본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%94%A5%EB%9F%AC%EB%8B%9D
최신순
조회순
이상완 교수, 신경과학-인공지능 융합으로 공학적 난제 해결
〈 (왼쪽부터) 안수진 박사과정, 이지항 박사, 이상완 교수 〉 우리 대학 바이오및뇌공학과 이상완 교수 연구팀이 영국 케임브리지 대학, 구글 딥마인드와의 공동 연구를 통해 차세대 뇌 기반 인공지능 시스템 설계의 방향을 제시했다. 이번 연구는 인간의 두뇌가 기존의 인공지능 알고리즘이 해결하지 못하는 부분을 해결할 수 있다는 사실에 기반한 신경과학-인공지능 융합 연구이다. 성능, 효율, 속도의 균형적 설계와 같은 다양한 공학적 난제를 해결할 수 있는 신경과학 기반 강화학습 이론을 제안한 것으로 새로운 인공지능 알고리즘 설계에 긍정적인 영향을 줄 것으로 기대된다. 이상완 교수와 함께 이지항 박사, 안수진 박사과정이 주도한 이번 연구는 국제 학술지 사이언스의 자매지 ‘사이언스 로보틱스(Science Robotics)’ 1월 16일 자 온라인판에 포커스 형식으로 게재됐다. 최적제어 이론에서 출발한 강화학습은 기계 학습의 한 영역으로 지난 20여 년 동안 꾸준히 연구된 분야이다. 특히 지난 5년 동안은 딥러닝 기술을 발전과 맞물려 급격한 성장을 이뤘다. 딥러닝 기반 강화학습 알고리즘은 최근 알파고와 같은 전략 탐색 문제, 로봇 제어, 응급실 비상 대응 시스템과 같은 의료 진단 등 다양한 분야에 적용되고 있다. 그러나 주어진 문제에 맞게 시스템을 설계해야 하는 점, 불확실성이 높은 환경에서는 성능이 보장되지 않는 점 등이 근본적인 해결책으로 남아있다. 강화학습은 의사 결정 및 계산신경과학 분야에서도 지난 20년간 꾸준히 연구되고 있다. 이상완 교수는 2014년 인간의 전두엽-기저핵 뇌 회로에서 이종 강화학습을 제어한다는 신경과학적 증거를 학계에 발표한 바 있다. 2015년에는 같은 뇌 회로에서 고속 추론 과정을 제어한다는 연구를 발표했다. 연구팀은 이번 연구에서 강화학습 등의 개별 인공지능 알고리즘이 해결하지 못하는 공학적 문제를 인간의 두뇌가 이미 해결하고 있다는 사실에 기반한 ‘전두엽 메타 제어’ 이론을 제안했다. 중뇌 도파민-복외측전전두피질 네트워크에서 외부 환경에 대한 학습의 신뢰도를 스스로 평가할 수 있는 보상 예측 신호나 상태 예측 신호와 같은 정보를 처리하며, 인간의 두뇌는 이 정보들을 경쟁적-협력적으로 통합하는 프로세스를 통해 외부 환경에 가장 적합한 학습 및 추론 전략을 찾는다는 것이 이론의 핵심이다. 이러한 원리를 단일 인공지능 알고리즘이나 로봇설계에 적용하면 외부 상황변화에 강인하게 성능, 효율, 속도 세 조건(performance-efficiency-speed tradeoff) 사이의 균형점을 유지하는 최적의 제어 시스템을 설계할 수 있다. 더 나아가 다수의 인공지능 개체가 협력하는 상황에서는 서로의 전략을 이용함으로 협력-경쟁 사이의 균형점을 유지할 수 있다. 1 저자인 이지항 박사는 “현대 인공지능의 우수한 성능은 사람의 행동 수준 관찰뿐 아니라 두뇌의 저수준 신경 시스템을 알고리즘으로 구현해 적극적으로 발전시킨 결과라고 보고 있다”라며 “이번 연구는 계산신경과학에 기반한 결과로 현대 딥러닝과 강화학습에서 겪는 성능, 효율, 속도 사이의 난제를 해결하는 실마리가 될 수 있고, 새로운 인공지능 알고리즘 설계에 많은 영감을 줄 것이다”라고 말했다. 