본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EA%B8%80%EB%A1%9C%EB%B2%8C%ED%94%84%EB%A1%A0%ED%8B%B0%EC%96%B4
최신순
조회순
기억 및 논리 연산 가능한 메타물질 개발
〈 민 범 기 교수 〉 우리 대학 기계공학과 민범기 교수 연구팀이 메타물질의 광학적 특성을 기억할 수 있는 메모리 메타물질과 이를 응용한 논리연산 메타물질을 개발했다. 이번 연구결과는 과학전문지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 1월 27일자 온라인 판에 게재됐다. (논문명 : Graphene-ferroelectric metadevices for nonvolatile memory and reconfigurable logic-gate operation) 메타물질은 자연에서 발견되지 않은 특이한 광학적 성질을 얻기 위해 인위적으로 설계된 물질이다. 이는 빛의 파장보다 훨씬 짧은 구조물로 구성됐으며 고해상도 렌즈 및 투명망토 등에 응용 가능해 활발한 연구가 이뤄지고 있다. 메타물질의 변조된 광학적 특성을 유지시키기 위해선 외부의 지속적 자극이 공급돼야 하는데 이는 많은 전력 소모의 원인이 된다. 이 단점을 극복하기 위해 외부 자극 제거 후에도 변조된 특성이 유지 가능한 메모리 메타물질이라는 개념이 대두됐다. 메모리 메타물질은 변화된 광학적 특성을 기억한다는 장점을 갖는다. 하지만 기존에 보고된 메모리 메타물질은 고온에서만 기억되거나 부피가 큰 광학적 장치에 의해서만 동작 가능해 현실적 응용에 한계를 보였다. 연구팀은 문제 해결을 위해 메타물질에 그래핀과 강유전체 고분자를 접목시켰다. 연구팀이 사용한 강유전체 고분자는 탄소를 중심으로 불소, 수소가 결합한 분자로 외부 전압의 극성에 따라 회전할 수 있다. 이 강유전체 고분자는 상온에서도 안정적으로 변화 상태를 유지할 수 있고, 그래핀과 접촉돼 메모리 성능을 개선하고 초박형으로 제작 가능하다. 또한 다중 상태의 기억이 가능하고 빛의 편광 상태도 기억할 수 있음을 증명했다. 연구팀은 메모리 메타물질의 원리를 응용해 논리 연산이 가능한 논리연산 메타물질 또한 개발했다. 이 논리연산 메타물질은 단일 입력에 의해서만 변조 가능했던 기존 메타물질의 단점을 해결했다. 그래핀을 두 개의 강유전체 층과 샌드위치 구조를 가진 메타물질을 제작해 두 전기적 입력의 논리 연산 결과가 광학적 특성으로 출력되게 만들었다. 이를 통해 다중 입력에 의한 조절이 가능해져 메타 물질의 특성을 다양하게 변화시키고 조절할 수 있는 방법론을 제시했다. 민 교수는 “메모리 메타물질을 통해 저전력으로 구동 가능한 초박형 광학 소자에 응용 가능할 것으로 전망한다”고 말했다. 기계공학과 김우영, 김튼튼 박사, 김현돈 박사과정이 1저자로 참여한 이번 연구는 한국연구재단 중견연구자 지원사업, 국가그린나노기술개발사업, 미래유망융합기술 파이오니어사업, 세계적수준의 연구센터(WCI) 사업, 미래창조과학부 글로벌프론티어 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 메모리 메타물질의 구조도 그림2. 강유전체에 의해 그래핀에 비휘발적 도핑이 되는 모식도 그림3. 투과도의 다중상태 (00, 01, 10, 11)의 메모리 특성 (본 논문의 대표도)
2016.02.24
조회수 13470
효모 사용해 종양에 항암제 전달한다
〈 전 상 용 교수 〉 우리 대학 생명과학과 전상용 교수 연구팀과 GIST 생명과학부 전영수 교수 공동연구팀이 효모 기반의 바이오소재를 이용해 항암제를 표적 암에 효과적으로 전달할 수 있는 원천기술을 개발했다. 이번 연구결과는 지난해 12월 28일 미국학술원회보인 PNAS 온라인 판에 게재됐다. 이번 기술은 효모(yeast)에 존재하는 천연 소포체(vesicle)인 액포(vacuole)를 항암제를 전달하는 약물전달체로 이용했다. 동물 실험에서 높은 생체 적합성과 항암효능을 보여 기존 치료법의 대안이 될 것으로 기대된다. 약물전달시스템은 기존의 합성의약품 기반 항암 치료에 비해 독성을 크게 낮출 수 있다. 