-
소금 섭취 제어할 수 있는 신체 메커니즘 규명
우리 대학 생명과학과 손종우 교수 연구팀이 각종 성인병의 원인으로 알려진 과도한 소금 섭취를 제어할 수 있는 메커니즘을 규명하는 데 성공했다.
이번 연구를 통해 향후 소금의 섭취를 적절하게 제한하는 전략 수립에 도움을 줌으로써 고혈압, 신부전 등 소금 섭취와 밀접하게 관련된 각종 질병 치료에 이바지할 수 있을 것으로 기대된다.
박시형 박사과정이 1 저자로 참여하고, 미국 텍사스 주립대학 사우스웨스턴 메디컬 센터 첸 리우(Chen Liu) 교수와의 공동연구로 진행한 이번 연구 결과는 국제 학술지 ‘네이처 뉴로사이언스(Nature Neuroscience)’ 1월 20일 자 온라인판에 게재됐다. (논문명 : A Neural Basis for Tonic Suppression of Sodium Appetite)
우리 몸의 체액은 혈액, 간질액 등을 포함하는 세포외액과 세포내액으로 구성돼 있다. 소금의 주요 성분인 나트륨 이온은 세포외액에 분포돼 삼투 현상에 의해 세포내액에 있는 수분을 끌어당긴다.
체내에 나트륨 이온이 과량 존재하면 혈액과 간질액의 부피가 증가해 혈압 상승, 부종 발생 등이 일어날 수 있어 적정한 수준으로 소금을 섭취하는 것이 중요하다.
특히 신부전 등과 같이 체액량 조절이 중요한 질병이 있는 환자의 경우 과도한 소금 섭취가 치명적임에도 적절한 조절이 어려운 것이 현실이다. 따라서 많은 의사와 과학자들이 소금 섭취를 효과적으로 제어할 방법에 대해 고민해 왔다.
손종우 교수 연구팀은 중요한 신경 전달 물질 중 하나인 세로토닌의 기능에 주목했다. 뇌줄기 안에 있는 세로토닌 반응성 신경 세포가 평상시에도 활성화돼 있어 이 세포가 소금의 섭취를 억제한다는 사실을 밝혀냈다. 그리고 세로토닌에 반응하는 현상을 재현하면 이 신경 세포의 활성이 억제돼 소금 섭취가 증가하는 현상을 확인했다.
최근 미국의 연구팀 등이 체액량이 감소했을 때 활성화돼 소금의 섭취를 증가시키는 신경 회로를 제시한 바 있으나, 평상시에 소금 섭취를 억제하는 메커니즘이 존재하고 이를 활용해 소금 섭취를 제어할 수 있다는 것은 손 교수 연구팀이 최초로 발견했다.
손종우 교수는 "소금 섭취를 제어할 수 있는 메커니즘을 분자 수준에서 규명한 것으로 향후 고혈압, 신부전 등 과도한 소금 섭취와 관련된 각종 질환 치료에 도움이 될 것으로 기대된다"라고 말했다.
또한, "소금 섭취 욕구와 세로토닌 신경회로 간의 상관관계를 규명했으나, 어떤 상황에서 세로토닌이 분비되는지는 아직 밝혀지지 않아 이 부분에 대한 연구에 집중할 계획이다"라고 밝혔다.
이번 연구는 삼성미래기술육성재단과 KAIST 시스템헬스케어사업 및 석박사모험연구사업의 지원을 통해 수행됐다.
□ 그림 설명
2020.02.12
조회수 8266
-
급속충전 가능한 소듐이온 하이브리드 전지 개발
우리 대학 EEWS 대학원 강정구 교수 연구팀이 우수한 성능으로 급속 충전이 가능한 소듐 이온 기반의 하이브리드 전지를 개발했다.
연구팀은 질소가 올려진 메조 다공성 금속산화물 기반 전극을 이용해 높은 에너지 밀도와 고출력을 갖는 소듐 이온 에너지 저장 소자를 구현했다.
이 기술은 현재 주로 사용되는 리튬 이온 배터리보다 경제성 및 접근성 등에서 우수성을 가져 급속 충전이 필요한 휴대용 전자기기 등에 적용할 수 있을 것으로 기대된다.
강정구 교수 연구팀의 이번 연구 결과는 재료 분야 국제 학술지 ‘어드밴스드 사이언스(Advanced Science)’ 1월 27일 자에 게재됐다. (논문명: Synthesis of nitrogen-doped mesoporous structures from metal-organic frameworks and their utilization to enable high performances in hybrid sodium-ion energy storages)
현재 가장 높은 점유율의 상업용 배터리는 리튬 이온 물질 기반의 저장 소자로 넓은 전압 범위와 에너지 밀도가 높다는 장점이 있다.
그러나 배터리 발화 및 짧은 수명 등의 문제와 리튬 광물의 높은 가격, 부족한 희토류 원소 매장량, 느린 전기화학적 반응 속도 등의 한계 때문에 충·방전이 오래 걸리고 고출력 특성을 요구하는 전기 자동차 및 차세대 모바일 기기에 적용하기 위해 많은 개선이 필요하다.
반면 소듐 이온 기반 에너지 저장 소자는 안전하고 친환경적이며 가격이 상대적으로 매우 저렴하고 자원의 접근성이 높아 리튬 이온을 대체하면서 기존의 문제점을 극복할 수 있는 차세대 에너지 저장 소자로 주목받고 있다.
하지만 현재까지는 응용 분야에서 요구하는 성능에 미치지 못해 활용 폭이 좁다. 특히 기존의 금속산화물은 전기 전도성이 낮고 비표면적이 좁아 많은 양의 이온이 접근하는 데 한계가 있어 고성능을 구현하기에 어려움이 있었다.
연구팀은 질소가 도핑된 3차원 형태의 열린 메조 다공성 금속산화물 나노 구조체와 질소 도핑된 그래핀을 결합해 소듐 이온 기반 시스템에서 고용량과 고출력의 에너지 저장장치를 개발했다.
이번 연구에서 개발한 메조 다공성의 금속산화물 나노 구조체는 5~10나노미터 크기의 나노 입자들 사이에 다량의 열린 메조 기공이 형성돼 있고, 기공들이 나노 입자 사이에 3차원적으로 연결된 구조를 이뤄 질소 도핑 방법을 활용해 부족한 전기 전도도를 높일 수 있다.
이러한 메조 다공성 구조는 전해질이 기공을 통해 전극에 깊은 곳까지 수월한 침투가 가능하므로 전극 물질의 전체적인 표면이 에너지 저장에 활용돼, 높은 용량의 에너지 저장이 가능함과 동시에 충·방전 시간 역시 줄일 수 있다.
