 기술은 색상 정보와 주파수 정보를 함께 활용해 정밀도(precision)와 재현율(recall)이 크게 향상되고 변형 영역을 컬러 스케일로 표현함으로써 해당 영역의 이상 유무뿐만 아니라 위변조 여부도 더욱 명확하게 판별이 가능해졌다. 연구팀은 이번 연구에서 영상 생성 시 발생하는 흔적과 압축 시 발생하는 흔적 신호들을 함께 분석하기 위해 색상 정보와 주파수 정보를 모두 활용하는 접근 방법을 학계 처음으로 제시했다. 또 이러한 방법론을 설계 구현하기 위해 주파수 정보를 하나의 분할 네트워크에서 직접 입력으로 받아들이는 방식의 ‘압축 왜곡신호 탐지 네트워크(Compression Artifact Tracing Network, 이하 CAT-Net)’을 학계 최초로 개발하고 기존 기법들과 비교해 탐지 성능이 크게 뛰어남을 입증했다. 개발한 기술은 기존에 제시된 기법들과 비교할 때 특히 원본과 변형본을 판별하는 평가 척도인 F1 점수, 평균 정밀도(average precision)에서 대단히 뛰어나 실환경 위변조 탐지 능력이 크게 강화됐다. 비디오 편집 변형의 경우도, 프레임 삭제, 추가 등에 의한 편집 변형이 흔히 CCTV 비디오 등에서 발생한다는데 착안해 이러한 비디오 편집 변형을 탐지하는 기능 역시 이번 카이캐치 2.1 버전에 탑재됐다. 이번에 카이캐치 2.1 소프트웨어를 연구 개발한 이흥규 교수는 "영상 이미지 위변조 소프트웨어인 카이캐치를 휴대폰에 탑재되는 안드로이드 앱 형태로 일반에 소개한 2021년 3월 이후 현재까지 카이캐치 앱을 통한 900여 건의 위변조 분석 의뢰와 개별적으로 60건이 넘는 정밀 위변조 분석 의뢰를 받았다. KAIST 발표 논문 수준이나 실험 결과 등을 감안할 때 위변조 분야 최고 기술로 만든 소프트웨어인데, 오탐지율이 높아 실제 탐지 정밀도가 이론치보다 매우 낮았다. 많은 경우 위변조나 변형 여부에 대한 명확한 기술 판정이 불가능했으나 이번에 개발한 카이캐치 2.1 은 CAT-Net이라는 새로운 네트워크 구조와 학습 방법론, 그리고 ‘색상 및 주파수 영역 왜곡 흔적 동시 분석’이라는 첨단 기술을 사용해 정밀도를 높여, 보다 명확한 판별이 가능하도록 개발됐다. 앞으로 영상 위변조 판단 여부가 어려운 경우가 많이 줄어들기를 기대한다”고 말했다. 이 교수는 이어 "비디오는 MP4 파일 포맷이, 그리고 영상 이미지는 JPEG 이미지들이 일반인들이 널리 사용한다는 점에서 해당 포맷을 주 개발 대상으로 삼았다. 영상 이미지의 경우 영상 편집 변형 시 영상에 남겨지는 인위적으로 발생하는 JPEG 압축 미세 신호 탐지에 주안점을 두어, 위변조 여부와 위변조 영역을 잡아내는 것에 집중했다. 비디오의 경우 특정 프레임들을 삭제하거나 삽입하는 경우, 프레임 부분 편집 후 재압축 하는 경우 등을 탐지한다. 최근 CCTV 비디오 편집 여부에 대한 분쟁이 많아 크게 도움을 줄 수 있을 것으로 기대하며 향후에도 지속적으로 연구 개발해 취약점들을 보완해 나갈 계획이다ˮ 고 덧붙였다. 현재 카이캐치 소프트웨어는 안드로이드 기반 휴대폰의 구글 플레이스토어에서 ‘카이캐치’를 검색하여 앱을 다운로드 받아 설치한 후, 영상 이미지들을 카이캐치에 업로드하면 위변조 여부를 간단하게 테스트해 볼 수 있다. 한편 이번 연구는 제1 저자로 참여한 우리 대학 전기및전자공학부 권명준 박사, 그리고 김창익 교수, 남승훈 박사, 유인재 박사 등과 공동으로 수행됐으며, `스프링거 네이처(Springer Nature)'에서 발간하는 컴퓨터 비전 분야 톱 국제저널인 `국제 컴퓨터 비전 저널(International Journal of Computer Vision, IF 7.410)'에 2022년 5월 25일 字 온라인판에 게재됐다. (논문명 : Learning JPEG Compression Artifacts for Image Manipulation Detection and Localization) 이번 연구는 한국연구재단 창의도전연구기반지원사업지원과 KAIST 창업기업인 ㈜디지탈이노텍(http://www.kaicatch.com/) 과의 산학협력 연구로 수행됐다.