현재 美 식약청의 허가를 받아 치료에 사용되는 약물전달시스템은 리포좀(liposome) 제제와 알부민 나노입자(Abraxane)가 있다. 이러한 나노입자 기반 약물전달시스템은 특정 암을 표적해 치료하는 기술은 아니다. 따라서 최근에는 특정 암을 표적해 부작용을 낮추고 치료 효능은 개선시키는 표적형 약물전달시스템에 대한 연구가 활발히 진행 중이다. 그러나 대부분의 표적형 약물전달시스템은 고분자, 무기 나노입자같은 인공소재 기반이다. 인공소재들은 생체 적합성이 낮고 몸속에 장기간 남아 잠재적 독성을 유발할 수 있다는 한계를 갖는다. 연구팀은 문제 해결을 위해 빵, 맥주의 발효에 사용되는 효모를 이용했다. 효모 안의 소포체인 액포를 항암제 전달 소재로 사용했다. 연구팀은 기존 효모를 유전자변형 시켰다. 유방암에 결합가능한 표적 리간드(ligand)가 도입된 표적형 효모액포로 제조한 것이다. 여기에 항암제로 사용되는 독소루비신(Doxorubicin)을 표적형 효모액포에 선적해 약 100나노미터 직경을 갖는 암 치료용 표적형 약물전달시스템을 구축했다. 이 액포의 구성성분은 인간의 세포막에 존재하는 지질 성분들과 비슷해 암 세포와의 막융합이 수월하게 이뤄진다. 따라서 항암제를 암 세포 안으로 효과적으로 전달할 수 있고, 생체 적합성이 높아 안전한 약물전달시스템이 될 수 있다. 실제로 유방암 동물실험에서 표적형 효모액포 약물전달시스템은 기존 독소루비신 치료 그룹에 비해 약 3배 이상의 항암제를 암 조직에 전달해 우수한 치료 효능을 보였다. 이 기술을 통해 다른 생물체 기반의 나노 소포체를 이용한 약물전달시스템 개발에도 활용 가능할 것으로 기대된다. 전 교수는 “이 기술을 통해 생물체 유래 천연 나노 소포체가 약물전달시스템으로 개발될 것으로 보인다”며 “전임상 연구 및 임상 적용 가능성을 평가해 궁극적인 암 치료 방안 중 하나가 되기를 기대한다”고 말했다. 이번 연구는 한국연구재단의 글로벌프론티어 사업인 지능형바이오시스템 및 합성연구단과 광주과학기술원 실버헬스바이오연구센터의 실버헬스바이오기술개발사업의 지원으로 수행됐다. □ 그림 설명 그림1. 표적형 효모액포를 정맥주사 한 후 6시간 뒤 암 조직으로의 약물분포 결과 그림2. 유방암 생쥐모델에서 독소루비신 항암제가 선적된 표적형 효모액포 약물전달시스템의 항암 결과 그림3. 최종 항암 치료용 표적형 약물전달시스템을 제조하는 모식도
2016.01.12
조회수 19033
단일 분자로 두 가지 빛 발현 기술 개발
우리 대학 신소재공학과 김보현, 전석우 교수 연구팀이 그래핀을 이용해 단일 분자에서 두 가지 빛을 번갈아 발현하는 기술을 개발했다. 이번 연구결과는 신소재 전문 학술지 어드밴스드 머터리얼즈(Advanced Materials) 12월 17일자 온라인 판에 게재됐다. 이번 기술은 HD TV 등의 디스플레이 제품과 바이오, 광통신 등 다양한 분야에서 폭넓은 활용이 가능할 것으로 기대된다. 모든 물질이 빛을 내는 원리는 동일하다. 바닥상태에 있던 전자가 에너지를 받아 들뜬 상태로 올라간 후, 다시 안정적인 바닥상태로 돌아가면서 얻었던 에너지를 열에너지나 빛에너지로 돌려주는 것이다. 이때 빛에너지로의 전환 비율이 열에너지보다 높으면 흔히 보는 디스플레이 화면이 된다. 들뜬 전자가 빛을 낼 때 높은 에너지 상태로 올라갔다가 바로 떨어지는 것을 형광, 좀 더 낮은 에너지 상태로 이동했다가 서서히 떨어지는 것을 인광이라 부른다. 일반적으로 양자역학 및 광화학적 조건 때문에 에너지가 다른 두개의 빛을 단일 분자에서 번갈아 구현하는 것은 불가능하다고 여겨졌다. 한번 낮은 에너지 상태로 이동한 전자가 외부 자극 없이 다시 높은 곳으로 되돌아갈 수 없기 때문이다. 따라서 여러 빛이 필요한 디스플레이는 각각의 빛을 내는 소자나 빛을 걸러주는 필터가 필요하게 된다. 김 교수 연구팀은 문제 해결을 위해 그래핀과 포르피린이라는 두 물질을 샌드위치 쌓듯이 번갈아 적층하는 방법을 사용했다. 강한 인광을 내는 포르피린을 그래핀 위에 얇게 올리면 그래핀 플라즈몬(빛에 의한 전자의 집단 진동)과 포르피린의 공명에 의해 형광이 강하게 발현되고 더불어 인광도 동시에 증폭되는 원리를 이용한 것이다. 