이상완 교수는 “연구를 하다 보면 우리의 두뇌는 공학적 난제를 의외로 쉽게 해결하고 있음을 알 수 있다. 이 원리를 인공지능 알고리즘 설계에 적용하는 뇌 기반 인공지능 연구는 구글 딥마인드, MIT, 캘리포니아 공과대학, UCL 등 해외 유수 기관에서도 관심을 두는 신경과학-인공지능 융합 연구 분야이다”라며 “장기적으로는 차세대 인공지능 핵심 연구 분야 중의 하나로 자리를 잡을 것으로 기대한다”라고 말했다. 이번 연구는 과학기술정보통신부 및 정보통신기술진흥센터 연구개발 사업, 삼성전자 미래기술육성센터의 지원을 받아 수행됐다. □ 그림 설명 그림1. 외부 환경에 따라 성능-효율-속도 문제 균형점을 찾는 뇌기반 강화학습 이론 (좌), 이를 최적 제어하는 ‘전두엽 메타 제어’(중) 및 로보틱스 분야 문제 해결 적용 사례 (우)
2019.01.24
조회수 10286
한동수, 신진우 교수, 느린 인터넷 환경에서도 고화질 영상 감상 기술 개발
〈 (왼쪽부터) 김재홍, 정영목 석사과정, 여현호 박사과정, 한동수, 신진우 교수 〉 우리 대학 전기및전자공학부 신진우, 한동수 교수 연구팀이 딥러닝 기술을 이용한 인터넷 비디오 전송 기술을 개발했다. 여현호, 정영목, 김재홍 학생이 주도한 이번 연구 결과는 격년으로 개최되는 컴퓨터 시스템 분야의 유명 학술회의인 ‘유즈닉스 OSDI(USENIX OSDI)’에서 10월 10일 발표됐고 현재 국제 특허 출원을 완료했다. 이 기술은 유튜브, 넷플릭스 등에서 비디오를 사용자에게 전송할 때 사용하는 적응형 스트리밍(HTTP adaptive streaming) 비디오 전송기술과 딥러닝 기술인 심층 콘볼루션 신경망(CNN) 기반의 초해상화를 접목한 새로운 방식이다. 이는 열악한 인터넷 환경에서도 고품질, 고화질(HD)의 비디오 시청이 가능할 뿐 아니라 4K, AV/VR 등을 시청할 수 있는 새로운 기반 기술이 될 것으로 기대된다. 기존의 적응형 스트리밍은 시시각각 변화하는 인터넷 대역폭에 맞춰 스트리밍 중인 비디오 화질을 실시간으로 조절한다. 이를 위해 다양한 알고리즘이 연구되고 있으나 네트워크 환경이 좋지 않을 때는 어느 알고리즘이라도 고화질의 비디오를 감상할 수 없다는 한계가 있다. 연구팀은 적응형 스트리밍에 초해상화를 접목해 인터넷 대역폭에 의존하는 기존 적응형 스트리밍의 한계를 극복했다. 기존 기술은 비디오를 시청 시 긴 영상을 짧은 시간의 여러 비디오 조각으로 나눠 다운받는다. 이를 위해 비디오를 제공하는 서버에서는 비디오를 미리 일정 시간 길이로 나눠 준비해놓는 방식이다. 연구팀이 새롭게 개발한 시스템은 추가로 신경망 조각을 비디오 조각과 같이 다운받게 했다. 이를 위해 비디오 서버에서는 각 비디오에 대해 학습이 된 신경망을 제공하며 또 사용자 컴퓨터의 사양을 고려해 다양한 크기의 신경망을 제공한다. 제일 큰 신경망의 크기는 총 2메가바이트(MB)이며 비디오에 비해 상당히 작은 크기이다. 신경망을 사용자 비디오 플레이어에서 다운받을 때는 여러 개의 조각으로 나눠 다운받으며 신경망의 일부만 다운받아도 조금 떨어지는 성능의 초해상화 기술을 이용할 수 있도록 설계했다. 사용자의 컴퓨터에서는 동영상 시청과 함께 병렬적으로 심층 콘볼루션 신경망(CNN) 기반의 초해상화 기술을 사용해 비디오 플레이어 버퍼에 저장된 저화질 비디오를 고화질로 바꾸게 된다. 모든 과정은 실시간으로 이뤄지며 이를 통해 사용자들이 고화질의 비디오를 시청할 수 있다. 