2022.06.13
조회수 7661
딥러닝을 응용한 신속한 박테리아 검출 방법 개발
우리 대학 전산학부 조성호 교수, 신소재공학과 정연식 교수 공동 연구팀이 딥러닝(deep learning) 기법과 표면 증강 라만 분광법(surface-enhanced Raman spectroscopy, SERS)의 결합을 통해 효율적인 박테리아 검출 플랫폼 확립에 성공했다고 10일 밝혔다. 공동 연구팀은 질량분석법, 면역분석법(ELISA), 중합효소 연쇄 반응(PCR) 등과 같은 일반적인 박테리아 검출 방법보다 획기적으로 빠르게 신호 습득이 가능한 SERS 스펙트럼을 연구팀 고유의 딥러닝 기술로 분석해 다양한 용액 속 박테리아 신호 구분에 성공했다. 전산학부 노어진 석박사통합과정 학생과 신소재공학과 김민준 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제학술지‘바이오센서 및 바이오일렉트로닉스 (Biosensors and Bioelectronics)’1월 18일 字 온라인 판에 게재됐다. (논문명: Separation-free bacterial identification in arbitrary media via deep neural network-based SERS analysis) 박테리아 감염으로 인한 질병 예방과 원인 분석을 위해 소변 또는 음식물에서 신속한 박테리아 검출법이 요구되며, 다양한 바이오마커 분석물의 스펙트럼 신호를 높은 민감도로 수초~수십초 이내에 측정하는 SERS가 검출 방법으로 주목받고 있다. 박테리아 대상의 기존 SERS 신호 분석은 그 복잡성과 수많은 신호 겹침 현상 때문에 주성분 분석(principal component analysis, PCA)과 같은 통계적인 방법으로도 정확도에 한계가 있었다. 특히, 박테리아의 고유 신호와 간섭현상을 일으키는 환경 매질의 신호를 제거하기 위해 번거로운 박테리아 분리 과정을 거쳐 시간 소모가 큰 것이 문제로 지적돼 왔다. 따라서 SERS를 이용한 박테리아 검출의 활용도를 높이기 위해서는 분리 단계를 최소화하고 신속하게 높은 정확도로 분석하는 기술 개발이 요구된다. 연구팀은 분리 단계를 완전히 생략해 박테리아가 담긴 서식 용액을 SERS 측정 기판에 올려 신호를 측정하고 딥러닝을 이용해 분석하는 방법을 시도했으며, 이를 위해 서로 다른 커널 크기(kernel size)를 가지는 이중 분기 네트워크로 구성된 `듀얼 WK넷' (DualWKNet, Dual-Branch Wide Kernel Network)라는 효율적인 딥러닝 모델을 개발했다. 특정 매질 속 박테리아의 신호는 매질의 신호와 유사해 사람의 눈으로는 구별하기가 사실상 불가능하지만, 연구팀은 DualWKNet을 이용해 스펙트럼 신호의 특징을 추출하고 물, 소변, 소고기 용액, 우유, 배양 배지 등 다양한 환경 내 대장균(Escherichia coli)과 표피 포도상구균(Staphylococcus epidermidis)의 신호를 학습해 최대 98%의 정확도로 검출 및 구분했다. 조성호 교수는 "이번 연구는 딥러닝 기술을 활용해 실제 환경에서 사용 가능한 라만 신호 분석 방법을 제시했다는 점에서 의미가 있다ˮ며 "의료 분야와 식품 안전 분야로 확장하여 사용돼 발전에 이바지할 것ˮ이라고 예상했다. 한편 이번 연구는 한국연구재단의 나노 및 소재기술개발사업의 지원을 받아 수행됐으며, 향후 추가 연구와 기술이전을 통해 KAIST 교원/학생 공동 창업 기업인 ㈜피코파운드리에서 상용화를 추진할 계획이다.
2022.02.10
조회수 8787
소량의 데이터로 딥러닝 정확도 향상기술 발표
최근 다양한 분야에서 심층 학습(딥러닝) 기술을 활용한 서비스가 급속히 증가하고 있다. 서비스 구축을 위해서는 심층 학습 모델을 훈련해야 하며, 이를 위해서는 충분한 훈련 데이터를 준비해야 한다. 특히 훈련 데이터에 정답지를 만드는 레이블링(labeling) 과정이 필요한데 (예를 들어, 낙타 사진에 `낙타'라고 정답을 적어줌), 이 과정은 일반적으로 수작업으로 진행되므로 엄청난 노동력과 시간이 소요된다. 따라서 훈련 데이터가 충분하지 않은 상황을 효과적으로 타개하는 방법이 요구되고 있다. 우리 대학 전산학부 이재길 교수 연구팀이 적은 양의 훈련 데이터가 존재할 때도 높은 예측 정확도를 달성할 수 있는 새로운 모델 훈련 기술을 개발했다고 27일 밝혔다. 심층 학습 모델의 훈련은 주어진 훈련 데이터에서 레이블과 관련성이 높은 특성을 찾아내는 과정으로 볼 수 있다. 예를 들어, `낙타'의 주요 특성이 등에 있는 `혹'이라는 것을 알아내는 것이다. 그런데 훈련 데이터가 불충분할 경우 바람직하지 않은 특성까지도 같이 추출될 수 있는 문제가 발생한다. 예를 들어, 낙타 사진의 배경으로 종종 사막이 등장하기에 낙타에 대한 특성으로 `사막'이 추출되는 것도 가능하다. 사막은 낙타의 고유한 특성이 아닐뿐더러, 이러한 바람직하지 않은 특성으로 인해 사막이 아닌 곳(예: 동물원)에 있는 낙타는 인식하지 못할 수 있다. 이 교수팀이 개발한 기술은 심층 학습 모델의 훈련에서 바람직하지 않은 특성을 억제해 충분하지 않은 훈련 데이터를 가지고도 높은 예측 정확도를 달성할 수 있게 해준다. 우리 대학 지식서비스공학대학원에 재학 중인 박동민 박사과정 학생이 제1 저자, 송환준 박사, 김민석 박사과정 학생이 제2, 제3 저자로 각각 참여한 이번 연구는 최고권위 국제학술대회 `신경정보처리시스템학회(NeurIPS) 2021'에서 올 12월 발표될 예정이다. (논문명 : Task-Agnostic Undesirable Feature Deactivation Using Out-of-Distribution Data) 바람직하지 않은 특성을 억제하기 위해서 분포 外(out-of-distribution) 데이터를 활용한다. 예를 들어, 낙타와 호랑이 사진의 분류를 위한 훈련 데이터에 대해 여우 사진은 분포 외 데이터가 된다. 이때 이 교수팀이 착안한 점은 훈련 데이터에 존재하는 바람직하지 않은 특성은 분포 외 데이터에도 존재할 수 있다는 점이다. 즉, 위의 예에서 여우 사진의 배경으로도 사막이 나올 수 있다. 따라서 다량의 분포 외 데이터를 추가로 활용해 여기에서 추출된 특성은 영(0) 벡터가 되도록 심층 학습 모델의 훈련 과정을 규제해 바람직하지 않은 특성의 효과를 억제한다. 훈련 과정을 규제한다는 측면에서 정규화 방법론의 일종이라 볼 수 있다. 분포 외 데이터는 쓸모없는 것이라 여겨지고 있었으나, 이번 기술에 의해 훈련 데이터 부족을 해소할 수 있는 유용한 보완재로 탈바꿈될 수 있다. 연구팀은 이 정규화 방법론을 `비선호(比選好) 특성 억제'라고 이름 붙이고 이미지 데이터 분석의 세 가지 주요 문제에 적용했다. 그 결과, 기존 최신 방법론과 비교했을 때, 이미지 분류 문제에서 최대 12% 예측 정확도를 향상했고, 객체 검출 문제에서 최대 3% 예측 정확도를 향상했으며, 객체 지역화 문제에서 최대 8% 예측 정확도를 향상했다. 제1 저자인 박동민 박사과정 학생은 "이번 기술은 훈련 데이터 부족 현상을 해결할 수 있는 새로운 방법ˮ 이라면서 "분류, 회귀 분석을 비롯한 다양한 기계 학습 문제에 폭넓게 적용될 수 있어, 심층 학습의 전반적인 성능 개선에 기여할 수 있다ˮ 고 밝혔다. 연구팀을 지도한 이재길 교수도 "이 기술이 텐서플로우(TensorFlow) 혹은 파이토치(PyTorch)와 같은 기존의 심층 학습 라이브러리에 추가되면 기계 학습 및 심층 학습 학계에 큰 파급효과를 낼 수 있을 것이다ˮ고 말했다. 한편, 이 기술은 과학기술정보통신부 재원으로 정보통신기획평가원의 지원을 받아 SW컴퓨팅산업원천기술개발사업 SW스타랩 과제로 개발한 연구성과 결과물(2020-0-00862, DB4DL: 딥러닝 지원 고사용성 및 고성능 분산 인메모리 DBMS 개발)이다. (끝).