연구팀은 실험을 통해 그래핀과 백금 포르피린 복합체가 기존의 백금 포르피린에 비해 형광은 최대 29배, 인광은 최대 7배 이상 증폭되는 효과를 확인했다. 또한 그래핀 층 숫자를 조절해 빛의 세기 증가, 형광과 인광의 발광 비율 조절 등이 가능함을 증명했다. 유연한 그래핀과 포르피린 복합체를 이용하면 단일 분자로도 두 개 이상의 색을 발현할 수 있기 때문에 디스플레이의 유연성, 회로 효율 등이 매우 높아진다. 예로 TV 안에 각각의 색을 내기 위한 물질의 숫자를 절반 이상 줄임으로써 소자를 단순화하고 효율을 증가시킬 수 있는 것이다. 연구팀은 이 기술이 디스플레이 뿐 아니라 광통신 분야에 사용되는 레이저 기술, 포르피린과 혈액 내 금속의 결합을 색으로 발현시켜 신체 상태를 파악할 수 있는 바이오 기술 등에도 접목이 가능할 것이라고 밝혔다. 김 교수는 “이 기술을 통해 인광 물질인 백금 포르피린에서 형광이 강하게 증폭되게 할 수 있다”며 “이는 단일 발광 소재에서는 한 종류의 빛만 발현 가능하다는 이론을 뛰어넘는 큰 발견이다”고 말했다. 이번 연구는 한국연구재단의 글로벌프론티어 사업의 지원으로 수행됐다. □ 그림 설명 그림1. 그래핀-백금 포르피린 복합 소재와 단일 백금 포르피린에서 다른 파장의 빛이 나오는 모식도와 실제 측정 결과 그림2. 그래핀-백금 포르피린 적층 구조에서 형광과 인광이 층수에 따라 조절됨을 보여주는 측정 결과 그림3. 실제 그래핀-백금 포르피린 복합체가 적층된 소자
2015.12.21
조회수 8388
5단 수직 적층 반도체 트랜지스터 개발
우리 대학 전기 및 전자공학부 이병현 연구원(지도교수 최양규)과 나노종합기술원(원장 이재영) 강민호 박사가 실리콘 기반의 5단 수직 적층 반도체 트랜지스터를 개발했다. 그리고 반도체 트랜지스터를 이용한 비휘발성 메모리 개발에 성공했다. 이번 연구는 나노 분야 학술지 ‘나노 레터스(Nano letters)’ 11월 6일자 온라인판에 게재됐다. 반도체 트랜지스터 분야는 모든 전자기기의 핵심 구성요소로 국내 산업과 경제 발전에 큰 영향을 끼쳤다. 세계적 추세에 따라 치열한 소형화를 통해 생산성과 성능의 향상을 거듭했으나 최근 10나노미터 시대에 접어들며 제작 공정의 한계 및 누설전류로 인한 전력소모 문제가 커지고 있다. 학계 및 산업계는 문제 해결을 위해 전면-게이트 실리콘 나노선 구조를 개발했다. 이는 누설전류 제어에 가장 효과적인 구조로 저전력 트랜지스터 개발에 이용됐다. 그러나 이 역시 소형화에 따른 나노선 면적 감소로 성능 저하의 한계가 있었다. 연구팀은 전면-게이트 실리콘 나노선을 수직으로 5단으로 쌓아 문제를 해결했다. 이 5단 적층 실리콘 나노선 채널을 보유한 반도체 트랜지스터는 단일 나노선 기반의 트랜지스터보다 5배의 향상된 성능을 보였다. 또한 수직 적층 나노선 구조는 말 그대로 위로 쌓기 때문에 단일 구조와 달리 면적이 증가되지 않아 집적도 향상에도 기여할 수 있다. 나노선 수직 적층은 개발된 ‘일괄 플라즈마 건식 식각 공정’ 방식을 통해 이뤄졌다. 이 공정은 고분자 중합체를 이용해 패턴이 형성될 영역에 미리 보호막을 친 뒤 등방성 건식 식각을 통해 나노선 구조를 형성하는 기술이다. 수직 적층 나노선 구조는 이 기술의 연속 작용을 통해 확보한 결과물이다. 이 기술은 지속적 소형화로 인해 기술적 한계에 부딪힌 반도체 트랜지스터 분야에 새로운 돌파구를 제시할 것으로 기대된다. 관련 연구가 이전부터 진행됐지만 더 간단한 공정기술을 이용해 가장 많은 나노선 채널의 적층에 성공했기 때문에 비용절감 및 제작 시간 단축, 반도체 트랜지스터의 성능 향상으로 인한 상용화 등에 크게 기여할 것으로 예상된다. 연구팀은 건식 식각 공정 기술이 기존 방법보다 간단하고 안정적으로 수직 적층 실리콘나노선 구조 제작을 가능하게 함으로써 고성능 트랜지스터 개발에 응용 가능할 것이라고 밝혔다. 이병현 연구원과 강민호 박사는 “이번 기술 개발은 미래창조 국가 나노기술 인프라 기관 나노종합기술원의 훌륭한 반도체 연구 기반과 김진수 부장 포함 관련 연구진들의 우수한 공정 능력이 뒷받침돼 가능했다”고 소감을 말했다. 이번 연구는 글로벌프론티어사업 스마트IT융합시스템 연구단의 지원을 받아 수행됐다. 연구를 주도한 이병현 연구원은 우리 대학 최양규 교수 지도하에 박사과정을 수행 중이며, 삼성전자 메모리 사업부의 책임 연구원으로 재직 중이다. □ 그림 설명 그림1. 일괄 플라즈마 건식 식각 공정 과정의 모식도. 그림2. 서로 다른 방향에서 단면을 관찰한 주사 전자 현미경 사진 및 투과 전자 현미경 사진