연구팀이 개발한 시스템을 이용하면 최대 26.9%의 적은 인터넷 대역폭으로도 최신 적응형 스트리밍과 같은 체감 품질(QoE, Quality of Experience)을 제공할 수 있다. 또한 같은 인터넷 대역폭이 주어진 경우에는 최신 적응형 스트리밍보다 평균 40% 높은 체감 품질을 제공할 수 있다. 이 시스템은 딥러닝 방식을 이용해 기존의 비디오 압축 방식보다 더 많은 압축을 이뤄낸 것으로 볼 수 있다. 연구팀의 기술은 콘볼루션 신경망 기반의 초해상화를 인터넷 비디오에 적용한 차세대 인터넷 비디오 시스템으로 권위 잇는 학회로부터 효용성을 인정받았다. 한 교수는 “지금은 데스크톱에서만 구현했지만 향후 모바일 기기에서도 작동하도록 발전시킬 예정이다”며 “이 기술은 현재 유튜브, 넷플릭스 등 스트리밍 기업에서 사용하는 비디오 전송 시스템에 적용한 것으로 실용성에 큰 의의가 있다”고 말했다. 이번 연구는 과학기술정보통신부 정보통신기술진흥센터(IITP) 방송통신연구개발 사업의 지원을 받아 수행됐다. 비디오 자료 링크 주소 1. https://www.dropbox.com/sh/z2hvw1iv1459698/AADk3NB5EBgDhv3J4aiZo9nta?dl=0&lst = □ 그림 설명 그림1. 기술이 적용되기 전 화질(좌)과 적용된 후 화질 비교(우) 그림2. 기술 개념도 그림3. 비디오 서버로부터 비디오가 전송된 후 저화질의 비디오가 고화질의 비디오로 변환되는 과정
2018.10.30
조회수 10919
유회준 교수, 딥러닝용 AI 반도체 개발
우리대학 전기및전자공학부 유회준 교수 연구팀이 스타트업 '유엑스 팩토리'와 함께 가변 인공신경망 기술을 적용해 딥러닝을 효율적으로 처리하는 AI 반도체를 개발했다. 딥러닝이란 컴퓨터가 마치 사람처럼 스스로 학습할 수 있도록 인공신경망을 기반으로 구축한 '기계 학습' 기술이다. 유 교수 연구팀이 개발한 새로운 칩은 반도체 안에서 인공신경망의 무게 정밀도를 조절함으로써 에너지 효율과 정확도를 조절한다. 1비트부터 16비트까지 소프트웨어로 간편하게 조절하면서 상황에 맞춰 최적화된 동작을 얻어낸다. 하나의 칩이지만 '콘볼루션 신경망'(CNN)과 '재귀 신경망'(RNN)을 동시에 처리할 수 있다. CNN은 이미지를 분류나 탐지하는 데 쓰이며, RNN은 주로 시간의 흐름에 따라 변화하는 영상과 음성 등 데이터 학습에 적합하다. 또 통합 신경망 프로세서(UNPU)를 통해 인식 대상에 따라 에너지효율과 정확도를 다르게 설정하는 것도 가능하다. 모바일에서 AI 기술을 구현하려면 고속 연산을 '저전력'으로 처리해야 한다. 그렇지 않으면 한꺼번에 많은 정보를 처리하면서 발생하는 발열로 인해 배터리 폭발 등의 사고가 일어날 수 있기 때문이다. 연구팀에 따르면 이번 칩은 세계 최고 수준 모바일용 AI 칩 대비 CNN과 RNN 연산 성능이 각각 1.15배, 13.8배이 달한다. 에너지효율도 40% 높은 것으로 나타났다. 스마트폰 카메라를 통해 사람의 얼굴 표정을 인식해 행복, 슬픔, 놀람, 공포, 무표정 등 7가지의 감정을 자동으로 인식하는 감정인식 시스템도 개발됐다. 이 시스템은 감정 상태를 스마트폰 상에 실시간으로 표시한다. 유 교수 연구팀의 이번 연구는 지난 13일 미국 샌프란시스코에서 열린 국제고체회로설계학회(ISSCC)에서 발표됐다. 유회준 교수는 "기술 상용화에는 1년 정도 더 걸릴 전망"이라며 " 모바일에서 AI를 구현하기 위해 저전력으로 가속하는 반도체를 개발했으며, 향후 물체인식, 감정인식, 동작인식, 자동 번역 등 다양하게 응용될 것으로 기대된다"고 설명했다.