2021.10.27
조회수 9933
경제 발전할수록 도심 녹지가 시민 행복에 직결돼
경제가 발전한 도시일수록 도심 속 녹지 공간이 시민의 행복에 큰 영향을 준다는 연구결과가 나왔다. 우리 대학 전산학부 차미영 교수 (기초과학연구원 수리및계산과학연구단 데이터 사이언스 그룹 CI) 연구팀은 정우성 포스텍 산업경영공학과 교수, 원동희 미국 뉴저지공대 교수 등과의 공동연구를 통해 인공위성 이미지 빅데이터를 분석해 세계 60개 국가의 도시 녹지 공간을 찾아내고, 녹지와 시민 행복 사이의 상관관계를 분석했다. 공원, 정원, 천변 등 도시 속 녹지 공간은 미적 즐거움은 물론 신체활동 및 사회적 상호작용 촉진 등 육체와 건강에 유익한 영향을 준다. 도심 녹지와 시민 행복간의 상관관계를 규명하기 위한 많은 연구가 이뤄졌지만, 지금까지는 주로 일부 선진국을 대상으로만 연구가 진행됐다. 이 때문에 녹지의 긍정적인 영향이 범지구적인 현상인지, 또 국가의 경제적 상황에 따라 영향이 어떻게 달라지는지에 대해서는 파악이 어려웠다. 또한, 현장을 직접 방문하는 실태조사나, 항공사진은 대대적인 조사가 이뤄지기 어려워 데이터 수집의 한계가 있었다. 연구진은 유럽우주국(ESA)이 운용하는 고해상도 위성인 센티넬-2(Sentinel-2) 위성자료를 이용해 세계 60개국, 90개 도시의 녹지 면적을 조사했다. 인구 밀도가 가장 높은 도시(최소 국가 인구의 10%를 포함하는 도시)를 분석대상으로 삼았으며, 선명한 이미지를 위해 각 지역의 여름 시기를 분석했다. 북반구는 2018년 6~9월, 남반구는 2017년 12월~2018년 2월의 이미지가 쓰였다. 이후 정량화된 도시 별 녹지 면적 데이터를 국제연합(UN)의 2018 세계행복보고서 및 국가별 국내총생산(GDP, 2018년 기준 한국 11위) 자료와 교차하여 녹지와 경제의 시민 행복과의 상관관계를 총괄 분석했다. 그 결과, 국가의 경제적 상황과 무관하게 모든 도시에서 녹지의 면적이 넓을수록 시민 행복도가 높아지는 경향이 있음을 파악했다. 다만, 60개 국가 중 GDP 하위 30개 국가는 경제 성장이 행복과 더 밀접한 관련이 있었다. 1인당 국민총소득(GNI)이 3만8,000달러(약 4,223만 원)가 넘는 도시에서는 녹지 공간 확보가 경제 성장보다 행복에 더 중요한 요소로 작용했다. 우리나라의 경우 서울 지역이 분석에 쓰였으며, 도심 녹지의 면적이 과거보다 증가하며 행복도가 높아지는 경향이 나타났다. 차미영 교수는 “최근 위성영상 빅데이터를 활용해 사회 난제를 해결하려는 연구가 활발하게 진행되고 있다”며 “이번에 개발된 도구를 호수 및 해안 등 수생 환경의 면적을 정량화하는데 적용하고, 수생 환경과 시민 행복간의 상관관계를 분석하는 연구도 진행할 수 있을 것”이라고 말했다. 공동 교신저자인 정우성 포스텍 교수는 “경제 발전 단계에서는 경제 성장이 시민 행복에 가장 중요한 요소지만, 경제가 일정 수준 발전한 뒤에는 다른 사회적 요인이 행복에 더 직접적인 영향을 미친다”며 “이번 연구에서는 빅데이터를 분석해 도심 녹지 공간이 행복감을 향상시키는 사회적 요인 중 하나임을 확인한 것”이라고 설명했다. 이번 연구는 막연하게 연관 있을 것이라 추측해온 녹지, 경제 그리고 행복간의 상관관계를 정밀하게 분석하고, 모든 국가에 걸쳐 분석할 수 있는 도구를 마련했다는 의미가 있다. 연구진은 실제 시민의 삶에 도움 될 수 있는 데이터 기반 정책 수립이 필요하다고 제언했다. 연구결과는 데이터 과학 분야 국제학술지인 ‘EPJ 데이터 사이언스(EPJ Data Science, IF 5.08)’ 5월 30일자 온라인 판에 게재됐다. UNICEF에서 발간한 2022년 보고서(제목: Places and Spaces: Environments and children's well-being)에서는 전세계 어린이들의 행복도에 영향을 미치는 중요한 지표 중 하나로 연구팀이 제시한 Urban Green Space Index를 언급하고 있다. <참고> UNICEF 보고서: https://www.unicef-irc.org/places-and-spaces
2021.06.08
조회수 56844
초대규모 그래프 프로세싱 시뮬레이션 기술 개발