2015.11.24
조회수 12792
기체가 저장물질에 흡착되는 과정 관찰
우리 대학 EEWS 대학원 강정구 교수와 오사무 테라사키 공동 연구팀이 2~5 나노미터(10억분의 1m) 크기의 구멍을 갖는 메조다공성 금속유기골격체(metal organic framework, MOF) 안에 기체가 흡착되는 과정을 관찰하는 데 성공했다. 관찰 과정에서 기체들이 각자의 기공에 일정하지 않은 각기 다른 밀도로 흡착된다는 사실을 발견했다. 이는 기존의 학설과 반대되는 개념으로 금속유기골격체에서 기체가 초격자 구조를 형성한다는 사실을 최초로 발견한 것이다. 이번 연구는 국제 과학 학술지 ‘네이처’ 11월 9일자 온라인 판에 게재됐다. 메조다공성 금속유기골격체는 넓은 비표면적을 갖고 있어 수소나 메탄, 이산화탄소 등의 가스 저장에 용이한 저장물질이다. 효율적인 가스 저장을 위해서는 기체가 저장물질에 어떻게 흡착하는지 이해하는 것이 중요하다. 그러나 일반적인 기체 흡착 측정 장비의 경우에는 흡착 거동을 직접적으로 관찰할 수 없다는 한계가 있었다. 문제 해결을 위해 연구팀은 기존에 존재하는 두 개의 장비를 이용했다. 구조적 정보를 얻을 수 있는 X-선 소각산란(small angle X-ray scattering, SAXS) 측정 장비와 기체흡착 측정 장비를 결합했다. 두 장비가 결합된 실시간 기체 흡착 SAXS 시스템을 개발해 메조다공성 금속유기골격체의 결정에 기체가 흡착하는 과정을 실시간으로 관찰했다. 연구팀은 관찰 과정에서 금속유기골격체의 모든 기공에 기체가 균일하게 흡착되지 않고 각자 다른 밀도로 흡착된다는 사실을 발견했다. 그리고 압력이 증가하면서 급격하게 초격자 구조로 변이된 후 서서히 균일하게 분포하는 것 또한 확인했다. 이는 모든 기공에 균일하게 기체가 들어간다는 학설을 뒤집는 발견이다. 이것이 가능했던 이유는 메조다공성 금속유기골격체의 경우 골격이 얇고 기공이 커 다른 구멍의 기체분자끼리도 상호작용하기 때문에 발생하는 현상이다. 따라서 메조다공성 금속유기골격체를 사용한다면 기존 저장물질에 비해 더 적은 용량으로 더 많은 가스를 저장할 수 있는 고효율 저장장치를 개발할 수 있게 된다. 이 기술을 기반으로 새로운 고용량 가스저장 물질의 제작이 가능해짐으로써, 여러 운송수단이나 가스를 사용하는 기계의 성능을 끌어올릴 수 있을 것으로 기대된다. 연구를 주도한 조해성 박사는 “단일 기공 내부의 기체 분자 뿐 아니라 다른 기공의 기체 분자 간 상호작용에 의해 기체의 흡착 메커니즘이 발생함을 새롭게 발견했다”고 말했다. 이번 연구는 미래창조과학부 글로벌프론티어사업, 인공광합성사업, BK21PLUS의 지원을 받아 수행됐다. □ 그림 설명 그림1. 실시간 기체흡착 SAXS 시스템 모식도 그림2. 메조다공성 MOF 결정에 기체가 흡착되는 과정 그림3. 메조다공성 MOF 결정에서 기체분자의 상호작용 모델
2015.11.11
조회수 12471
대장균의 생물막 형성 제어 기술 개발
〈이 영 훈 교수〉 우리 대학 화학과 이영훈 교수 연구팀이 작은 RNA(small RNA : sRNA)의 발현을 조절해 대장균의 생물막 형성을 제어할 수 있는 기술을 개발했다. 연구 결과는 네이처 자매지인 ‘사이언티픽 리포트(Scientific Reports)’ 10월 15일자에 게재됐다. 세균들은 외부의 여러 환경으로부터 스스로를 보호하기 위해 다량체로 이뤄진 세포성분을 분비한다. 이로 인해 고체 표면이나 살아있는 생물 조직에서 생물막(biofilm)이라는 3차원 구조물이 형성된다. 이 생물막은 제거가 어려울 뿐 아니라 세균의 생체 내 증식, 치석, 의료기기 오염, 수도관, 정수기 등에 분포해 각종 산업시설에서 광범위한 문제를 일으키고 있다. 특히 생물막을 형성하고 있는 세균들은 항생제에 매우 높은 내성을 가질 수 있어 슈퍼박테리아의 항생제 내성의 주요 원인이기도 하다. 