-
정재웅 교수, 스마트폰으로 뇌 신경회로 무선 제어 기술 개발
〈 김충연, 변상혁 박사과정, 정재웅 교수〉
우리 대학 전기및전자공학부 정재웅 교수와 미국 워싱턴대(University of Washington) 마이클 브루카스(Michael Bruchas) 교수 공동 연구팀이 스마트폰 앱 조작을 통해 약물과 빛을 뇌 특정 부위에 전달함으로써 신경회로를 정교하게 조절할 수 있는 뇌 이식용 무선 기기를 개발했다.
이번 기술 개발을 통해 장기간의 동물 실험이 필요한 신약 개발뿐 아니라 치매, 파킨슨병 등 뇌 질환 치료에도 적용할 수 있을 것으로 기대된다.
라자 콰지(Raza Qazi, 1저자), 김충연, 변상혁 연구원이 개발하고 워싱턴대 신경과학 연구원들이 공동으로 참여한 이번 연구는 의공학 분야 국제 학술지 ‘네이처 바이오메디컬 엔지니어링(Nature Biomedical Engineering)’ 8월 6일 자에 게재됐다. (논문명 : Wireless optofluidic brain probes for chronic neuropharmacology and photostimulation).
광유전학과 신경약물학은 주변 신경회로에 영향을 주지 않고 목표로 하는 뉴런이나 신경회로만을 빛 또는 약물, 혹은 그 둘의 조합을 이용해 정교하게 제어할 수 있다. 기존의 전기자극을 활용한 방법에 비해 훨씬 더 높은 시공간적 해상도를 가져 최근 뇌 연구 및 뇌 질병 치료 목적으로 주목받고 있다.
하지만 현재 뇌 연구에 일반적으로 쓰는 기기는 상대적으로 크기가 커 뇌 조직 손상, 정교한 선택적 신경회로 제어 불가, 하나의 다기능성 프로브(probe) 형태로 구현이 어렵다. 또한, 기존 기기는 실리카(silica)와 금속 등 고강성 재료로 제작돼 부드러운 뇌 조직과의 기계 특성적 간극이 있다. 이러한 특성으로 인해 염증반응을 악화시켜 장기간 이식용으로 적합하지 않다.
무엇보다 일반적으로 연구실에서 쓰이고 있는 광섬유, 약물주입관 등은 뇌 이식 후 외부기기에 선이 연결된 형태로 사용해야 해 자유로운 행동을 크게 제약하게 된다.
연구팀은 중합체(polymer) 미세유체관과 마이크로 LED를 결합해 머리카락 두께의 유연한 탐침을 만들고, 이를 소형 블루투스 기반 제어 회로와 교체 가능한 약물 카트리지와 결합했다. 이를 통해 스마트폰 앱을 통해 무선으로 마이크로 LED와 약물 전달을 제어할 수 있는 무게 2g의 뇌 이식용 기기를 구현했다.
특히 약물 카트리지는 레고의 원리를 모사해 탐침 부분과 쉽게 조립 및 분리할 수 있도록 제작해, 필요할 때마다 새로운 약물 카트리지를 결합함으로써 원하는 약물을 장기간에 걸쳐 뇌의 특정 부위에 반복 전달할 수 있도록 만들었다.
연구팀은 이 기기를 쥐의 뇌 보상회로에 이식한 후 도파민 활성 약물과 억제 약물이 든 카트리지를 기기와 결합했다. 그 후 간단한 스마트폰 앱 제어와 도파민 활성 약물을 이용해 원하는 타이밍에 자유롭게 움직이는 쥐의 행동을 증가, 억제하는 데 성공했다.
또한, 연구팀은 쥐의 뇌에서 장소 선호도를 유도할 수 있는 부위에 빛에 반응하는 단백질을 주입해 신경세포가 빛에 반응하도록 처리했다.