우리 대학 연구진이 오늘날 정보통신(IT) 분야에서 광범위하게 사용되는 그래프 타입의 데이터를 실제로 저장하지 않고도 알고리즘을 계산할 수 있는 `그래프 프로세싱 시뮬레이션'이라는 신개념 기술을 세계 최초로 개발하는 데 성공했다. 데이터를 저장할 필요가 없어 1조 개 간선의 초대규모 그래프도 PC 한 대로 처리가 가능하다. 우리 대학 전산학부 김민수 교수 연구팀은 1조 개 간선의 초대규모 그래프에 대해 데이터 저장 없이 알고리즘을 계산할 수 있는 신개념 기술을 세계 최초로 개발했다고 23일 밝혔다. 오늘날 웹, SNS, 인공지능, 블록체인 등의 광범위한 분야들에서 그래프 타입의 데이터에 대한 다양한 알고리즘들의 연구가 매우 중요하다. 그러나 그래프 데이터의 복잡성으로 인해 그 크기가 커질 때 막대한 규모의 컴퓨터 클러스터가 있어야만 알고리즘 계산이 가능하다는 문제가 있다. 김 교수 연구팀은 이를 근본적으로 해결하는 T-GPS(Trillion-scale Graph Processing Simulation)라는 기술을 개발했다. 이 T-GPS 기술은 그래프 데이터를 실제로 디스크에 저장하지 않고도 마치 그래프 데이터가 저장돼 있는 것처럼 알고리즘을 계산할 수 있고, 계산 결과도 실제 저장된 그래프에 대한 알고리즘 계산과 완전히 동일하다는 장점이 있다. 그래프 알고리즘은 그래프 처리 엔진 상에서 개발되고 실행된다. 이는 산업적으로 널리 사용되는 SQL 질의를 데이터베이스 관리 시스템(DBMS) 엔진 상에서 개발하고 실행하는 것과 유사한 방식이다. 지금까지는 그래프 알고리즘을 개발하기 위해 먼저 합성 그래프를 생성 및 저장한 후, 이를 다시 그래프 처리 엔진에서 메모리로 적재해 알고리즘을 계산하는 2단계 방법을 사용했다. 그래프 데이터는 그 복잡성으로 인해 전체를 메모리로 적재하는 것이 요구되며, 그래프의 규모가 커지면 대규모 컴퓨터 클러스터 장비가 있어야만 알고리즘을 개발하고 실행할 수 있다는 커다란 단점이 있었다. 김 교수팀은 합성 그래프와 그래프 처리 엔진 분야에서 국제 최고 권위의 학술대회에 매년 논문을 발표하는 등 세계 최고의 기술력을 보유하고 있으며, 그 기술들을 바탕으로 기존 2단계 방법의 문제를 해결했다. 그래프 데이터상에서 그래프 알고리즘이 계산을 위해 접근하는 부분을 짧은 순간 동안 실시간으로 생성해, 마치 그래프 데이터가 존재하는 것처럼 알고리즘을 계산하는 것이다. 이때 그래프 데이터를 아무렇게 실시간 생성하는 것이 아니라 합성 그래프 모델에 따라 생성하고 저장한 것과 동일하도록 실시간 생성하는 것이 핵심 기술 중 하나다. 또한, 그래프 처리 엔진이 실시간으로 생성되는 그래프를 실제 그래프처럼 인식하고 알고리즘을 완전히 동일하게 계산하도록 엔진을 수정한 것이 또 다른 핵심 기술이다. 김민수 교수 연구팀은 T-GPS 기술을 종래의 2단계 방법과 성능을 비교한 결과, 종래의 2단계 방법이 11대의 컴퓨터로 구성된 클러스터에서 10억 개 간선 규모의 그래프를 계산할 수 있었던 반면, T-GPS 기술은 1대의 컴퓨터에서 1조 개 간선 규모의 그래프를 계산할 수 있어 컴퓨터 자원 대비 10,000배 더 큰 규모의 데이터를 처리를 할 수 있음을 확인했다. 또한, 알고리즘 계산 시간도 최대 43배 더 빠름을 확인했다. 교신저자로 참여한 김민수 교수는 "오늘날 거의 모든 IT 분야에서 그래프 데이터를 활용하고 있는바, 연구팀이 개발한 새로운 기술은 그래프 알고리즘의 개발 규모와 효율을 획기적으로 높일 수 있어 산업적 측면에서 파급 효과가 매우 클 것으로 기대한다ˮ 라고 말했다. 이번 연구에는 김 교수의 제자이자 캐나다 워털루 대학에 박사후 연구원으로 재직 중인 박힘찬 박사가 제1 저자로, 김 교수가 교신저자로 참여했으며 지난 22일 그리스 차니아에서 온라인으로 열린 데이터베이스 분야 최고 국제학술대회 중 하나인 IEEE ICDE에서 발표됐다. (논문명 : Trillion-scale Graph Processing Simulation based on Top-Down Graph Upscaling). 한편, 이 연구는 한국연구재단 선도연구센터 사업 및 중견연구자 지원사업, 과기정통부 IITP SW스타랩 사업의 지원을 받아 수행됐다.