생물막 형성에 크게 관여하는 세균 내의 sRNA는 표적 메신저 RNA(mRNA) 또는 단백질과 상호작용해 세포대사를 조절하는 핵심 요소로 기능한다. 학자들은 생물막 형성의 원리를 규명하기 위해 이 sRNA를 연구해 왔다. 현재 대장균에서는 100여 종의 sRNA가 보고됐다. 연구팀은 이 중 99종을 분석해 각각의 대장균 sRNA를 발현할 수 있는 라이브러리를 구축했다. 이후 이를 통해 환경적 스트레스 대응과 밀접한 관련성을 가져 생물막 형성에 핵심이 되는 sRNA를 탐색했다. 그 결과로 연구팀은 생물막 형성에 관여하는 sRNA를 새롭게 발견했고, 생물막 형성을 위한 생리적 변화(세포운동성, I형 핌브리아 형성, 컬리핌브리아 형성)를 일으키는 sRNA들을 분석하는 데 성공했다. 이 분석 방식은 기존의 유전체적 분석을 통한 sRNA 작용 원리 규명 연구에 비해 이 교수 연구팀은 특정 sRNA의 기능을 직접 분석할 수 있어 신속하고 효율적으로 작용 원리를 규명할 수 있다는 장점을 갖는다. 이번 연구를 통해 생물막 형성과정에 관여하는 신호 전달체계를 이해하는 후속 연구 뿐 아니라, sRNA를 진단 마커나 약물 타겟으로 삼아 세균의 병원성 제어에 활용할 수 있을 것으로 기대된다. 이 교수는 “세균의 생물막 형성과 분해를 원하는 방향으로 제어할 수 있게 됐다”며 “향후 99종의 sRNA 각각에 대한 돌연변이 균주도 확보해 함께 활용할 예정이다”고 말했다. 화학과 박근우, 이정민 박사가 공동 1저자로 참여한 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 글로벌프론티어사업(지능형 바이오시스템 설계 및 합성 연구), 기초연구실 지원사업, 중견연구자 지원사업(도약연구)을 통해 수행됐다. □ 그림 설명 그림 1 . 세균 생물막 형성과정의 모식도 그림 2. sRNA의 발현양에 비례하여 생물막 형성의 억제. 생물막 형성이 많을수록 진한 보라색 그림 3. 99종의 대장균 sRNA와 라이브러리 구축에 사용된 pHMB1 플라스미드의 구조
2015.10.28
조회수 13453
소장 내 지방 흡수과정의 비밀 밝혀
김 필 한 교수 우리 대학 나노과학기술대학원 김필한 교수와 의과학대학원 고규영 교수 공동 연구팀이 소장에서 지방이 흡수되는 과정의 고해상도 촬영에 성공했다. 이번 연구는 나노과학기술대학원 최기백 박사과정 학생, 의과학대학원 장전엽 박사, 박인태 박사과정 학생이 1저자로 참여했다. 이를 통해 소장의 융모로 흡수된 지방의 전달 통로인 암죽관의 수축현상을 최초로 발견했다. 이번 연구결과는 의생명과학 분야 국제 학술지인 ‘임상연구(The Journal of Clinical Investigation, Impact Factor 13.261)’ 10월 5일자 온라인판에 게재됐다. 또한 11월에는 이달의 주목할 만한 연구로 ‘JCI This month’에도 소개될 예정이다. (논문명 : Intravital imaging of intestinal lacteals unveils lipid drainage through contractility) 소장은 영양분을 흡수하는 기관이다. 소장의 관찰을 위해 많은 학자들이 노력했지만 소장은 항상 쉬지 않고 움직이기 때문에 고해상도 촬영에 한계가 있었다. 연구팀은 자체 개발한 초고속 레이저 스캐닝 공초점 현미경과 소장 의 상태를 보존하고 내벽을 고정할 수 있는 영상 챔버를 이용해 동물 모델의 소장 내벽에서 지방산이 흡수되는 과정을 촬영했다. 이 과정에서 지방의 흡수 통로인 암죽관이 일정 주기로 수축 및 이완하는 현상을 발견했다. 또한 암죽관의 수축 정도가 소장에서의 지방산 흡수 속도에 영향을 미치는 것을 발견했다. 연구팀은 이 암죽관의 움직임이 융모 내부에 다량 존재하는 민무늬근세포에 의해 발생하고, 이는 체내에 분포된 자율신경계를 통해 조절됨을 밝혔다. 이번 연구를 통해 개발된 최첨단 고해상도 생체영상기술로 소장 내 다양한 물질 흡수 과정의 실시간 모니터링이 가능해질 것으로 예상된다. 또한 이 기술은 신약개발 과정에서 지용성 약물이 소장 내 암죽관으로 흡수되게 해 간 독성을 최소화하는 새로운 약물전달 방법 확립에 기여할 것으로 기대된다. 