2018.02.26
조회수 14392
김문철 교수, 인공지능 통해 풀HD영상 4K UHD로 실시간 변환
〈 김 문 철 교수 〉 우리 대학 전기및전자공학부 김문철 교수 연구팀이 딥러닝 기술을 이용해 풀 HD 비디오 영상을 4K UHD 초고화질 영상으로 초해상화 변환할 수 있는 기술을 개발했다. 이 기술은 인공지능의 핵심 기술인 심층 콘볼루션 신경망(Deep Convolutional Neural Network, DCNN)을 하드웨어로 구현했다. 초당 60프레임의 초고해상도 4K UHD 화면을 실시간으로 생성할 수 있는 알고리즘 및 하드웨어 개발을 통해 향후 프리미엄 UHD TV, 360 VR, 4K IPTV 등에 기여할 것으로 기대된다. 이번 연구는 KAIST 전기및전자공학부 김용우, 최재석 박사과정 등이 주도했고 현재 특허 출원을 준비 중이다. 최근 영상 화질 개선 연구에 인공지능의 핵심 기술인 심층 콘볼루션 신경망을 적용시키려는 노력이 활발히 이뤄지고 있다. 그러나 이러한 심층 콘볼루션 신경망 기술은 연산 복잡도와 매우 높고 사용되는 메모리가 커 작은 규모의 하드웨어를 통해 초고해상도 영상으로 실시간 변환하는 데 한계가 있다. 기존의 프레임 단위로 영상을 처리하던 방식은 DRAM과 같은 외부 메모리 사용이 필수적인데 이로 인해 영상 데이터를 처리할 때 지나친 외부 메모리 접근으로 인한 메모리 병목현상과 전력 소모 현상이 발생했다. 김 교수 연구팀은 프레임 단위 대신 라인 단위로 데이터를 처리할 수 있는 효율적인 심층 콘볼루션 신경망 구조를 개발해 외부 메모리를 사용하지 않고도 작은 규모의 하드웨어에서 초당 60 프레임의 4K UHD 초해상화를 구현했다. 연구팀은 기존 소프트웨어 방식의 심층 콘볼루션 신경망 기반의 고속 알고리즘과 비교해 필터 파라미터를 65% 정도만 적용하고도 유사한 화질을 유지했다. 이는 딥러닝 기술을 이용한 고해상도 영상 변환 기술이 활발히 진행되는 가운데 초당 60프레임의 4K UHD 초해상화를 하드웨어로 실현한 첫 사례로 꼽힌다. 김 교수는 “이번 연구는 심층 콘볼루션 신경망이 작은 규모의 하드웨어에서 초고품질 영상 처리에 실질적으로 응요 가능한 기술임을 보인 매우 중요한 사례다”며 “현재 프리미엄 UHD TV 및 UHD 방송 콘텐츠 생성, 360도 VR 콘텐츠, 4K IPTV 서비스에 매우 효과적으로 적용할 수 있다”고 말했다. 이번 연구는 과학기술정보통신부 정보통신기술진흥센터(IITP) ICT 기초연구실지원사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 실시간 AI(딥러닝) 기반 고속 초고해상도 업스케일링 기술 그림2.심층 신경망 AI 기반 4K UHD 60fps 실시간 초해상화 하드웨어 (FPGA) 그림3. 심층 신경망 AI 기반 4K UHD 60fps 실시간 초해상화 하드웨어 시연
2018.01.16
조회수 17141
유회준 교수, 인공지능 얼굴인식 시스템 K-EYE 개발