2021.04.23
조회수 24673
딥페이크 탐지 모바일 앱 서비스 개시
우리 대학 전산학부 이흥규 교수 연구팀이 인공신경망 기반 딥페이크(deepfake) 탐지와 사진 위변조 탐지 소프트웨어인 `카이캐치(KaiCatch)'를 모바일 앱 형태로 개발해 서비스를 시작한다고 30일 밝혔다. 이는 디지털콘텐츠 위변조 탐지가 필요한 공공기관, 산업계, 언론 및 방송사, 각종 포털 종사자들 및 일반인들도 손쉽게 활용할 수 있을 것으로 기대된다. 이번 모바일 앱 서비스는 본격적으로 일반인들도 손쉽게 디지털콘텐츠 위변조 탐지 기술을 활용할 수 있도록 실용화 단계로 들어섰다는 점에서 의미가 크다. KAIST에서 딥페이크 영상을 포함해 각종 위변조 사진들을 잡아낸다는 의미를 지닌 `카이캐치(KaiCatch)' 소프트웨어를 모바일 앱 형태로 개발해 서비스를 시작하는데 이러한 유형의 서비스로는 국내 최초다. 구글스토어에서 `카이캐치'를 검색해 앱을 다운로드하면 간단하게 딥페이크 및 이미지 위변조 분석을 할 수 있다. 주로 사람의 얼굴을 대상으로 하는 딥페이크 기술은 얼굴 교체, 얼굴 재현, 얼굴 속성 변환으로 크게 3가지 유형으로 나눌 수 있다. 그중 얼굴 교체와 얼굴 재현은 악의적으로 사용할 때 가짜 뉴스로 사회적 큰 혼란을 일으킬 수 있고 음란물 제작 등에도 악용돼 개인의 인권을 크게 침해할 수 있다. 또한, 얼굴 속성 변환은 영상 증거를 조작하는데 악용될 수 있다. 연구팀이 개발한 기술은 딥페이크 생성 유형에 상관없이 딥페이크 여부를 탐지하기 위해 영상의 미세 변형 신호 흔적과 미세 이상 신호 흔적 탐지 기술을 적용한 신호처리 및 인공지능 기술로 개발됐다. 이러한 핵심 기술들을 사용해, 얼굴 영역의 미세 변형과 코, 입, 얼굴 윤곽 등 얼굴 내 기하학적 왜곡 발생 가능 영역의 이상 신호 흔적을 분석해 딥페이크를 탐지한다. 딥페이크 탐지 기술의 경우, avi 나 mp4 형식의 딥페이크 의심 동영상이 주어지면 개별 프레임으로 자른 뒤 분석하고자 하는 프레임을 이미지로 변환 후 딥페이크 탐지를 수행한다. 동영상 내의 얼굴이 지나치게 작거나(해상도 128×128 이하) 동영상 내 사람 얼굴이 상당 부분 잘린 경우가 아니면 정상적인 탐지가 가능하다. 따라서 동영상의 한 프레임을 잘라 이미지로 만들어 카이캐치 앱에 업로드하면 손쉽게 딥페이크 여부를 확인할 수 있다. 분석 결과는 0에서 100 (%) 값으로 표시되며 숫자가 높을수록 딥페이크일 확률이 높은 것으로 판단한다. 사진 위변조 탐지 기술의 경우도 마찬가지로 카이캐치 앱에 해당 이미지를 업로드하면 위변조 분석 결과를 받아 볼 수 있다. 카이캐치는 BMP, TIF, TIFF, PNG 등 무압축, 무손실 압축을 포함해 50여 개의 표준 양자화 테이블과 1,000여 개가 넘는 비표준화된 양자화 테이블에 기반한 JPEG 이미지들도 모두 처리할 수 있다. 사진 위변조가 의심되는 이미지를 업로드하면 해당 이미지를 분석한 결과를 시각화한 두 장의 분석 이미지를 도출하며, 분석 이미지 내에 위변조가 의심되는 특징들이 포함된 주요 영역들이 다른 주변 영역들과 색상이 크게 다르거나, 또는 주요 영역들에만 다양한 색상들이 혼재해 나타나면 해당 영역이 위변조된 것으로 일반인들도 간단하게 판단할 수 있다. 이번에 개발한 모바일용 위변조 탐지 앱 개발은 국내 최초이자 선진국에서도 찾기 어려운 위변조 탐지 앱 서비스 기술이다. 이흥규 교수는 "카이캐치는 인공지능과 미세 이상 신호 흔적 분석 기법이라는 첨단 기술을 사용해 다양한 유형의 변형에 대응한 범용성을 가지도록 개발됐다”며 "우리가 예측하지 못하거나 모르는 변형 기법을 사용해도 90% 내외의 높은 신뢰도로 탐지한다”고 말했다. 이 교수는 이어 "이번에는 안드로이드 기반의 모바일 환경에서만 동작하는 앱 서비스 기술로 개발됐지만 가까운 기간내 애플 iOS 기반의 앱 출시와 함께, 영어, 중국어, 일어 앱 들도 출시하려고 한다ˮ며 "기존 탐지 기법과는 매우 상이한 기법들을 사용한 위변조 탐지 기술도 실용화해 카이캐치에 추가 탑재 운용함으로써, 탐지가 안 되는 각종 예외 경우들을 대폭 줄이도록 노력하겠다ˮ 고 덧붙였다. 한편 이번 연구는 KAIST 창업기업인 ㈜디지탈이노텍(http://www.kaicatch.com/) 과 산학협력 연구로 수행됐다.
2021.03.31
조회수 88505
사진 위변조 탐지하는 실용 소프트웨어 개발
위조되거나 변조된 사진·영상자료를 손쉽게 탐지해내는 고성능 소프트웨어가 우리 연구진에 의해 개발됐다. 이 기술은 논문 발표 수준에만 머물러 있던 사진과 영상자료의 위·변조 탐지기술을 국내 최초로, 세계에서 두 번째로 실용화 단계로 끌어 올렸다는 점에서 의미가 크다. 우리 대학 전산학부 이흥규 교수 연구팀이 인공신경망을 이용해 디지털 형태의 사진 변형 여부를 광범위하게 탐지하는 실용 소프트웨어 `카이캐치(KAICATCH)'를 개발했다고 3일 밝혔다. 최근 딥페이크(deepfake)를 포함해 각종 위·변조 영상의 등장과 온라인 유통으로 인한 위·변조 탐지기술에 관한 관심이 급속히 증가하고 있다. 그러나 위·변조 여부를 직접 확인할 수 있는 객관적인 분석 도구가 없기 때문에 사실확인 작업이나 정황 판단 등에 의존해 진위를 판단함으로써 주관적 판단 여부의 논란 등 문제가 자주 발생하고 있다. 특히 기존의 디지털사진 포렌식 기술은 개개 변형의 유형에 대응해 개발돼서 변형 유형이 다양하거나, 사전 특정되기 전에는 일정 수준 이상의 높은 신뢰도를 확보하기가 어렵다. 즉, 기존 기술들은 제한된 형식과 알려진 특정 변형에 대해서는 만족할 만한 탐지 성능을 보여주지만, 어떤 변형들이 가해진 것인지 전혀 알 수 없는 임의의 디지털사진을 분석해야 하는 실제 상황에서는 판독의 정확성과 신뢰도가 크게 떨어질 수 밖에 없다. 