김 교수는 “우리가 섭취하는 다량의 지용성 영양소가 체내로 흡수되는 과정에서 자율신경계로 조절되는 융모 내부의 암죽관 제어 메커니즘이 존재함을 새롭게 밝혀냈다”고 말했다. 이번 연구는 미래창조과학부의 글로벌프론티어사업 및 신기술융합형 성장동력사업의 지원을 받아 수행됐다. 그림 설명 그림1. 소장 내벽에 존재하는 융모에서 지방산이 흡수되는 과정을 광학현미경으로 영상화하는 과정 모식도 그림2. 소장 융모에서 지방산(적색)이 암죽관(녹색)을 통해 흡수되는 과정 그림3. 암죽관(녹색)의 반복적인 이완과 수축 운동. 0초, 2.7초에 이완. 1.6초, 4초에 암죽관의 수축
2015.10.14
조회수 15722
표적 DNA 저렴하게 분석 가능한 유전자 진단 기술 개발
박 현 규 교수 우리 대학 생명화학공학과 박현규 교수 연구팀이 특정 단백질이나 효소를 인식하는 물질인 압타머(Aptamer : 표적 물질과 결합할 수 있는 특성을 가진 DNA)를 이용해 다양한 표적 DNA를 분석할 수 있는 기술을 개발했다. 이 기술을 통해 메르스와 같은 신종 바이러스 병원균 감염 여부 등 다양한 유전자를 기존에 비해 저렴한 가격으로 진단할 수 있을 것으로 기대된다. 이번 연구결과는 영국왕립화학회가 발행하는 케미컬 커뮤니케이션즈(Chemical communications) 6월호 후면 표지논문으로 선정됐다. 기존의 분자 비콘(Molecular beacon) 프로브 기반 유전자 분석은 분석 대상인 표적 DNA가 변경되면 이에 대응하는 새로운 분자 비콘 프로브가 필요했다. 따라서 다양한 표적 DNA를 분석하는데 많은 비용이 필요하다는 한계가 있었다. 문제 해결을 위해 연구팀은 DNA 중합효소와 결합해 활성을 저해시키는 압타머를 고안했다. 그리고 이를 역으로 이용해 표적 DNA가 존재하는 경우에만 압타머가 DNA 중합효소와 결합하지 않고 활성을 유지할 수 있게 조절하는 기술을 최초로 개발했다. 이 기술 개발로 조절된 DNA 중합효소의 활성이 핵산 신장 및 절단 반응을 일으키고 그 결과로 형광 프로브(TaqMan probe)의 형광신호 측정이 가능해졌다. 따라서 동일한 형광 프로브를 이용해 다양한 표적 DNA를 민감하게 검출할 수 있는 새로운 유전자 진단 기술 개발이 가능해졌다. 이 기술은 표적 DNA의 종류에 따라 새로운 프로브를 사용해야 했던 기존 기술과 달리 동일한 형광 프로브를 이용하기 때문에 다양한 표적핵산을 값싸고 손쉽게 검출할 수 있다. 기술을 응용하면 과거에 비해 여러 가지 다른 병원균의 감염 여부를 저렴하고 수월하게 파악할 수 있다. 박 교수는 “메르스처럼 새로운 병원체에 대한 진단 키트를 용이하게 제작할 수 있어 여러 병원균에 대해 신속히 대응할 수 있다”며 “향후 유전자 진단 분야에서 새 원천기술로 널리 활용될 것으로 기대된다”고 말했다. 이번 연구는 미래창조과학부가 추진하는 글로벌프론티어사업(바이오나노헬스가드연구단)의 지원을 받아 수행됐다. □ 그림 설명 그림 1. 표적핵산에 의한 DNA 중합효소 활성 변화를 이용해 표적 핵산을 검출한 모식도
2015.07.27
조회수 10159
새 인공 형광 단백질 나노 조립체 개발
정 용 원 교수 우리 대학 화학과 정용원 교수 연구팀이 새로운 모양과 다양한 크기의 인공적 형광 단백질 나노 조립체를 개발했다. 이 단백질 나노 조립체 연구로 단백질 기반 신약 및 백신 개발 등 새로운 나노구조체 분야에 활발한 적용이 가능할 것으로 기대된다. 이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 14일자 온라인 판에 게재됐다. 우리 몸의 필수 구성요소인 단백질은 나노미터 크기의 특성과 더불어 무한한 기능과 구조를 갖고 있다는 점에서 새로운 물질 및 구조체 개발에 매우 적합한 것으로 알려져 있다. 특히 단백질 다수가 조립된 다중 조립체는 새로운 성질과 모양, 크기를 가지며 생체친화적인 나노 구조체이기 때문에 많은 관심을 받고 있다. 단백질 다중 조립체는 다수의 단백질이 동시에 작용하기 때문에 결합력을 극대화 해 신약, 백신 기능 향상 연구에 중요한 방법론을 제시할 것으로 기대되기 때문이다. 