연구팀은 질소가 도핑된 다공성 금속산화물과 그래핀을 각각 음극과 양극에 각각 적용해 고성능의 소듐 이온 하이브리드 전지를 구현했다.
이 하이브리드 저장 소자는 소듐 기반의 배터리에 비해 같은 수준의 저장용량을 유지하면서 300배 이상 빠른 출력 밀도를 보이며, 수십 초 내 급속 충전이 가능해 소형의 휴대용 전자기기 등에 활용 가능할 것으로 기대된다.
강 교수는 “소듐 기반이기 때문에 저가 제작이 가능하고 활용성이 뛰어나 기존보다 높은 에너지 밀도를 갖는 에너지 저장장치의 상용화에 기여할 것이다”라며 “저전력 충전 시스템을 통해 급속 충전이 가능해 전기자동차와 휴대 가능한 전자 기기에 적용할 수 있을 것이다”라고 말했다.
이번 연구는 과학기술정보통신부 글로벌프론티어사업의 하이브리드인터페이스기반 미래소재연구단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 소듐 이온 하이브리드 에너지 저장 장치의 구성 및 저장 메커니즘을 나타낸 모식도
그림2. 소듐 이온 하이브리드 저장 장치의 성능과 태양광 모듈을 활용한 실제 구동 이미지
2020.02.06
조회수 11135
-
박찬범, 스티브 박 교수, 혈액 기반 알츠하이머병 멀티플렉스 진단센서 개발
KAIST(총장 신성철) 신소재공학과 박찬범 교수와 스티브 박 교수 공동 연구팀이 혈액으로 알츠하이머병을 진단할 수 있는 센서를 개발하는 데 성공했다.
연구팀이 개발한 진단 센서를 활용해 혈액 내에 존재하는 베타-아밀로이드 및 타우 단백질 등 알츠하이머병과 관련한 4종의 바이오마커 농도를 측정·비교하면 민감도는 90%, 정확도 88.6%로 중증 알츠하이머 환자를 구별해 낼 수 있다.
김가영 박사과정·김민지 석사과정이 공동 1저자로 참여한 이번 연구 결과는 국제 학술지‘네이처 커뮤니케이션스(Nature communications)’1월 8일 자 온라인판에 게재됐다. (논문명: Clinically accurate diagnosis of Alzheimer’s disease via multiplexed sensing of core biomarkers in human plasma)
알츠하이머병은 치매의 약 70%를 차지하는 대표적인 치매 질환이다. 현재 전 세계 65세 이상 인구 중 10% 이상이 이 질병으로 인해 고통을 받고 있다. 하지만 현재의 진단 방법은 고가의 양전자 단층촬영(PET) 또는 자기공명영상진단(MRI) 장비를 사용해야만 하기에 많은 환자를 진단하기 위해서는 저렴하면서도 정확한 진단 기술개발의 필요성이 제기돼 왔다.
연구팀은 랑뮤어 블라젯(Langmuir-blodgett)이라는 기술을 이용해 고밀도로 정렬한 탄소 나노튜브(Carbon nanotube)를 기반으로 한 고민감성의 저항 센서를 개발했다. 탄소 나노튜브를 고밀도로 정렬하게 되면 무작위의 방향성을 가질 때 생성되는 접합 저항(Tube-to-tube junction resistance)을 최소화할 수 있어 분석물을 더 민감하게 검출할 수 있다.
실제로 고밀도로 정렬된 탄소 나노튜브를 이용한 저항 센서는 기존에 개발된 탄소 나노튜브 기반의 바이오센서들 대비 100배 이상의 높은 민감도를 보였다.
연구팀은 고밀도로 정렬된 탄소 나노튜브를 이용해 혈액에 존재하는 알츠하이머병의 바이오마커 4종류를 동시에 측정할 수 있는 저항 센서 칩을 제작했다. 알츠하이머병의 대표적인 바이오마커인 베타-아밀로이드 42 (β-amyloid42,), 베타-아밀로이드 40 (β-amyloid40), 총-타우 단백질 (Total tau proteins) 및 과인산화된 타우 단백질 (Phosphorylated tau proteins)은 그 양이 알츠하이머병의 병리와 직접적인 상관관계를 가지기 때문에 알츠하이머병 환자를 구별해 내는 데 매우 유용하다.
고밀도로 정렬된 탄소 나노튜브 기반 센서 칩을 이용해 실제 알츠하이머 환자와 정상인의 혈액 샘플 내에 존재하는 4종의 바이오마커 농도를 측정 하고 비교한 결과, 민감도와 선택성은 각각 90%, 그리고 88.6%의 정확도를 지녀 중증 알츠하이머 환자를 상당히 정확하게 진단할 수 있음을 확인했다. 연구팀이 개발한 고밀도로 정렬된 탄소 나노튜브 센서는 측정방식이 간편하고, 제작비용도 저렴하다.
박찬범 교수는“본 연구는 알츠하이머병으로 이미 확정된 중증환자들을 대상으로 진행하였다. 향후 실제 진료 환경에 활용하기 위해서는 경도인지장애 (Mild cognitive impairment) 환자의 진단 가능성을 테스트하는 것이 필요하다”며“이를 위하여 경도인지장애 코호트, 치매 코호트 등의 범국가적인 인프라 구축이 필수적이며, 국가 공공기관의 적극적인 연구 네트워크 구축 및 지원의 장기성 보장이 요구된다”고 강조했다.
한편 이번 연구는 과학기술정보통신부 리더연구자 지원사업과 충남대병원 및 충북대병원 인체자원은행의 지원을 받아 수행됐다.
□ 그림 설명
그림 1. 혈액 내에 존재하는 총 4종의 바이오마커 농도를 측정해 알츠하이머병 환자를 구별하는 고밀도로 정렬된 카본 나노튜브 기반 저항 센서의 모식도
그림 2. 진단 센서 성능
2020.01.15
조회수 18368
-
서성배 교수, 당뇨에 큰 영향 미치는 뇌 혈당조절 신경세포 발견
〈 오양균 박사, 서성배 교수 〉
우리 대학 생명과학과 서성배 교수와 뉴욕대학교(NYU) 오양균 박사 공동연구팀이 초파리 모델 시스템을 이용해 뇌 속에 체내 혈당에 직접적인 기능을 하는 포도당 감지 신경세포를 발견하고 그 구체적인 원리를 밝혔다.