다양한 변형이 가해진 채 온라인에서 유통되는 사진이나 영상에 대한 변형 여부의 탐지는 극소수 전문가들의 주관적인 판단의 영역에 머물러 왔기 때문에 이런 문제해결을 위해 많은 도전적 연구들이 진행되고 있다. 이흥규 교수 연구팀이 개발한 이 기술은 국내 최초이자 세계 두 번째로 거둔 쾌거이다. 연구팀은 일반인들을 대상으로 2015년 6월부터 `디지털 이미지 위·변조 식별 웹서비스'를 통해 수집한 30여만 장의 실 유통 이미지 데이터와 특징기반·신경망 기반의 포렌식 영상 데이터, 딥페이크와 스테고 분석을 위한 대량의 실험 영상자료를 정밀 분석해 활용한 연구 결과물이다. 이 교수팀은 특정 변형을 탐지하는 개개의 알고리즘들을 모아놓은 기존 기술의 한계를 극복하고, 다양한 변형에 대한 탐지를 유기적으로 통합하는 기술에 주목했다. 이를 위해 잘라 붙이기·복사 붙이기·지우기·이미지 내 물체 크기 변화와 이동·리터칭 등 일상적이면서 자주 발생하는 변형들에서 언제나 발생하는 변이들을 분류, 정리해 필수 변이로 정의하고 이들을 종합 탐지하는 연구를 수행했다. 그 결과 변형의 유형을 특정하지 못하는 상태에서도 변형이 발생했는지 여부를 판단함으로써 탐지 신뢰도를 크게 높였다. 연구팀은 이어 BMP·TIF·TIFF·PNG 등 무압축, 무손실 압축을 포함해 50여 개의 표준 양자화 테이블과 1,000여 개가 넘는 비표준화된 양자화 테이블에 기반한 JPEG 이미지들도 포괄적으로 처리하는 기술을 포함한 실용 소프트웨어를 개발하는 데 성공했다. 이 교수팀이 개발한 `카이캐치'는 전통적인 영상 포렌식 기술, 스테그 분석 기술 등 픽셀 단위의 미세한 변화를 탐지하는 기술들을 응용해, `이상 영역 추정 엔진'과 `이상 유형 분석 엔진' 두 개의 인공지능 엔진으로 구성됐으며 이를 기반으로 결과를 판단하고 사진에 대한 다양한 변형 탐지 기능과 사진의 변형 영역 추정 기능 등을 함께 제공한다. 이흥규 교수는 "다양한 변형 시 공통으로 발생하는 픽셀 수준에서의 변형 탐지와 인공지능 기술을 융합한 영상 포렌식 기술을 카이캐치에 담았는데 이 기술은 특히 임의의 환경에서 주어진 디지털사진의 변형 여부를 판단하는데 탁월한 성능을 보인다ˮ고 말했다. 이 교수는 이어 "향후 각종 편집 도구들의 고급 기능들에 대한 광범위한 탐지 기능을 추가하는 한편 현재 확보한 실험실 수준의 딥페이크 탐지 엔진과 일반 비디오 변형 탐지 엔진들도 실용화 수준으로 발전시켜 카이캐치에 탑재하겠다ˮ 고 덧붙였다. 한편 이번 연구는 우리 대학 창업기업인 ㈜디지탈이노텍(http://www.kaicatch.com/) 과 산학협력 연구로 수행됐다.
2020.11.04
조회수 24683
언제 말 걸지 아는 스마트 스피커 개발 길 열어
우리 대학 전산학부 이의진 교수 연구팀이 스마트 스피커 인공지능 비서가 선제적으로 말 걸기 좋은 최적의 시점을 결정하는 중요한 상황맥락 요인을 찾아냈다고 28일 밝혔다. 기존에 개발되거나 시판 중인 스마트 스피커 인공지능 비서는 사용자가 먼저 요청한 서비스만 제공하는 반면 최근 스마트 스피커의 개발은 사용자의 상황에 맞춰 능동적인 서비스를 제공하는 형태로 진화하는 추세다. 똑똑한 음성비서가 사용자가 처해 있는 상황을 정확히 이해한 후에 선제적으로 일정 및 건강관리를 도와주는 방향으로 개발되고 있는 것이다. 하지만 아무 때나 눈치 없이 말을 건다면 도움은커녕 하는 일에 방해만 될 수 있다. 이의진 교수 연구팀은 스마트 스피커가 선제적으로 음성서비스를 제공하기 좋은 최적의 시점을 찾는 연구를 전산학부 이재길 교수를 비롯해 산업디자인학과 이상수 교수와 함께 다학제 연구팀을 구성해 공동연구를 수행했다. 그 결과 다학제 연구팀은 스마트 홈 환경에서의 최적의 발화(發話) 시점을 결정하는 중요한 사용자 상황맥락 요인을 찾았다. 최적의 발화 시점에 관한 추론은 인공지능 비서가 음성서비스를 시작하거나 중지 또는 재개를 스스로 결정하고 제어하기 위한 필수적인 기술이다. 연구팀이 찾아낸 중요한 상황맥락 요인은 최적의 발화 시점 추론 시 정확성을 높일 것으로 관계자들은 기대하고 있다. 스마트 스피커 인공지능 비서가 선제적으로 말 걸기 좋은 시점을 찾기 위해 연구팀은 실험용 스마트 스피커를 제작했다. 스마트 스피커는 사용자의 움직임이 감지되거나 일정한 시간이 지나면 주기적으로 "지금 대화하기 좋은가요ˮ라는 질문을 했다. 참가자는 대화하기 좋은지 아닌지, "네ˮ 또는 "아니요ˮ로 대답하고 무엇을 하고 있었는지 설명했다. 연구진은 이어 교내 기숙사에 거주하는 학생 40명(2인 1실)의 방에 스마트 스피커를 설치해 1주일간 총 3,500개의 사용자 응답 데이터를 수집했다. 데이터 분석 결과 전체 참가자 응답 중 47%는 대화하기 부적절한 것으로 드러났다. 연구진은 대화하기 좋은 시점을 결정하는 주요 상황 요인을 찾기 위해 19개의 실내 활동 범주를 만들었다. 이를 통해 연구팀은 적절한 시점을 결정하는 상황맥락 요인으로 크게 개인적 요인과 움직임 요인, 사회적 요인을 꼽았다. 개인적 요인은 크게 `활동 집중도', `긴급함과 바쁨 정도', `정신적·육체적 상태' 그리고 `다중 작업수행을 위한 듣기 또는 말하기 가능성' 등 4가지다. 예를 들면 집중해서 공부하고 있거나 드라이로 머리를 말리고 있을 때는 스피커와 대화가 어려웠다. 움직임 요인은 `외출', `귀가' 그리고 `활동 전환' 등 3가지다. 특히 사용자 움직임이 있을 때는 스피커와 대화 가능한 거리가 최적 시점 판단에 큰 영향을 미쳤다. 외출은 스피커와 대화 가능 범위 밖으로 나가는 움직임이고, 귀가는 범위 안으로 들어오는 움직임이다. 범위 안으로 들어오는 귀가(歸家) 상황일 때는 대부분 대화하기 좋은 시점으로 분류됐다. 일반적으로 스마트 스피커는 거실처럼 집 구성원이 함께 생활하는 공간에 설치된다. 수집된 사용자 응답 중 절반은 룸메이트가 함께 있을 때 수집됐다. 연구팀은 전화 대화뿐만 아니라 누군가와 함께 있다는 것 또한 스마트 스피커와 대화하기 좋은 시점에 영향을 끼친다는 현상을 발견했다. 