우리 대학 전기및전자공학과 유회준 교수 연구팀이 딥러닝 알고리즘을 세계 최소 전력으로 구현하는 인공지능 반도체 칩 CNNP를 개발했다. 그리고 이를 내장한 얼굴인식 시스템 K-Eye 시리즈를 개발했다. 연구팀이 개발한 K-Eye 시리즈는 웨어러블 디바이스와 동글 타입 2가지로 구성된다. 웨어러블 타입인 K-Eye는 블루투스로 스마트폰과 연동 가능하다. 봉경렬 박사과정이 주도하고 ㈜유엑스팩토리(대표 박준영)과 공동으로 개발한 이번 연구는 지난 2월 미국에서 열린 국제고체회로설계학회(ISSCC)에서 세계 최저전력 CNN칩으로 발표돼 주목을 받았다. 최근 글로벌 IT 기업들이 알파고를 비롯한 인공지능 관련 기술들을 경쟁적으로 발표하고 있다. 그러나 대부분은 소프트웨어 기술이라 속도가 느리고 모바일 환경에서는 구현이 어렵다는 한계가 있다. 따라서 이를 고속 및 저전력으로 구동하기 위해 인공지능 반도체 칩 개발이 필수적이다. 연구팀의 K-Eye 시리즈는 1mW 내외의 적은 전력만으로도 항상 얼굴 인식을 수행하는 상태를 유지하면서 사람의 얼굴을 먼저 알아보고 반응할 수 있다는 특징을 갖는다. K-Eye의 핵심 기술인 얼웨이즈 온(Always-On) 이미지 센서와 CNNP라는 얼굴 인식 처리 칩이 있었기 때문에 위와 같은 세계 최저전력 기술이 가능했다. 첫 번째 칩인 얼웨이즈 온(Always-On) 이미지 센서는 얼굴이 있는지 없는지 스스로 판단할 수 있어 얼굴 인식이 될 때에만 작동하게 해 대기 전력을 대폭 낮출 수 있다. 얼굴 검출 이미지 센서는 아날로그 프로세싱으로 디지털 프로세싱을 제어해 센서 자체의 출력 소모를 줄였다. 픽셀과 결합된 아날로그 프로세서는 배경 부분과 얼굴 부분을 구분하는 역할을 하고 디지털 프로세서는 선택된 일부 영역에서만 얼굴 검출을 수행하면 돼 효율적인 작업이 가능하다. 두 번째 칩인 CNNP는 딥러닝을 회로, 구조, 알고리즘 전반에 도입하고 재해석을 진행해 최저 수준의 전력을 구현하는 역할을 했다. 특히 CNNP칩은 3가지의 핵심 기술을 사용했는데 ▲알파고 인공지능 알고리즘에서 사용하는 2차원 계산을 1차원 계산으로 바꿔 고속 저전력화 ▲분산형으로 배치된 칩 내 메모리가 가로방향 뿐 아니라 세로방향도 읽어낼 수 있는 특수 저전력 분산 메모리로의 설계 ▲1024개의 곱셈기와 덧셈기가 동시에 구동돼 막강한 계산력을 가지면서 외부 통신망을 거치지 않고 직접 계산 결과를 주고받을 수 있게 한 점이다. CNNP는 97%의 인식률을 가지면서도 알파고에 사용된 GPU에 비해 5천분의 1정도의 낮은 전력인 0.6mW만을 소모한다. K-Eye를 목에 건 사용자는 앞에서 다가오는 상대방의 얼굴이 화면에 떠오르면 미리 저장된 정보와 실시간으로 찍힌 사진을 비교해 상대방의 이름 등 정보를 자연스럽게 확인할 수 있다. 동글 타입인 K-EyeQ는 스마트폰에 장착해 이용할 수 있는데 사용자를 알아보고 반응하는 기능을 한다. 미리 기억시킨 사용자의 얼굴이 화면을 향하기만 하면 스마트폰 화면이 저절로 켜지면서 그와 관련된 정보를 제공한다. 또한 입력된 얼굴이 사진인지 실제 사람인지도 구분할 수 있어 사용자의 얼굴 대신 사진을 보여주면 스마트폰은 반응하지 않는다. 유 교수는 “인공지능 반도체 프로세서가 4차 산업혁명시대를 주도할 것으로 기대된다”며 “이번 인공지능 칩과 인식기의 개발로 인해 세계시장에서 한국이 인공지능 산업의 주도권을 갖길 기대한다”고 말했다. □ 사진 설명. 사진1. K-EYE 사진 사진2. K-EYEQ 사진 사진3. CNNP 칩 사진