이번 연구는 초파리 뇌 속의 포도당 감지 신경세포가 인슐린 생산 조직 활성화, 글루카곤 생산 조직 활동 억제 등을 통해 체내 혈당 조절에 어떻게 관여하는지를 처음으로 밝혀낸 중요한 단서로, 당뇨병의 진단 및 치료에 새로운 가능성을 열 것으로 기대된다.
생명과학과 출신의 오양균 박사가 1 저자로 참여하고 서성배 교수가 교신저자로 참여한 이번 연구 결과는 국제학술지 ‘네이처(Nature)’ 10월 23일 자 온라인판에 게재됐다. (논문명 :A glucose-sensing neuron pair regulates insulin and glucagon in Drosophila)
한국인의 당뇨병 유병률은 14%로 2018년 기준 환자 500만 명을 돌파했다. 당뇨병 증가속도 세계 1위, 잠재적 환자는 4명 중 1명꼴이지만 발병원인은 정확하게 규명되지 않았다. 유전적 요인과 환경적 요인이 존재하지만 대부분 췌장 인슐린 분비세포 기능이 저하되면서 병이 시작되는 것으로 알려져 있다.
최근에는 뇌가 당뇨병의 정도에 영향을 미칠 수 있다는 사실이 밝혀지기도 했다. 대부분 당뇨병 환자에게 스트레스가 당뇨병 증세에 영향을 미치고 혈당 조절을 어렵게 하는데 뇌 어딘가에 존재하는, 알려지지 않은 혈당 조절 능력 때문이라는 것이 학계 주장이다.
서성배 교수 연구팀은 오래전부터 초파리를 이용해 혀나 내장기관뿐 아니라 동물의 뇌 속에도 포도당을 감지하는 세포와 수용체가 존재한다는 사실을 연구해왔다. 인간 두뇌의 시상하부나 후뇌 등에 포도당을 감지하는 신경세포가 존재할 것이라는 점은 예측돼왔지만, 이런 세포들이 어떻게 포도당을 감지해 몸의 각 부위에 명령을 내리는지에 대한 연구는 지금까지 없었다.
연구팀은 초파리 전체 뇌 신경조직을 대상으로 한 광범위한 스크리닝을 통해 초파리가 포도당의 영양적 가치를 판단하는데 필수적인 한 쌍의 신경세포를 발견했다. 이 한 쌍의 신경세포가 체내 포도당 농도 증가에 반응해 활성화되는 특징을 가지고 있음을 파악했다.
연구팀은 약학적, 유전학적 방식을 사용해 이들 세포가 인간의 췌장 세포와 유사한 분자적 시스템을 통해 포도당을 인지한다는 사실을 확인했다. 이를 기반으로 연구팀은 포도당 감지 신경세포가 어떠한 신경세포 및 조직에 신호를 전달하는지에 대해 연구했다.
연구팀은 해당 신경세포가 초파리의 인슐린 생산을 담당하는 신경조직(insulin-producing cells, IPCs)과 글루카곤의 기능을 하는 단백질을 생산하는 조직(AKH-producing cells)에 각각 축삭돌기(Axon, 신경 세포체에서 뻗어 나온 돌기)를 이루고 있음을 확인했다.
이 결과는 한 쌍의 포도당 감지 신경세포가 체내 혈당 조절에 중요한 호르몬을 생산하는 조직들에 직접 체내 영양 정보를 전달할 수 있다는 가능성을 발견한 것이다.
이를 확인하기 위해서 연구팀은 포도당 감지 신경세포와 두 호르몬 분비 조직들 사이의 물리적, 기능적 상호작용들을 확인했다. 그 결과 한 쌍의 포도당 감지 신경세포가 활성화된 경우 인슐린 생산 조직 역시 활성화되며 반면에 글루카곤 생산 조직의 활동은 억제됨을 확인했다.
또한, 연구팀은 포도당 감지 신경세포를 억제할 경우 인슐린 생산 조직의 억제로 인해 혈중 인슐린 농도가 감소하며, 글루카곤 생산 조직에 대한 억제가 사라짐에 따라 혈중 글루카곤 농도가 증가 됨을 확인했다. 이들 호르몬의 변화로 인해 혈중 포도당 농도가 유의미하게 증가함을 최종적으로 확인했다.
뇌 속에 단 한 쌍의 포도당 감지 신경세포만의 활동을 조절함으로써 당뇨병의 증상을 가지는 초파리를 인위적으로 만들 수 있는 것이다.
한발 더 나아가 연구팀은 초파리에서 신경전달 기능을 하는 짧은 단백질의 한 종류인 sNPF(small Neuropeptide F)가 해당 포도당 감지 신경세포에서 발현됨을 파악하고 포도당에 노출됐을 때 이 신경전달물질이 분비됨을 확인했다. 또한, 연구팀은 인슐린 생산 조직과 글루카곤 생산 조직에서 sNPF 의 수용체가 포도당 감지 신경세포의 신호를 받는데 필수적인 역할을 함을 증명했다.
서성배 교수는 “이번 연구 결과는 초파리에서 의미 있는 발견을 했다는 사실을 넘어 당뇨병 원인 규명과 치료의 패러다임을 근본적으로 바꿀 수 있는 계기를 마련한 것이다”라며 “뇌에서 만들어지는 신호가 체내 혈당 조절에 근본적인 역할을 함이 구체적으로 규명되면 한 단계 진보된 당뇨병의 진단 및 치료뿐 아니라 비만, 대사질환 치료도 가능해질 것이다”라고 말했다.
□ 그림 설명
그림1,2. 서성배 교수 연구성과 개념도. 혈당에 반응하는 CN neuron의 Axon이 두 갈래로 갈라지며 갈라진 axonal branch는 인슐린을 만드는 세포를 활성화시키고 다른 갈라진 axonal branch는 글루카곤을 만드는 세포를 억제시킴
2019.10.24
조회수 13073
-
박수형 교수, 중증열성혈소판감소증후군 예방 백신 개발
〈 박수형 교수 〉
우리 대학 의과학대학원 박수형 교수 연구팀이 일명 살인진드기병으로 불리는 중증열성혈소판감소증후군(SFTS) 바이러스 감염을 예방하는 백신을 개발했다.
충북대학교 의과대학 최영기 교수와 진원생명과학(주)이 함께 참여한 공동 연구팀은 개발한 백신이 감염 동물모델 실험을 통해 중증열성혈소판감소증후군 바이러스 감염을 완벽하게 억제할 수 있음을 증명했다.