그 후 쥐가 특정 장소로 이동했을 때 마이크로 LED를 켜 빛 자극을 통해 쥐가 그 장소에 계속 머물고 싶게 만들었다. 반대로 약물 전달을 통해 뇌 신경회로를 제어함으로써 쥐의 특정 장소 선호도를 없애는 데도 성공했다.
정 교수는 “빛과 약물을 이용한 신경회로 제어는 기존의 전기자극 방법보다 훨씬 더 정교해 부작용 없는 뇌 제어가 가능하다”라며 “개발된 기기는 간단한 스마트폰 조작으로 뇌의 특정 회로를 빛과 약물을 이용해 반복적, 장기적으로 무선 제어가 가능해 뇌 기능을 밝혀내기 위한 연구나 향후 뇌 질환의 치료에도 유용하게 적용할 수 있을 것이다”라고 말했다.
연구팀은 이 기술을 인체에 적용하기 위해 두개골 내에 완전히 이식할 수 있고 반영구적 사용이 가능한 형태로 디자인을 발전시키는 확장 연구를 계획하고 있다.
이번 연구는 한국연구재단 신진연구자지원사업(완전 이식 가능한 무선 유연성 광유체 뉴럴 임플랜트 개발 및 뇌 연구를 위한 광유전학/광약물학에의 적용) 및 기초연구실 지원사업(유전자 및 신경회로 조절 기반 중독 행동 제어 기초연구실)의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 디바이스가 이식된 쥐의 사진
그림2. 스마트폰앱을 이용한 마이크로 LED 컨트롤
그림3. 개발된 뇌 이식용 무선 디바이스
2019.08.08
조회수 21087
-
조용훈, 최형순 교수, 반도체 내 양자 소용돌이 제어 기술 개발
우리 대학 물리학과 조용훈, 최형순 교수 공동 연구팀이 반도체 공진기 구조에서 ‘엑시톤-폴라리톤 응축’이라는 양자물질 상태를 형성 후 새 광학적인 방식으로 양자 소용돌이를 생성하고 제어하는 데 성공했다.
권민식 연구원과 오병용 박사가 공동 1저자로 참여한 이번 연구 결과는 미국 물리학회가 발행하는 물리학 권위지인‘피지컬 리뷰 레터스 (Physical Review Letters)’ 2월호에 게재됐다.
태풍이 일거나 싱크대에서 물이 빠질 때 유체가 소용돌이를 일으키며 회전하는 것은 우리에게 익숙한 현상이다.
이와 마찬가지로 초유체, 초전도체 같은 양자 유체도 소용돌이를 일으키며 회전할 수 있는데, 이는 파동 함수의 위상(phase)이 소용돌이를 중심으로 원주율의 특정 배수가 되는 조건에서만 가능하다. 이렇게 소용돌이가 불연속적으로 양자화되는 현상을 양자 소용돌이라고 한다.
양자 소용돌이는 양자 유체역학을 연구하는 데 가장 핵심적인 요소 중 하나이다. 초유체의 에너지 손실 없이 회전할 수 있는 특성과 소용돌이의 회전 방향을 쉽게 뒤집을 수 없는 위상학(topology)적 안정성이 결합돼 있어 양자 소용돌이를 쉽게 생성하고 제어할 수 있다면 미래형 정보 소자로도 활용할 수 있다.
이런 면에서 반도체 내부에 존재하는 양자 유체인 엑시톤-플라리톤(이하 폴라리톤)은 특히 유리하다. 반도체에 밴드갭(전도체의 가장 아랫부분의 에너지 준위와 가전자대의 가장 윗부분의 에너지 준위 간의 에너지 차이)보다 높은 에너지를 갖는 빛을 쬐면 전자-전공 쌍이 형성되고 서로 강하게 이끌리며 엑시톤을 형성한다.
이러한 반도체에 높은 반사율을 갖는 거울 구조의 공진기를 결합하면 빛(광자)과 물질(엑시톤)이 강하게 상호작용하며 빛, 물질의 성질을 동시에 갖는 제3의 양자 물질을 만들 수 있는데 이를 폴라리톤이라 한다.