이 조립체의 상업적, 연구적 이용을 위해선 조립된 단백질의 수가 정확히 조절되고, 다양한 크기의 조립체를 제작할 수 있어야 한다. 하지만 현재의 기술로는 조립체의 크기에 따라 정밀히 분리하는 것이 쉽지 않다. 연구팀은 문제 해결을 위해 인공적 형광 단백질 조립체를 세포 내 합성을 통해 다양한 크기로 제작했다. 또한 조립체 표면 개량을 통해 거대 생체분자의 안정성을 향상시켰고, 다양한 크기의 조립체를 분리할 수 있는 방법을 최초로 개발했다. 이 방법을 이용해 다각형 및 선형 배열을 갖는 형광 단백질 조립체 또한 제작해 관찰했다. 이 과정에서 나노크기 공간에서의 결합 단백질의 개수를 증가시켰고, 기존 단일 단백질보다 비약적으로 향상된 결합력을 확인했다. 정 교수는 “이번 단백질 조립체 제작 기술은 다양한 모양과 크기, 기능성을 갖는 새 조립체 제작의 기반이 될 것이다”며 “비약적으로 향상된 기능을 가진 단백질 신약, 백신, 혹은 결합 리셉터 연구에 핵심적 역할을 할 것”이라 말했다. 정용원 교수 지도 아래 김영은 박사과정 학생이 1저자로 참여한 이번 연구는 우리 대학 김호민 교수 연구팀이 참여했으며, 한국연구재단이 추진하는 글로벌프론티어사업(바이오나노 헬스가드 연구단) 및 기초연구실지원사업의 지원을 받아 수행됐다. □ 그림 설명 그림 1. 형광단백질 조립체 모식도 및 전자현미경 사진
2015.05.26
조회수 12949
종양 전역에 약물 전달하는 항암치료나노기술 개발
<박 지 호 교수> 우리 대학 바이오 및 뇌공학과 박지호 교수 연구팀이 종양의 전역에 약물이 골고루 전달되게 해 항암효과를 현저히 높일 수 있는 새 항암치료 나노기술을 개발했다. 이번 연구는 나노분야 학술지 ‘나노 레터스(Nano Letters)’3월 31일자 온라인 판에 게재됐다. 일반적으로 수술이 어려운 종양의 치료를 위해 항암약물치료법이 사용된다. 하지만 종양이 외부로 들어오는 약물의 접근을 여러 방법으로 막기 때문에 종양 전체에 항암효과를 보기 어려웠다. 혈류로 투여된 약물들의 대부분이 혈관주위의 종양세포들에만 전달되고, 중심부의 종양세포에는 전달되지 않아 재발 문제가 자주 발생한 것이다. 연구팀은 문제 해결을 위해 리포좀과 엑소좀이라는 소포체를 이용했다. 리포좀은 인공나노소포체로서 혈류를 통해 혈관 주위의 종양 세포 부위까지 약물을 전달한다. 종양 세포에서 자연적으로 분비되는 생체나노소포체인 엑소좀에 약물을 무사히 탑재하는 것이 리포좀의 역할이다. 엑소좀은 종양에서 세포 내부의 생물학적 물질들을 전달하기 때문에 종양의 진행 및 전이에 중요한 요소로 알려져 있다. 리포좀이 항암 약물을 엑소좀에 탑재하면, 엑소좀이 이동하는 종양 내의 모든 위치로 약물이 전달됨으로써 질병이 치료되는 것이 연구의 핵심이다. 연구팀은 이 기술을 이용해 빛에 반응해 항암효과를 내는 광과민제를 종양이 이식된 실험용 쥐에 주입했다. 이후 종양 부위에 빛을 노출시켜 항암효과를 유도한 후 분석한 결과 종양조직 전역에서 항암효과를 관찰할 수 있었다. 연구팀의 핵심 성과는 종양 및 다른 질병들의 미세 환경을 파악해 질병에 대항하는 맞춤형 약물전달 기술 개발의 발판을 마련한 것이다. 연구팀은 이 기술을 제약회사에서 개발 중인 항암제에 적용해 약물전달이 어려운 악성 종양의 치료효과를 실험 진행 중이다. 박 교수는 “엑소좀이 세포에서 끊임없이 분비되는 특성과 주변 세포로 생물학적 물질을 전달하는 특성을 응용해 종양 중심부까지 약물을 전달 가능하게 만든 최초의 연구”라고 말했다. 박지호 교수 지도아래 이준성 박사, 김지영 석사가 주 저자로 참여한 이번 연구는 한국연구재단이 추진하는 신진연구자지원사업, 글로벌프론티어사업, 미래유망융합기술파이오니어사업의 지원을 받아 수행됐다. □ 그림설명 그림 1. 종양 전역에 약물이 골고루 전달되게 해 항암효과를 높이는 새 종양투과 약물전달 나노기술 세포막과 결합하는 리포좀에 의해서 세포로 전달된 물질이 그 세포가 분비하는 엑소좀에 효율적으로 탑재돼 주변세포로 전달되는 과정을 보여주는 모식도(좌). 이러한 엑소좀기반 세포간 약물전달이 실제로 종양 스페로이드 및 생체 내 종양모델에서 관찰된 결과들 (우).