이번 연구를 통해 예방 백신 도출 및 검증 성과뿐 아니라 면역학적 관점에서 백신의 감염 예방 효능을 극대화할 수 있는 항원을 제시함으로써, 추후 중증열성혈소판감소증후군 바이러스에 대한 대응 전략 확립 및 연구에 기여할 것으로 기대된다.
곽정은 박사과정과 충북대학교 김영일 박사가 1 저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 8월 23일 자 온라인판에 게재됐다. (논문명 : Development of a SFTSV DNA vaccine that confers complete protection against lethal infection in ferrets)
흔히 살인진드기병으로 알려진 SFTS는 SFTS 바이러스에 감염된 매개 진드기에 물려 발생하는 신종 감염병으로, 최근 발생 빈도 및 지역의 확산으로 WHO에서도 주의해야 할 10대 신, 변종 바이러스 감염병으로 지정한 질병이다.
일반적으로 6~14일의 잠복기 후 고열(38∼40℃)이 3~10일 이어지고, 혈소판 감소 및 백혈구 감소와 구토, 설사 등 소화기 증상이 발생하며, 일부 사례에서는 중증으로 진행돼 사망에 이르기도 한다.
2013년에 한국에서 처음으로 환자가 발생한 이래 발생 건수가 매년 꾸준히 증가하고 있지만, 진드기 접촉 최소화를 통한 예방이 제시될 뿐 현재까지 예방 백신이 개발되지 않았다.
연구팀은 31종의 서로 다른 SFTS 바이러스의 유전자 서열로부터 공통 서열을 도출해 백신 항원을 설계하고, 진원생명과학의 플랫폼을 이용해 DNA 백신을 제작했다.
DNA 백신 기술은 기존 백신과 달리 바이러스 자체가 아닌 유전자만을 사용해 안전하고 기존 백신 대비 광범위한 면역 반응을 유도할 수 있다는 장점이 있다.
연구팀은 감염 동물모델인 패럿에서 백신이 감염을 완벽하게 억제하며 소화기 증상, 혈소판 및 백혈구 감소, 고열, 간 수치 상승 등 감염 환자에서 발생하는 임상 증상들 역시 관찰되지 않음을 확인했다.
특히 연구팀은 해당 바이러스의 전체 유전자에 대한 5종의 백신을 구상해 SFTS 예방 백신 개발에 대한 전략적 접근법을 제시했다.
연구팀은 수동전달 기법(passive transfer)을 통해 바이러스의 당단백질에 대한 항체 면역 반응이 감염억제에 주요한 역할을 함을 규명했다. 또한, 비-당단백질에 대한 T세포 면역 반응 역시 감염 예방에 기여할 수 있음을 밝혔다.
박 교수는 “이번 연구는 SFTS 바이러스 감염을 완벽하게 방어할 수 있는 백신을 최초로 개발하고, 생쥐 모델이 아닌 환자의 임상 증상과 같게 발생하는 패럿 동물모델에서 완벽한 방어효능을 증명했다는 중요한 의의가 있다”라고 말했다.
최 교수는 “이번 SFTS 바이러스 백신 개발 연구 성과는 국제적으로 SFTS 백신 개발을 위한 기술적 우위를 확보했다는 중요한 의의가 있으며, 연구결과를 바탕으로 지속적인 연구를 통해 SFTS 바이러스 백신의 상용화에 기여할 수 있을 것이다”라고 말했다.
향후 임상개발은 이번 연구에 함께 참여한 DNA 백신 개발 전문기업인 진원생명과학(주)을 통해 진행할 계획이다.
이번 연구는 보건복지부 감염병위기대응기술개발사업의 지원을 받아 수행됐다.
2019.08.28
조회수 14157
-
심남석 연구원, 난치성 뇌전증의 새로운 유전자 진단법 개발
〈 심남석 연구원 〉
우리 대학 의과학대학원 심남석 박사과정(지도교수 : 이정호 교수), 연세대학교 의료원(의료원장 윤도흠) 세브란스 어린이병원 신경외과 김동석 교수, 소아신경과 강훈철 교수 공동 연구팀이 난치성 뇌전증의 원인 돌연변이를 정확하게 분석할 수 있는 새로운 진단법을 개발했다.
이번 연구를 통해 기초 과학 분야와 임상 진료 영역 간 차이로 환자에게 쉽게 적용하지 못했던 난치성 뇌전증 원인 유전자 진단을 실제 임상 영역에서 시행할 수 있을 것으로 보이며, 이를 통해 환자들에게 더 나은 치료법을 제시할 수 있을 것으로 기대된다.
심남석 박사과정이 1 저자로 참여한 이번 연구는 뇌병리 분야 국제 학술지 ‘악타 뉴로패쏠로지카 (Acta Neuropathologica)’ 8월 3일 자 온라인판에 게재됐다. (논문명 : Precise detection of low-level somatic mutation in resected epilepsy brain tissue)
뇌전증은 전 세계적으로 4번째로 높은 유병률을 보이는 신경학적 질환으로 높은 사회 경제적 비용이 소모된다. 그중 전체 뇌전증의 3~40%를 차지하는 난치성 뇌전증은 약물치료로 조절되지 않고 위험성이 높아 수술 치료가 요구되는 질병이다.
최근 연구팀은 이 난치성 뇌전증이 뇌 체성(사람의 신체적 성질) 돌연변이에 의해 발생한다는 사실을 규명해 새 치료법을 제안한 바 있다. 그러나 뇌 국소 부위에서 발생한 소량의 돌연변이를 찾는 기존 진단법은 정확도가 30% 이하로 매우 낮아 실제 사용에는 어려움이 많다.
연구팀은 세브란스 병원에서 뇌수술을 받은 난치성 뇌전증 환자 232명의 뇌 조직 및 말초 조직(혈액 또는 침)을 분석해 돌연변이가 자주 발생하는 타겟 유전자를 확보했다. 이 타겟 유전자를 대상으로 표적 유전자 복제 염기서열 분석법을 적용해 체성 돌연변이를 분석했다.
연구팀은 고심도 유전체 분석을 통해 최적의 표적 유전자 선별, 고심도 시퀀싱 분석 및 방법의 조합을 찾아 진단 정확도를 50%에서 최대 100%까지 높이는 데 성공했다.
특히 임상에서 쉽게 확보할 수 있는 뇌 조직 절편만으로도 정확도가 100%에 가까운 체성 돌연변이 유전자 진단이 가능함을 확인했다.