폴라리톤이 일정 밀도 이상 모이면 마치 하나의 입자처럼 행동하는 폴라리톤 응축 상태를 띌 수 있는데 이 때 폴라리톤은 초유체의 특성도 갖게 된다. 다른 초유체와 달리 잘 정립된 반도체 공정 기술과 광학적 제어 기술이 결합돼 있고, 초유체 생성 온도가 상대적으로 높아 그 응용 가능성이 기대되는 물질이다.
연구팀은 광-펌핑(원자나 이온이 빛을 흡수해 낮은 에너지의 상태에서 높은 에너지의 상태로 변화하는 현상)을 위해 사용한 레이저의 궤도 각운동량을 제어해 반도체 물질 내에 양자 소용돌이의 방향과 개수를 손쉽게 조절할 방법을 개발했다.
연구팀은 공진 파장이 아닌 빛으로 기존 양자 소용돌이 생성을 위한 까다로운 실험조건을 극복했다. 이 결과는 고체 상태에서 광학적 방법을 이용한 미래형 정보 소자와 복잡한 양자 현상을 이해할 수 있는 양자 시뮬레이터로의 활용 가능성을 높였다는 측면에서 큰 의의가 있다.
비공진 레이저의 궤도 각운동량이 폴라리톤의 기저 상태에까지 영향을 끼친다는 것을 밝힌 이번 연구 결과는 반도체 공진기 시스템에서 전자-정공 쌍의 에너지 완화 과정을 이해하는 데에 있어서도 중요한 결과이다.
KIST 송진동 박사 연구팀과의 협력으로 진행된 이번 연구는 한국연구재단의 중견연구자 및 신진연구자 지원사업을 받아 수행됐다.
□ 그림 설명
그림1. 엑시톤-폴라리톤 초유체와 양자소용돌이 상태의 생성
그림2. 양자소용돌이 제어
2019.03.11
조회수 14227
-
최원호 교수, 플라즈마 내 전자의 가열 원리 규명
〈 최원호 교수, 박상후 연구교수〉
우리 대학 원자력및양자공학과 최원호 교수 연구팀이 약하게 이온화된 플라즈마(weakly ionized plasma)에서 전자가 가열되는 구조와 제어 원리를 규명하는데 성공했다.
플라즈마 내의 모든 반응이 전자로부터 시작된다는 점으로 볼 때 전자의 가열 원리를 규명함으로써 플라즈마를 더욱 자유롭고 다양하게 활용할 수 있을 것으로 예상된다.
이는 대기압 플라즈마 내에 존재하는 자유 전자에 대한 기초 연구 자료로 기존 플라즈마의 활용 및 응용 가능성을 높이는 등 플라즈마 물리학 및 응용기술 발전에 크게 기여할 것으로 기대된다.
박상후 연구교수가 1저자로 참여한 이번 연구는 국제 학술지 ‘사이언티픽 리포트(Scientific Reports)’5월 14일자와 7월 5일자 온라인 판에 연달아 게재됐다. (논문명 : Electron information in single- and dual-frequency capacitive discharges at atmospheric pressure, 단일 및 이중 주파수 대기압 플라즈마의 전자 정보 / Electron heating in rf capacitive discharges at atmospheric-to-subatmospheric pressures, 대기압과 대기압보다 낮은 압력에서 라디오 주파수 플라즈마 내의 전자 가열)
물질의 세 가지 상태인 고체, 액체, 기체와 더불어 ‘물질의 네 번째 상태’라 불리는 플라즈마는 표준 온도 및 압력(25 ℃, 1 기압)의 상태에서는 자연적으로 존재하지 않으나 인위적으로 기체에 에너지를 가하면 플라즈마 상태가 된다.
학계 및 산업계는 활용 목적과 조건에 맞춰 다양한 형태의 플라즈마 발생원을 개발해 사용하고 있다. 특히 대기압 플라즈마는 응용 가능 분야가 다양하고 활용도가 높아 학술적, 산업적 활용성 측면에서 많은 관심을 받고 있다.