룸메이트가 자고 있거나 어떤 활동에 집중하고 있을 때 스마트 스피커와의 대화로 인한 갈등을 최소화하고 싶기 때문이다. 이번 연구에 제1 저자로 참여한 차나래 학생은 "이번 연구가 미래 스마트 스피커 개발의 중요한 토대가 될 것ˮ이라면서 "앞으로는 센서 데이터로 감지된 상황맥락 정보를 활용해 스마트 스피커가 스스로 대화를 시작·중지, 또는 재개하기 좋은 타이밍을 선제적으로 감지해 지능적인 음성서비스를 제공할 수 있을 것ˮ이라고 밝혔다. 한편, 이 연구는 과학기술정보통신부의 재원으로 한국연구재단-차세대정보 컴퓨팅기술개발사업의 지원을 받아 수행됐고 유비쿼터스 컴퓨팅 분야 국제 최우수 학술지인 `Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies' 9월호에 게재됐다. (논문명 : Hello There! Is Now a Good Time to Talk?: Opportune Moments for Proactive Interactions with Smart Speakers)
2020.10.28
조회수 25935
세계 최고 성능을 지닌 데이터베이스 관리 시스템(DBMS) 기술 개발
우리 연구진이 방대한 정보를 저장하고 목적에 맞게 검색, 관리할 수 있는 시스템을 통칭하는 데이터베이스관리시스템(DBMS, DataBase Management System)을 세계 최고 수준의 성능으로 끌어올렸다. 우리 대학 전산학부 김민수 교수 연구팀이 데이터베이스 질의 언어 SQL(Structured Query Language, 구조화 질의어) 처리 성능을 대폭 높인 세계 최고 수준의 DBMS 기술을 개발했다. 김 교수 연구팀은 데이터 처리를 위해 산업 표준으로 사용되는 SQL 질의를 기존 DBMS와는 전혀 다른 방법으로 처리함으로써 성능을 기존 옴니사이(OmniSci) DBMS 대비 최대 88배나 높인 신기술을 개발했다. 김 교수팀이 개발한 이 기술은 오라클·마이크로소프트 SQL서버·IBM DB2 등 타 DBMS에도 적용할 수 있어 고성능 SQL 질의 처리가 필요한 다양한 곳에 폭넓게 적용될 수 있을 것으로 기대된다. 대부분의 DBMS는 SQL 질의를 처리할 때 내부적으로 데이터 테이블들을 `왼쪽 깊은 이진 트리(left-deep binary tree)' 형태로 배치해 처리하는 방법을 사용한다. 지난 수십 년간 상용화돼 온 대부분의 DBMS는 데이터 테이블들의 배치 가능한 가지 수가 기하급수적으로 많기 때문에 이를 `왼쪽 깊은 이진 트리' 형태로 배치해 SQL 질의를 처리해 왔다. 임의의 두 테이블이 기본 키(primary key, PK)와 외래 키(foreign key, FK)라 불리는 관계로 결합(조인 연산)하는 경우에는 이러한 방법으로 SQL 질의를 효과적으로 처리할 수 있다. 여기서 기본 키는 각 데이터 행(row)을 유일하게 식별할 수 있는 열(column)이고, 외래 키는 그렇지 않은 열이다. 지난 수십 년간 산업에서 사용되는 DB의 구조가 점점 복잡해지면서 두 테이블은 PK-FK 관계가 아닌 FK-FK 관계, 즉 외래 키와 외래 키의 관계로 결합하는 복잡한 형태의 SQL 질의들이 많아지고 있다. 실제 DBMS의 성능을 측정하는 산업 표준 벤치마크인 TPC-DS에서 전체 벤치마크의 26%가 이런 복잡한 SQL 질의들로 구성돼 있고 기계학습(머신러닝), 생물 정보학 등 다양한 분야들서도 이러한 복잡한 SQL 질의 사용이 점차 증가하는 추세다. 이전에 나온 DBMS들은 두 테이블이 주로 PK-FK 관계로 결합한다는 가정하에 개발됐기 때문에 FK-FK 결합이 필요한 복잡한 SQL 질의를 매우 느리거나 심지어 처리하지 못하는 실패를 거듭해왔다. 김 교수팀은 문제 해결을 위해 테이블들을 하나의 커다란 `왼쪽 깊은 이진 트리' 형태가 아닌 여러 개의 작은 `왼쪽 깊은 이진 트리'를 `n항 조인 연산자'로 묶는 형태로 배치해 처리하는 기술을 개발했다. 이때 각각의 `작은 이진 트리' 안에는 FK-FK 결합 관계가 발생하지 않도록 테이블들을 배치하는 것이 핵심이다. 각각의 `작은 이진 트리'의 처리 결과물을 `n항 조인 연산자'로 결합해 최종 결과물을 구하는 것도 난제로 꼽히는데 연구팀은 `최악-최적(worst-case optimal) 조인 알고리즘'이라는 방법으로 이 문제를 해결했다. `최악-최적 조인 알고리즘'은 그래프 데이터를 처리할 때 이론적으로 가장 우수하다고 알려진 알고리즘이다. 김 교수 연구팀은 세계에서 가장 먼저 이 알고리즘을 SQL 질의 처리에 적용해 난제를 해결하는 데 성공했다. 김민수 교수 연구팀은 새로 개발한 DBMS 기술을 GPU 기반의 DBMS 개발업체인 미국 옴니사이(OmniSci)社 제품에 적용한 결과, OmniSci DBMS보다 성능이 최대 88배나 향상된 결과를 얻었다. 또 TPC-DS 벤치마크에서도 세계 최고 수준의 성능을 가진 기존의 상용 DBMS보다 5~20배나 더 빠른 사실을 확인했다. TPC-DS는 DBMS의 성능을 측정하기 위한 산업 표준의 최신 벤치마크이다. 교신저자로 참여한 김민수 교수는 "연구팀이 개발한 새로운 기술은 대부분의 DBMS에 적용할 수 있기 때문에 산업적 측면에서 파급 효과가 매우 클 것으로 기대한다ˮ 라고 말했다. 이번 연구에는 김 교수의 제자이자 미국 옴니사이(OmniSci)社에 재직 중인 남윤민 박사가 제1 저자로, 김 교수가 교신저자로 참여했으며 지난 18일 미국 오리건주 포틀랜드에서 열린 데이터베이스 분야 최고의 국제학술대회로 꼽히는 `시그모드(SIGMOD)'에서 발표됐다. (논문명 : SPRINTER: A Fast n-ary Join Query Processing Method for Complex OLAP Queries). 한편, 이 연구는 한국연구재단 선도연구센터 사업 및 중견연구자 지원사업, 과기정통부 IITP SW스타랩 사업의 지원을 받아 수행됐다.