1 저자인 심남석 연구원은 “난치성 뇌전증의 유전자 진단은 현재 임상시험 중인 새로운 치료법의 필수적인 과정이다”라며 “높은 효율, 낮은 비용으로 유전자 진단을 할 수 있게 만들어 고통받는 환아들에게 도움을 주고 싶다”라고 말했다.
연구팀은 이번 연구 결과를 바탕으로 교원창업 기업(소바젠, 대표 김병태)을 통해 빠르고 정확한 난치성 뇌전증 원인 유전자 진단 제공할 예정이다.
이번 연구는 서경배 과학재단, 한국연구재단, 보건복지부, 교원창업 기업 소바젠의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 연구에서 발견한 체세포성 돌연변이
2019.08.13
조회수 12641
-
김유천 교수, 암세포 사멸 유도하는 새 방식의 항암제 개발
〈 김유천 교수, 이대용 박사 〉
우리 대학 생명화학공학과 김유천 교수 공동 연구팀이 세포의 이온 항상성을 교란하는 새로운 원리로 암세포 자가사멸을 유도하는 항암제를 개발했다.
연구팀이 개발한 이온 교란 펩타이드는 세포의 활성산소 농도를 급격하게 높이고 소포체에 강력한 스트레스를 부여해 최종적으로 자가사멸을 유도할 수 있다. 또한, 물에 대한 용해성이 좋아 향후 임상에 적용 가능할 것으로 기대된다.
생명화학공학과 이대용 박사와 한양대학교 생명공학과 이수환 박사과정이 공동 1 저자로 참여하고, 한양대학교 생명공학과 윤채옥 교수가 공동 교신저자로 참여한 이번 연구결과는 국제 학술지 ‘어드밴스드 사이언스(Advanced Science)’ 7월 17일 자 표지논문(Back cover)으로 게재됐다. (논문명 : A helical polypeptide-based potassium ionophore induces endoplasmic reticulum stress-mediated apoptosis by perturbing ion homeostasis)
세포 안팎의 이온 기울기는 세포 성장 및 대사과정에 중요한 역할을 해, 세포 이온 항상성을 교란하게 되면 세포의 중요한 기능이 억제돼 자가사멸(Apoptosis)을 촉진할 수 있다.
기존의 이온 항상성 교란 물질은 물에 대한 용해도가 낮아 동물 실험에 적용하기 매우 어렵고 이온 항상성 교란을 통한 자가사멸 원리가 구체적으로 밝혀지지 않아 실제 적용에 한계가 있다.
연구팀은 수용성을 지니고 칼륨 이온을 운반할 수 있는 알파나선 펩타이드 기반 항암물질을 개발했다. 펩타이드 끝에 양이온성을 지니며 물에 잘 녹는 친수성이 강한 그룹과 칼륨 이온 운반이 가능한 그룹을 결합해 이온 수송 능력과 친수성을 동시에 지니게 했다.
이 항암 펩타이드는 세포 내의 칼륨 농도를 낮추는 동시에 세포 내 칼슘 농도를 증가시킨다. 증가한 세포 내 칼슘 농도는 세포 내의 활성산소 농도를 크게 높여, 소포체 스트레스를 일으키며 최종적으로 자가사멸을 유도한다.
연구팀은 종양을 이식한 실험용 동물 모델에 새로운 항암물질을 투여해 높은 항암 효과와 소포체 스트레스를 통한 자가사멸 신호를 확인해 암 성장을 저해할 수 있음을 증명했다.
연구를 주도한 이대용 박사는“이온 교란 펩타이드는 세포 내의 활성산소 농도를 크게 높여 세포 자가사멸을 유도하기 때문에 기존의 항암 치료보다 더 효과적일 것으로 기대한다”라고 말했다.
김유천 교수는 “새로운 기작으로 암세포를 사멸하는 항암 펩타이드는 기존 항암요법의 한계점을 대체할 수 있는 새로운 방법으로 사용될 것이라 기대한다”라고 말했다.
이번 연구는 한국연구재단의 중견연구자지원사업을 통해 수행됐다.
□ 그림 설명
그림1. Advanced Science 표지
그림2. 동물 실험을 통한 소포체 스트레스를 통한 자가사멸 신호 규명
2019.08.01
조회수 14445
-
박오옥 교수, 포도당 기반의 그래핀 양자점 합성 기술 개발
우리 대학 생명화학공학과 박오옥 교수 연구팀이 포도당을 기반으로 한 그래핀 양자점의 합성 기술을 개발해, 이를 이용해 안정적인 청색 빛을 내는 그래핀 양자점 발광소자를 제작하는 데 성공했다.
연구팀은 위 그래핀 양자점을 발광체로 응용해 디스플레이를 제작했고, 현 디스플레이 분야의 난제인 청색 발광을 구현하면서 안정적인 전압 범위에서 발광하는 것을 확인했다.
이석환 박사과정이 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘나노 레터스(Nano Letters)’ 7월 5일 자 온라인판에 게재됐다. (논문명 : Synthesis of Single-Crystalline Hexagonal Graphene Quantum Dots from Solution Chemistry)
그래핀은 우수한 열, 전기 전도도와 투명도를 가져 차세대 전자재료로 주목받고 있지만, 단층 및 다층 그래핀은 도체의 특성을 가져 반도체로 적용하기 어려운 단점이 있다. 그러나 그래핀을 작은 나노 크기로 줄이게 되면 반도체의 특성인 밴드갭을 가져 발광특성을 보이게 돼 활용할 수 있게 된다. 이를 그래핀 양자점이라 한다.
기존 단결정 그래핀은 구리-니켈 기반 금속 박막 위에 화학 기상 증착법(CVD)을 이용하거나 흑연을 물리·화학적 방법으로 벗겨내는 기술로 만들었다. 물리·화학적 방법으로 제작한 그래핀은 결함이 매우 많아 순수한 단결정의 특성을 가지지 못하는 단점이 있었다.
연구팀이 개발한 그래핀 양자점은 기존과는 매우 다른 우수한 합성 과정을 보였다. 포도당 수용액에 아민과 초산을 일정 비율로 혼합해 반응 중간체를 형성하고 이를 안정적인 용액으로 구현했다.
이후 형성된 중간체의 자가조립을 유도해 단결정의 그래핀 양자점을 용액상으로 합성하는 데 성공했다. 연구팀은 이 과정에서 기존의 복잡한 분리 정제법을 개선한 저온 침전 분리법을 개발했다.
연구팀의 이번 합성 기술은 단일상(single phase) 반응을 통해 균일한 핵 성장(homogeneous nucleation)반응을 최초로 유도했다는 의의가 있다.