일반적으로 플라즈마 내의 다양한 화학적, 물리적 반응은 전자로부터 시작되기 때문에 전자의 밀도와 온도의 시공간적 변화는 아주 중요한 정보이다. 플라즈마 및 가속기 물리학 분야에서 자유 전자의 가열 여부는 과학자들의 관심을 지속적으로 받은 연구 주제이다.
그러나 대기압 조건에서는 자유 전자와 중성기체의 충돌이 빈번하기 때문에 이온화된 플라즈마 내 자유 전자의 밀도와 온도를 측정하는 데에는 한계가 있어 자유 전자의 가열 구조 및 원리를 실험적으로 규명할 수 없었다.
또한 전자 가열의 제어 방법 및 주요 요인에 대한 정보가 부족해 플라즈마의 반응성과 활용성 개선이 제한적이었다.
연구팀은 문제 해결을 위해 전자-중성입자 제동복사(electron-neutral bremsstrahlung)란 기술을 이용해 플라즈마 내 자유 전자의 밀도, 온도를 정확히 진단하고 이를 2차원으로 영상화하는 기술을 개발했다.
연구팀은 개발한 진단 기술을 이용해 대기압 플라즈마에서 수 나노초(10억분의 1초) 단위로 자유 전자의 온도(에너지)를 측정해 전자가 에너지를 얻는 가열 과정의 시공간적 분포 및 근본 원리를 밝히는 데 성공했다.
0.25~1기압 압력구간에서의 전자 온도의 시공간적 분포의 변화를 실험적으로 최초로 확인해 대기압 및 대기압보다 낮은 압력에서 전자가 에너지를 얻는 가열의 기본 원리를 규명했다.
최 교수는 “이 연구 결과는 자유 전자와 중성입자의 충돌이 매우 빈번한 조건에서 발생하는 플라즈마에서의 전자 가열 원리를 학문적으로 이해하는 데 유용할 것이다”며 “이를 통해 경제적, 산업적 활용 가능한 대기압 플라즈마 발생원을 개발하고 다양하게 활용하는데 큰 역할을 하길 기대한다”고 말했다.
이번 연구는 국가핵융합연구소의 미래선도플라즈마-농식품융합기술개발사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 측정된 파장의 제동복사 및 전자 온도의 시공간적 변화
그림2. 단일 및 이중 주파수로 구동하는 플라즈마에서 측정된 제동복사 및 전자 온도의 시공간적 변화
2018.07.26
조회수 13680
-
양민양 교수, 고성능 필름형 차세대 전지 개발
〈 이 재 학 박사과정, 양 민 양 교수 〉
우리 대학 기계공학과 양민양 교수 연구팀이 고성능의 필름형 차세대 전지(슈퍼커패시터)를 저렴하고 간단한 방법으로 제작하는 데 성공했다.
연구팀은 기존의 복잡한 제작과정과 낮은 성능 등의 단점을 갖는 필름형 슈퍼커패시터를 대체할 수 있는 기술을 개발했다. 이는 새로운 고성능 소자구조를 단일공정으로 제작할 수 있는 핵심 재료 및 소자 제조 원천기술이다.
이재학 박사과정이 1저자로 참여한 이번 연구 결과는 재료, 화학분야의 국제 학술지 영국왕립화학회의 ‘저널 오브 머티리얼즈 케미스트리 에이(Journal of Materials Chemistry A)’ 12월 21일자 표지논문에 선정됐다.
슈퍼커패시터는 기존의 리튬이온배터리와 비교해 월등하게 빠른 충전 속도와 반영구적 수명을 가져 차세대 에너지 저장소자로 각광받고 있다.
무엇보다 유연한 기판에 제조되는 필름형 슈퍼커패시터는 웨어러블 및 유연 전자소자의 회로에 직접 연결돼 전원 역할을 할 수 있기 때문에 차세대 유연 전자소자의 핵심 전력소자이다.