2015.04.06
조회수 14376
광전환 효율 높인 고분자 태양전지 모델 개발
<김 범 준 교수> 국내 연구진이 차세대 에너지원으로 각광 받고 있는 플라스틱 태양전지의 광전환 효율을 크게 높이는데(5% 이상, 기존 대비 1%p 이상 증가) 성공하였다. 특히 기존의 태양전지를 대체할 수 있다는 점에서 의미가 크다. 우리 대학 김범준, 부산대 우한영 교수(공동 교신저자)가 주도하고, 우리 대학 강현범, 부산대 우딘 모하메드 아프사르 박사(공동 제1저자)가 참여한 이번 연구는 미래창조과학부와 한국연구재단에서 추진하는 기초연구사업(중견연구자), 글로벌프론티어사업 등의 지원으로 수행되었고, 화학분야의 권위지 JACS(Journal of the American Chemical Society) 2월 18일자에 게재되었다. 고분자-고분자 태양전지는 기존의 풀러렌 유기태양전지에 비해 상용화에 핵심요소인 기계적인 안정성뿐만 아니라 열에 대한 안정성도 크게 향상시킬 수 있다. 그러나 풀러렌 유기태양전지(10%)에 비해 고분자-고분자 태양전지의 광전환 효율은 매우 낮다(4% 이하). 이것은 광 활성층을 형성하는 두 고분자가 잘 섞이지 않고 과도하게 분리되는 현상(상 분리)이 발생하기 때문이다. 이러한 상 분리 현상은 전자의 생성과 운반을 저해하고 태양전지의 광전환 효율을 감소시킨다. 연구팀은 전도성 고분자의 분자량과 구조를 조절함으로써 두 고분자의 상 분리 현상을 효과적으로 제어하여 5% 이상의 높은 광전환 효율을 가진 태양전지를 개발하였다. 연구팀은 현재 태양전지의 광전환 효율을 6%까지 끌어올렸는데, 이 수치는 지금까지 학계에 보고된 것 중에서 가장 높은 효율이다. 김범준 교수는 “이번 연구는 고분자 플라스틱 태양전지가 미래 에너지원, 특히 유연성이 필요한 휴대용 차세대 전자소자의 에너지원으로서 높은 응용가능성을 보여주는 사례”라고 밝혔다. □ 그림 설명 그림 1. 플렉서블 고분자 / 고분자 태양전지 샘플
2015.03.30
조회수 12691
휘어지는 10나노미터 고분자 절연막 개발
10나노미터 이하의 얇고, 유연하게 휘어지면서도 균일한 두께를 유지하는 고분자 절연막의 개발로 사물인터넷의 실현을 앞당길 수 있을 것으로 보인다. 우리 대학 생명화학공학과 임성갑 교수, 전기 및 전자공학과 유승협, 조병진 교수 공동 연구팀은 ‘개시제를 이용한 화학 기상 증착법(initiated chemical vapor deposition, 이하 iCVD)’을 이용한 고분자 절연막을 개발했다고 밝혔다. 이번 연구는 재료분야 국제 학술지인 ‘네이처 머티리얼스(Nature Materials)’ 3월 10일자 온라인 속보판에 게재됐다. 사물인터넷 시대의 핵심인 웨어러블, 플렉서블 기술 촉진을 위해서는 가볍고 전력 소모가 적으면서도 유연성을 가진 소자 제작 기술이 필수적이다. 하지만 무기물 소재를 기반으로 한 절연막을 포함한 전자소자 재료들은 유연성이 부족하고, 고온에서만 공정이 가능해 열에 약한 다른 재료들과의 조합이 좋지 않다. 또한 용액을 이용해 만든 기존 고분자 소재 절연막은 표면장력에 의한 뭉침 현상으로 균일도에 한계가 있었고, 잔류 불순물로 인해 절연 특성도 좋지 못한 경우가 많았다. 공동 연구팀은 이러한 문제점을 해결할 수 있도록 기체 상태의 반응물을 이용해 고분자를 박막 형태로 합성하는 방법인 iCVD를 사용했다. 액체 대신 기체 상태의 반응물을 이용해 균일도를 높이고 불순물을 최소화함으로써, 10nm 이하의 매우 얇은 두께에서도 무기물 기반 소재에 필적하는 절연성을 가지게 됐다. 공동 연구팀은 개발한 절연막을 유기반도체, 그래핀, 산화물반도체와 같은 차세대 반도체를 기반으로 한 트랜지스터에도 적용해 우수한 이동도를 갖는 저전압 트랜지스터를 개발했다. 그 외에도 우수한 유연성을 바탕으로 스티커 필름 형태의 전자 소자를 시연했고, 동국대 노용영 교수 연구팀과 협력해 iCVD 고분자 절연막이 대면적 유연 전자소자 기술에 적용할 수 있음을 확인했다. 이 기술은 향후 다양한 미래형 전자기기 제작에 핵심 요소소재로 활용되고, 이 분야의 기술경쟁력 우위 확보에도 역할을 할 것으로 기대된다. 임성갑 교수는 “이번에 iCVD로 구현된 박막의 절연특성은 고분자 박막으로는 구현할 수 없었던 매우 높은 수준”이며 “이번에 개발된 iCVD 고분자 절연막은 플렉서블 전자 소자 등 차세대 전자 기술에 핵심적인 역할을 할 수 있을 것”이라고 말했다. 문한얼, 신우철 박사(전기 및 전자공학과), 성혜정 학생(생명화학공학과)이 참여한 이번 연구는 미래창조과학부의 한국연구재단 신진연구자 지원사업 및 중견연구자 지원사업, 글로벌프론티어사업 나노기반 소프트일렉스토닉스 연구단의 지원을 받아 수행됐다. □ 그림 설명 그림 1. iCVD 공정의 모식도 (i) 재료물질 (initiator, monomer) 주입, (ii) 개시제의 활성화, (iii), (iv): 활성화된 개시제에 의한 고분자(polymer) 합성 그림 2. 연구진이 개발한 고분자 절연막을 이용하여 제작한 대면적, 고유연성 전자소자 그림 3. 스티커처럼 붙이고 뗄 수 있는 전자소자 이미지
2015.03.10
조회수 17080
<<
첫번째페이지
<
이전 페이지
1
2
3
4
>
다음 페이지
>>
마지막 페이지 4