2017.06.14
조회수 15705
김대영 교수, EU와 글로벌 IoT 농식품 생태계 구축을 위한 공동 연구
우리 대학 전산학부 김대영 교수 연구팀과 유럽연합(EU)이 사물인터넷(IoT) 개방형 표준 및 아키텍쳐를 통한 글로벌 농식품 비즈니스 통합 에코시스템 개발 공동연구(The Internet of Food & Farm 2020, IoF2020)를 시작한다. EU IoF2020 프로젝트는 스마트 팜과 농식품 서비스 분야에 첨단 ICT 융합기술을 활용하여 효율적이면서도 안전하고 건강한 먹거리를 보장하는 글로벌 생태계 조성을 목표로 한다. 유럽 연합이 4년간 3,000만 유로를 지원하는 등 총 3,500만 유로가 투자되는 이번 공동연구는 대학, 연구소, 기업 등 16개국 71개 기관이 참여하는 대형 프로젝트다. 한국에서는 유일하게 KAIST가 참여한다. 연구팀은 자체 개발한 국제 표준 사물인터넷 오픈소스 플랫폼인 올리옷(Oliot)을 활용한 스마트 팜과 푸드 서비스 생태계 테스트베드를 국내 농식품 비즈니스 전반에 구축하고 유럽의 테스트베드와 연동한다. 이들 생태계로부터 수집한 글로벌 빅데이터 분석을 위한 딥러닝 등 최신 인공지능 기술을 개발하여 궁극적으로 사물인터넷 플랫폼과 인공지능 기술이 통합된 시스템을 정부, 기관, 기업, 농민들이 활용할 수 있도록 공개할 예정이다. IoF2020 프로젝트를 통해 개발되는 기술은 스마트팜 및 농식품 서비스 시장에 직접 투입하여 국내 농식품 산업에 활용될 수 있으며, 갈수록 높아지는 농식품 안전에 대한 요구를 만족시킬 수 있을 것으로 전망된다. 또한 핵심 기술인 올리옷(Oliot) 플랫폼은 농식품 분야 뿐 만 아니라, 스마트 시티, 스마트 팩토리, 헬스케어, 커넥티드 자동차등 다양한 산업에 활용될 것으로 기대된다. IoF2020 프로젝트 코디네이터인 조지 비어스(George Beers)는 "IoF2020이 농장에서 소비자 식탁으로까지의 유통방식에 패러다임 변화를 가져올 것이며, 푸드 서비스 분야에서의 경쟁력과 우수성을 강화하는 데 기여할 것이라고 믿는다”라고 말했다. KAIST 김대영 교수(전산학부, 오토아이디랩스(Auto-ID Labs) KAIST 센터장)는 “이미 국내에서 사물인터넷 국제표준 기술 적용을 시작했으며, 이번 프로젝트를 통해 유럽뿐 아니라 중국, 일본, 대만 등 아시아 국가와 남미 국가와도 글로벌 농식품 비즈니스 생태계 통합을 위한 노력이 진행 중이다”라고 밝혔다. KAIST는 지난 2005년부터 전 세계 6개 대학(MIT(미국), 케임브리지대(영국), 취리히공대(스위스), 푸단대(중국), 게이오대(일본))과 함께 세계 최초로 사물인터넷의 개념을 소개한 ‛오토아이디랩스(Auto-ID Labs)' 국제공동연구소를 운영하며 사물인터넷 생태계 구축을 위한 선행 표준기술을 연구하고 있다.