박 교수 연구팀은 이번 연구를 통해서 수 나노미터에서 100 나노미터 수준의 단결정 크기를 원하는 대로 조절 가능한 용액상 합성 기술을 개발했다.
박오옥 교수는 “최초로 개발된 단결정 그래핀 양자점 용액 합성법은 그래핀의 다양한 분야 접목에 크게 기여할 것이다”라며 “이를 잘 응용하면 유연 디스플레이 또는 베리스터와 같은 반도체 성질을 갖는 그래핀의 역할이 제시될 것이다”라고 말했다.
이번 연구는 고려대학교 화공생명공학과 임상혁 교수 연구팀과 공동으로 진행됐으며, 한국과학연구재단의 나노원천 과제, 한국전자통신연구원의 나노물질 기술 연구 과제, KAIST EEWS 과제, 대한민국 정부 BK21+ 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 용액 화학으로 합성된 잘 정렬된 다양한 크기의 단결정 그래핀 양자점
2019.07.30
조회수 16090
-
이병주 교수, 게임의 랙 현상 해소 기술 개발
〈 이병주 교수, 이인정 박사과정 〉
우리 대학 문화기술대학원 이병주 교수와 핀란드 알토 대학교(Aalto Univ) 공동 연구팀이 게임의 겉보기 형태를 변화시켜 게임 내 레이턴시 효과, 일명 랙(lag)을 없앨 수 있는 기술을 개발했다.
이인정 박사과정이 1 저자로 참여하고 알토대학교 김선준 연구원이 공동으로 개발한 이번 연구는 지난 5월 4일 열린 인간-컴퓨터 상호작용 분야 최고권위 국제 학술대회 CHI 2019(The ACM CHI Conference on Human Factors in Computing Systems)에서 풀 페이퍼로 발표됐다. (논문명 : Geometrically Compensating Effects of End-to-End Latency in Moving-Target Selection Games)
레이턴시는 장치, 네트워크, 프로세싱 등 다양한 이유로 인해 발생하는 지연(delay) 현상을 말한다. 사용자가 명령을 입력했을 때부터 출력 결과가 모니터 화면에 나타날 때까지 걸리는 지연을 엔드-투-엔드 레이턴시(end-to-end latency)라 한다.
상호작용의 실시간성이 중요한 요소인 게임 환경에서는 이러한 현상이 플레이어의 능력에 부정적 영향을 미치는 것으로 알려져 있다.
연구팀은 레이턴시가 있는 게임 환경에서도 플레이어의 본래 실력으로 게임을 할 수 있도록 돕는 레이턴시 보정 기술을 개발했다. 이 기술은 레이턴시의 양에 따라 게임의 디자인 요소, 즉 장애물의 크기 등의 형태를 변화시킴으로써, 레이턴시가 있음에도 레이턴시가 없는 것처럼 느껴지는 환경에서 플레이할 수 있다.
연구팀은 레이턴시가 플레이어에 미치는 영향을 분석해 플레이어의 행동을 예측하는 수학적 모델을 제시했다. 시간제한이 있는 상황에서 게임 플레이를 위해 버튼 입력을 해야 하는 ‘움직이는 타겟 선택’ 과업에 레이턴시가 있을 때 사용자의 성공률을 예측할 수 있는 인지 모델이다.
이후에는 이 모델을 활용해 게임 환경에 레이턴시가 발생할 경우의 플레이어 과업 성공률을 예측한다. 이를 통해 레이턴시가 없는 환경에서의 플레이어 성공률과 비슷한 수준으로 만들기 위해 게임의 디자인 요소를 변형한다.
연구팀은 ‘플래피 버드(Flappy Bird)’라는 게임에서 기둥의 높이를 변형해 레이턴시가 추가됐음에도 기존 환경에서의 플레이 실력을 유지함을 확인했다. 연구팀은 후속 연구를 통해 게임 속 장애물 등의 크기를 변형함으로써 레이턴시를 없애는 등의 확장 연구를 기대하고 있다.
이 교수는 “이번 기술은 비 간섭적 레이턴시의 보정 기술로, 레이턴시의 양만큼 게임 시계를 되돌려 보상하는 기존의 랙 보상 방법과는 다르게 플레이어의 게임 흐름을 방해하지 않는 장점이 있다”라고 말했다.
이번 연구는 한국연구재단 신진연구자지원사업(프로게이머 역량 극대화를 위한 게임 입력장치의 설계 최적화) 및 KAIST 자체 연구사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 게임의 겉보기 형태를 변화시킴으로써, 플레이어가 제로 레이턴시 환경과 레이턴시가 있는 환경에서 같은 실력을 유지
2019.07.02
조회수 16563
-
김용대 교수, 대테러 방지용 안티 드론 기술 개발
〈 (오른쪽 위부터 시계방향으로) 김용대 교수, 권유진, 노주환, 신호철, 김도현 박사과정 〉
우리 대학 전기및전자공학부 김용대 교수 연구팀이 위조 GPS 신호를 이용해 드론의 위치를 속이는 방식으로 드론을 납치할 수 있는 안티 드론 기술을 개발했다.
이 기술은 긴급 상황에서 급격한 방향 변화 없이도 드론이 원하는 방향으로 안전하게 움직이도록 유도할 수 있어 테러 등의 목적을 가진 위험한 드론에 효과적으로 대응할 수 있다.
이번 연구성과는 ‘ACM 트랜잭션 온 프라이버시 & 시큐리티(ACM Transactions on Privacy and Security, TOPS)’ 저널 4월 9일 자에 게재됐다. (논문명 : Tractor Beam: Safe-hijacking of Consumer Drones with Adaptive GPS Spoofing)
드론 산업이 발전하며 수색, 구조, 방재 및 재해 대응, 택배와 정찰 등 다양한 영역에서 드론이 활용되면서 한편으로는 사유지와 주요시설 무단 침입, 안전과 보안 위협, 사생활 침해 등의 우려 또한 커지고 있다.
이에 따라 드론 침투를 탐지하고 대응하는 안티 드론 산업 급성장하고 있다. 현재 공항 등 주요시설에 구축되고 있는 안티 드론 시스템들은 방해 전파나 고출력 레이저를 쏘거나 그물로 포획해 드론을 무력화시키는 방식이다.
그러나 테러를 목적으로 폭발물이나 무기를 장착한 드론은 사람들과 주요시설로부터 즉시 안전거리를 확보한 뒤 무력화해야 피해가 최소화될 수 있다. 예를 들어 공항에서 무단 침입한 드론을 단순 방해 전파로 대응하면 드론을 못 움직이게 할 수는 있지만 한 자리에 계속 떠 있게 돼 비행기의 이착륙이 긴 시간 중단될 수 있다.