2020.06.23
조회수 18595
사생활 침해 논란없는 코로나19 감염병 확산방지시스템 개발
세계 각국에서 주목을 받는 K-방역을 떠받쳐 온 코로나19 관련 검사·추적·치료 등 기존 3T 시스템을 한층 업그레이드시킨 새로운 `코로나19 감염병 확산방지시스템(앱&웹)'이 개발됐다. 우리 대학이 개발한 이 시스템은 GPS·무선랜·블루투스·기압계·관성 센서의 신호를 주기적으로 수집, 기록하는 스마트폰 블랙박스를 기반으로 하고 있어 사생활 침해 논란을 최소화하면서 신속한 역학조사와 격리자 관리 등 코로나19 상황에 효율적인 대응이 가능하다. 기존 3T 시스템은 신용카드 이용 내역 등 광범위한 개인정보 접근을 통해 확진자 동선을 공개하는 과정에서 사생활 노출로 인한 인권침해 우려가 꾸준히 제기돼 왔다. 전산학부 지능형서비스통합연구실 한동수 교수 연구팀은 스마트폰의 이동 동선을 기록하는 스마트폰 블랙박스를 기반으로 `코로나19 감염병 확산방지시스템(앱&웹)'을 개발했다고 10일 밝혔다. 한 교수 연구팀이 개발한 스마트폰 블랙박스 시스템은 스마트폰에 내장돼있는 GPS와 와이파이·블루투스·관성 센서 등을 통해서 수집된 신호를 보관했다가 2주가 지나면 자동으로 폐기한다. 또 개인 스마트폰 블랙박스에 저장된 기록은 일체 외부로 유출되지 않으며 특히 확진자의 동선을 공개하는 경우에도 문자로 표현되는 장소 정보가 아닌 신호 정보를 공개하기 때문에 확진자의 사생활 보호가 가능하다. 따라서 코로나19 집단감염대응 차원에서 그동안 꾸준히 지적돼 온 개인의 사생활 침해 문제에 대해 기존과는 다르게 보다 섬세한 방법으로 접근했다는 점이 이 시스템의 가장 큰 특징이다. 한 교수팀의 `코로나19 감염병 확산방지시스템'은 크게 일반인을 위한 `바이러스 노출 자가진단 시스템'과 감염병 관리기관을 위한 `확진자 역학조사 시스템', 그리고 `격리자 관리 시스템' 등 3개 시스템으로 이뤄져 있다. 우선 `바이러스 노출 자가진단 시스템'은 확진자의 동선과 개인의 스마트폰 블랙박스에 기록된 동선의 중첩 여부를 체크해 이뤄진다. 현재 방식은 확진자의 정보가 메시지를 통해 전달되고 개개인이 직접 확진자의 동선을 확인하는 불편함이 따르지만 한 교수팀이 개발한 시스템에서는 사용자가 수시로 해당 앱의 버튼을 눌러 바이러스 노출 여부를 쉽고 빠르게 체크할 수 있다. `확진자 역학조사 시스템'을 통해 확진자 관련 역학조사를 빠르고 정확하게 수행할 수 있다. 코로나19 감염병 확진을 받은 환자의 스마트폰 블랙박스에 기록된 신호를 지도상에 표시를 해주기 때문에 역학 조사관이 확진자의 이동 동선을 쉽게 파악할 수 있다. 한동수 교수는 이와 함께 이 시스템에 지난 10여년간 개발해 온 실내·외 통합 위치 인식시스템 KAILOS(KAIST Locating System)의 기능도 적용했다. 이에 따라 실내지도와 신호지도가 준비된 건물에서는 건물 내부에서도 확진자의 이동 동선을 확인할 수 있다. 스마트폰 블랙박스는 격리자 관리에도 활용된다. 격리자의 스마트폰 블랙박스가 수집한 신호는 주기적으로 `격리자 관리 시스템'에 전송된다. `격리자 관리 시스템'은 전송받은 신호를 실시간으로 분석해 격리자의 격리공간 이탈 여부를 확인한다. GPS 신호뿐 아니라 무선랜 신호를 사용함으로써 실외뿐 아니라 실내에서의 확진자 격리공간 이탈 여부를 확인할 수 있어 기존 방식보다 더 정확하게 격리자를 관리할 수 있다는 게 강점이다. 한동수 교수는 "현재 약 30여 종의 스마트폰이 사용되고 있는데 스마트폰마다 탑재된 센서의 종류가 매우 다양해서 연구팀이 개발한 시스템을 다양한 스마트폰에 이식하고 테스트하는 작업을 진행하고 있다ˮ면서 "이 작업을 마치는 대로 곧 시스템을 출시할 계획ˮ이라고 소개했다. KAIST 신성철 총장도 "PreSPI(Prevention System for Pandemic Disease Infection)로 이름 붙인 이 시스템을 활용하면 코로나19 재확산으로 수고하는 의료진 등 방역 분야 종사자들의 수고와 시간을 획기적으로 줄일 수 있고 사생활 침해 논란 없이 신속하고 정확한 역학조사가 가능해져 K-방역의 우수성을 다시 한번 세계 각국에 과시하는 계기가 될 것ˮ이라고 강조했다.
2020.06.11
조회수 21365
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
>
다음 페이지
>>
마지막 페이지 5