2017.01.17
조회수 16668
동작 인식 증강현실 스마트 안경 개발
〈 유 회 준 교수 〉 우리 대학 전기 및 전자공학과 유회준 교수 연구팀이 동작 인식이 가능한 증강 현실 전용 초저전력 스마트 안경 ‘케이 글래스 3(K-Glass 3)’를 개발했다. 유 교수 연구팀은 2014년 증강현실을 기반으로 한 케이 글래스 1, 2015년 시선추적이 가능한 케이 글래스 2에 이어 동작 인식이 가능한 3번째 버전의 케이 글래스 3를 발표했다. 이번 연구는 지난 달 31부터 5일간 미국 샌프란시스코에서 열린 국제고체회로설계학회(ISSCC)에서 발표됐다. 케이 글래스 3의 핵심 기술은 스테레오 카메라 시스템이다. 이를 통해 사용자가 가상 키보드를 타이핑하거나 가상 피아노 연주를 하는 등의 증강 현실을 체험할 수 있다. 기존 안경형 스마트 기기에서는 텍스트 전송을 위한 UI/UX(사용자 인터페이스 및 경험)가 없어 텍스트에 익숙한 사용자들에게 유용할 것으로 기대된다. 최근 대기업에서 발표되는 증강현실 기기들은 복잡한 알고리즘 처리를 위한 컴퓨터가 추가로 요구되고, 가상 아이콘 클릭 등의 심화 동작을 인식하기 위한 전용 센서를 필요로 한다. 이는 평균 3와트(W) 이상의 많은 전력을 소모시켜 스마트폰 대비 20%에 불과한 스마트 안경 시스템에서 사용하기엔 부적합하다. 그러나 케이 글래스 3의 스테레오 카메라 시스템은 복잡한 스테레오 비전 알고리즘을 초저전력 프로세서 내에서 평균 20mW의 효율로 가속하기 때문에 24시간 이상 동작 가능하다. 이는 연구팀이 저전력 딥러닝 전용 멀티코어를 모바일 기기에서 가속할 수 있도록 개발해 전용 프로세서 내에 집적했기 때문에 가능했다. 딥러닝 멀티코어는 총 7개의 고성능 코어로 구성돼 있고 사용자 동작 인식을 33ms 이내의 빠른 속도로 가속해 편리함을 증가시켰다. 또한 동작을 탐지해 사용하지 않을 때는 작동을 멈춰 초저전력으로 가속할 수 있다. 연구팀은 스마트 안경 시장이 스마트폰을 대체하기 위해선 저전력, 소형화는 물론 편리하고 직관적인 유저 인터페이스 및 경험(UI/UX) 개발이 필수적이라고 말했다. 이에 유 교수는 “케이 글래스 3는 기존 안경형 디스플레이(HMD)가 지원하지 않는 편리하고 직관적인 UI를 결합해 하나의 저전력 시스템으로 구현하는 데 성공했다”며 “미래 스마트 모바일 IT 분야에서 혁신적 변화를 주도할 것이다”고 말했다. 박성욱 박사과정 학생이 주도한 이번 연구는 유저 인터페이스 및 경험 개발 기업인 UX Factory와의 협업을 통해 진행됐다. □ 그림 설명 그림1. 착용 이미지 그림2. 케이글래스 3 실제사진 그림3. 케이글래스 3를 통해 구현한 가상키보드,가상피아노
2016.02.25
조회수 12552
<<
첫번째페이지
<
이전 페이지
1
2
3
>
다음 페이지
>>
마지막 페이지 3