이렇듯 위험한 드론을 발견하는 즉시 안전하게 원하는 방향으로 격리할 수 있는 새로운 안티 드론 기술의 필요성이 커지고 있다.
김 교수 연구팀은 위조 GPS 신호를 이용해 드론의 위치를 속이는 방식으로 드론을 납치할 수 있는 안티 드론 기술을 개발했다.
위조 GPS 신호를 통해 드론이 자신의 위치를 착각하게 만들어서 정해진 위치나 경로로부터 드론을 이탈시키는 공격 기법은 기존 연구를 통해 알려진 바 있다. 그러나 이러한 공격 기법은 GPS 안전모드가 활성화되면 적용할 수 없다는 문제가 있다.
GPS 안전모드는 드론이 위조 GPS 신호로 인해 신호가 끊기거나 위치 정확도가 낮아지면 드론의 안전을 보장하기 위해 발동되는 일종의 비상 모드로 모델이나 제조사에 따라 제각각이기 때문이다.
연구팀은 디제이아이(DJI), 패롯(Parrot) 등 주요 드론 제조업체의 드론 GPS 안전모드를 분석하고 이를 기준으로 드론의 분류 체계를 만들어 각 드론 유형에 따른 드론 납치 기법을 설계했다.
이 분류 체계는 거의 모든 형태의 드론 GPS 안전모드를 다루고 있어 모델, 제조사와 관계없이 GPS를 사용하고 있는 드론이라면 보편적으로 적용할 수 있다. 연구팀은 실제 총 4종의 드론에 개발한 기법을 적용했고, 그 결과 작은 오차범위 안에서 의도한 납치 방향으로 드론을 안전하게 유도할 수 있음을 입증했다.
김 교수는 “기존 컨슈머 드론들은 GPS 안전모드를 갖추고 있어 위조 GPS 공격으로부터 안전한 것처럼 보이나 초보적인 방법으로 GPS 오류를 감지하고 있어 대부분 우회가 가능하다”라며 “특히 드론 불법 비행으로 발생하는 항공업계와 공항의 피해를 줄이는데 기여할 수 있을 것이다”라고 말했다.
연구팀은 기술이전을 통해 기존 안티 드론 솔루션에 연구팀이 개발한 기술을 적용하는 방식으로 상용화에 나설 계획이다.
이번 연구는 방위사업청의 광운대학교 초소형무인기 전술신호처리 특화연구실과 국방과학연구소의 지원을 통해 수행됐다.
□ 그림 설명
그림1. PC로 부터 위조 GPS 전파를 생성하여 지향성 안테나를 이용해 드론에 신호를 주입하는 실험환경
2019.06.05
조회수 14791
-
주영석 교수, 흡연과 무관한 폐암유발 돌연변이 유년기부터 발생 사실 밝혀
〈 주영석 교수 〉
우리 대학 의과학대학원 주영석 교수와 서울대학교 의과대학(학장 신찬수) 흉부외과 김영태 교수 공동 연구팀이 폐암을 일으키는 융합유전자 유전체 돌연변이의 생성 원리를 규명했다.
이번 연구는 흡연과 무관한 환경에서도 융합유전자로 인해 폐 선암이 발생할 수 있다는 사실을 밝힌 것으로, 비흡연자의 폐암 발생 원인 규명과 더불어 정밀치료 시스템을 구축하는 데 적용 가능할 것으로 기대된다.
우리 대학 출신 이준구 박사(現 하버드 의과대학 박사후연구원)와 박성열 박사과정이 공동 1 저자로 참여한 이번 연구는 국제 학술지 ‘셀(Cell)’ 5월 30일 자 온라인판에 게재됐다. (논문명 : Tracing Oncogene Rearrangements in the Mutational History of Lung Adenocarcinoma) 또한, 이번 연구에는 하버드 의과대학, 한국과학기술정보연구원, 국립암센터 연구자들도 함께 참여했다.
흡연은 폐 선암의 가장 큰 발병 인자로 잘 알려졌지만 암 융합유전자 돌연변이, 즉 ALK, RET, ROS1 등에 의한 암 발생은 대부분 비흡연자에게서 발견된다. 융합유전자로 인한 환자는 전체 폐 선암 환자의 10% 정도를 차지하고 있지만, 이 돌연변이의 생성과정에 대해서는 알려진 것이 거의 없었다.
이전까지의 폐 선암 유전체 연구는 주로 유전자 지역을 규명하는 ‘엑솜 서열분석 기법’이 사용됐으나 연구팀은 유전자 간 부분들을 총망라해 분석하는‘전장 유전체 서열분석 기법’을 대규모로 적용했다.
연구팀은 138개의 폐 선암(lung adenocarcinoma) 사례의 전장 유전체 서열 데이터(whole-genome sequencing)를 생성 및 분석해 암세포에 존재하는 다양한 양상의 유전체 돌연변이를 찾아냈다. 특히 흡연과 무관한 폐암의 직접적 원인인 융합유전자를 생성하는 유전체 구조 변이의 특성을 집중적으로 규명했다.
유전체에 발생하는 구조적 변이는 DNA의 두 부위가 절단된 후 서로 연결되는 단순 구조 변이와 DNA가 많은 조각으로 동시에 파쇄된 후 복잡하게 서로 재조합되는 복잡 구조 변이로 나눌 수 있다.
복잡 구조 변이는 암세포에서 많이 발견된다. DNA의 수백 부위 이상이 동시에 절단된 후 상당 부분 소실되고 일부가 다시 연결되는 ‘염색체 산산조각(chromothripsis)’ 현상이 대표적 사례이다. 연구팀은 70% 이상의 융합유전자가‘유전체 산산조각 (chromothripsis)’ 현상 등 복잡 구조 돌연변이에 의해 생성됨을 확인했다.
또한, 연구팀은 정밀 유전체 분석을 통해 복잡 구조 돌연변이가 폐암이 진단되기 수십 년 전의 어린 나이에도 이미 발생할 수 있다는 사실을 발견했다.
세포의 유전체는 노화에 따라 비교적 일정한 속도로 점돌연변이가 쌓이는데 연구팀은 이를 이용하여 마치 지질학의 연대측정과 비슷한 원리로 특정 구조 변이의 발생 시점을 통계적으로 추정할 수 있는 기술을 개발했다. 이 기술을 통해 융합유전자 발생은 폐암을 진단받기 수십 년 전, 심지어는 10대 이전의 유년기에도 발생할 수 있다는 사실을 확인했다.
이는 암을 일으키는 융합유전자 돌연변이가 흡연과 큰 관련 없이 정상 세포에서 발생할 수 있음을 명확히 보여주는 사례이며, 단일 세포가 암 발생 돌연변이를 획득한 후에도 실제 암세포로 발현되기 위해서는 추가적인 요인들이 오랜 기간 누적될 필요가 있음을 뜻한다.
연구팀의 이번 연구는 흡연과 무관한 폐암 발생 과정에 대한 지식을 한 단계 확장했다는 의의가 있다. 향후 폐암의 예방, 선별검사 정밀치료 시스템 구축에 이바지할 수 있을 것으로 기대된다.
연구팀은 한국과학기술정보연구원의 슈퍼컴퓨터 5호기 누리온 시스템을 통해 유전체 빅데이터의 신속한 정밀 분석을 수행했다. 슈퍼컴퓨터 5호기는 향후 타 유전체 빅데이터 연구자들에게도 활용 가능할 것으로 보인다.
주영석 교수는 “암유전체 전장서열 빅데이터를 통해 폐암을 발생시키는 첫 돌연변이의 양상을 규명했으며, 정상 폐 세포에서 흡연과 무관하게 이들 복잡 구조변이를 일으키는 분자 기전의 이해가 다음 연구의 핵심이 될 것이다”라고 말했다.
서울대학교 의과대학 김영태 교수는 “2012년 폐 선암의 KIF5B-RET 융합유전자 최초 발견으로 시작된 본 폐암 연구팀이 융합유전자의 생성과정부터 임상적 의미까지 집대성했다는 것이 이번 연구의 중요한 성과이다”라고 말했다.
이번 연구는 한국연구재단, 보건복지부 포스트게놈 다부처유전체사업/세계선도의과학자 육성사업, 서경배 과학재단 및 서울대학교 의과대학 교실지정기부금의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 흡연과 무관한 폐암에서 융합유전자에 의한 발암기전
그림2. 폐선암에서 관찰되는 다양한 복잡 구조 변이의 특성
그림3. 어린 나이에 생긴 융합유전자의 예시
2019.06.03
조회수 19772
-
이진우 교수, 그래핀 기반의 자연 효소 모방물질 개발
〈 이진우 교수 〉
우리 대학 생명화학공학과 이진우 교수 연구팀이 그래핀을 기반으로 해 과산화효소의 선택성과 활성을 모방한 나노단위 크기의 무기 소재(나노자임, Nanozyme)를 합성하는 데 성공했다.
연구팀은 이 무기 소재를 이용하면 알츠하이머병 조기 진단과 관련된 신경전달물질인 아세틸콜린을 자연 효소를 이용했을 때보다 더 민감하게 검출할 수 있음을 확인했다.
가천대학교 바이오나노학과 김문일 교수, UNIST 에너지화학공학부 곽상규 교수팀과 공동으로 연구하고 김민수 박사가 1 저자로 참여한 이번 연구는 재료 분야 국제 학술지 ‘에이씨에스 나노(ACS Nano)’ 3월 25일자에 게재됐다. (논문명 : N and B Codoped Graphene: A Strong Candidate To Replace Natural Peroxidase in Sensitive and Selective Bioassays , 질소와 붕소가 동시에 도핑된 그래핀: 민감하고 선택성이 있는 바이오에세이에 사용되는 자연의 과산화효소를 대체할 수 있는 강력한 후보)
효소는 우리의 몸 속 다양한 화학 반응에 촉매로 참여하고 있다. 각각의 효소는 구조가 매우 복잡해 체내에서 특정 온도와 환경에서 원하는 특정 반응에만 촉매 역할을 할 수 있다.
특히 과산화효소는 과산화수소와 반응하면 푸른 색을 띠기 때문에 과산화수소를 시각적으로 검출할 수 있다. 이를 이용해 산화 과정에서 아세틸콜린을 포함한 과산화수소를 배출하는 다양한 물질을 시각적으로 검출할 수 있다는 장점이 있다.
대신 효소는 안정성, 생산성이 낮고 가격이 비싸다는 단점이 있다. 단백질로 이뤄진 효소와 달리 무기물질로 합성된 효소 모방 물질은 기존 효소의 단점을 해소할 수 있어 효소의 역할인 질병의 검출 및 진단 시스템에 활용할 수 있다. 따라서 효소의 활성을 정확히 모방하는 나노물질의 필요성이 커지고 있다.
그러나 효소를 모방하는 나노물질은 활성을 모방하는 것이 가능하지만 원하지 않은 다른 부가적인 반응을 일으킬 수 있다는 단점이 있어 효소를 대체하는 데 어려움이 있다. 특히 기존의 과산화효소 활성이 높은 물질은 과산화수소가 없는 상황에서도 색이 변하기 때문에 검출 물질이 없어도 발색이 되는 단점이 있다.
문제 해결을 위해 연구팀은 과산화효소 활성만을 선택적으로 모방하는 질소와 붕소가 동시에 도핑된 그래핀을 합성했다. 이 그래핀의 경우 과산화수소 활성은 폭발적으로 증가하지만 다른 효소 활성은 거의 증가하지 않아 과산화효소를 정확하게 모방할 수 있다.
연구팀은 실험적 내용을 계산화학을 통해 증명했으며 새롭게 개발한 물질을 이용해 중요 신경전달 물질인 아세틸콜린을 시각적으로 검출하는 데 성공했다.
아세틸콜린은 알츠하이머병의 조기 진단과 관련이 높아 연구팀의 효소모방 물질을 이용하면 향후 질병 진단 및 치료에 기여할 수 있을 것으로 예상된다.
이 교수는 “효소 모방 물질은 오래되지 않은 분야이지만 기존 효소를 대체할 수 있다는 잠재성 때문에 관심이 폭발적으로 커지고 있다”라며 “이번 연구를 통해 효소의 높은 활성 뿐 아니라 선택성까지 가질 수 있는 물질을 합성하고 알츠하이머의 진단 마커인 아세틸콜린을 효과적으로 시각적 검출할 수 있는 기술을 확보했다”라고 말했다.
이번 연구는 한국연구재단의 이공분야 기초연구사업 중견연구자지원사업을 통해 수행됐다.
□ 그림 설명
그림1. 촉매의 과산화효소와 산화효소 활성을 시각적으로 확인할 수 있는 사진
그림2. 질소와 붕소가 동시에 도핑된 그래핀의 바이오 에세이 적용
2019.04.23
조회수 15638