기존에는 유연한 필름 위에 높은 표면적의 금속 전극을 형성하기 위해 포토리소그래피, 진공증착 등의 반도체 공정을 이용했다. 또한 금속전극의 표면적 향상을 위해 추가적으로 고가의 설비와 2단계의 유독한 화학 공정이 필요했다.
연구팀은 보다 빠르고 저렴하며 간단한 방법인 레이저 성장 소결 공정 기술을 개발했다. 이는 나노미터 단위의 기공을 갖는 초다공성 은(銀) 전극을 제조하는 기술로 슈퍼커패시터의 전극으로 적용하는 데 성공했다.
레이저만을 이용해 은 미세 패턴을 형성하는 동시에 내부에 다공성 나노구조를 생성해 10단계 이상 소요되던 세부 제조 과정을 1단계로 간소화했다.
연구팀은 기존 금속 나노 용액과 비교해 매우 저렴한 무입자 유기금속이온 화합물 용액을 사용해 핵생성, 열성장, 다결정 금속 막 형성으로 이어지는 특수한 성장 소결 원리를 규명했다.
연구팀은 일반적인 단일물질 대칭구조의 슈퍼커패시터 전극과 달리 이종(異種)의 금속산화물(이산화망간과 산화철)을 각각 양극과 음극으로 비대칭 적용해 구동 전압을 크게 향상시켰다.
이를 통해 전력 보유량을 극대화해 고용량 에너지 저장소자를 개발했고, 4초 내 초고속 충전이 가능하고 5천 번 이상의 내구성 테스트에서 안정적으로 작동하는 것을 확인했다.
양 교수는 “이번 연구 결과는 향후 웨어러블 및 유연 전자기기 기판에 포함돼 전력을 공급할 수 있는 에너지 저장소자로 사용 가능하다”며 “전원까지 포함하는 진정한 의미의 완전한 유연 전자기기의 현실화에 더 가까워졌다”고 말했다.
□ 그림 설명
그림1. 논문 표지 이미지
그림2. 제조된 필름형 슈퍼커패시터와 그 성능
그림3. 레이저 성장 소결 메카니즘
그림4. 레이저 조사조건에 따른 은 전극 형상 변화
2018.01.11
조회수 14956
-
우운택 교수, 스마트 관광 증강현실 어플리케이션 개발
〈 우 운 택 교수 〉
우리 대학 문화기술대학원 우운택 교수 연구팀이 스마트 관광 지원을 위한 증강 및 가상현실 어플리케이션을 개발했다.
‘케이 컬처 타임머신(K-Culture Time Machine)’ 어플리케이션은 창덕궁을 대상으로 한 시범 서비스로 iOS 앱스토어에 5월 23일 공개됐다.
개발된 케이 컬처 타임머신은 웨어러블 360도 비디오를 통해 문화유산이나 유적지에 대한 시공간을 넘는 원격 체험을 제공한다.
사용자는 VR기기에 스마트폰을 장착해 제공되는 360도 비디오로 문화 유적지를 원격으로 체험하고 해당 문화유산 및 연관관계가 있는 인물, 장소, 사건 등에 대한 정보를 확인할 수 있다. 또한 소실된 문화유산에 대한 3차원 디지털 복원도 체험할 수 있다.
웨어러블 기기 활용 없이도 모바일 모드를 통해 사용자 주변 유적지 확인, 카메라에 인식된 문화유산을 인식하고 관련된 정보와 콘텐츠를 제공하는 증강현실 기반의 문화유산 가이드가 가능하다.
사용자는 자신의 위치에서 창덕궁 돈화문을 시작으로 인정문, 인정전, 희정당에 이르는 창덕궁 내부를 이동하며 360도 파노라마 이미지나 비디오를 통해 현장을 가상체험 할 수 있다.
현재는 존재하지 않는 인정전 동쪽의 궐내 곽사 지역에는 3D모델을 통한 승정원의 가상 복원을 확인할 수 있다.
위 기능은 웨어러블 기기 없이 스마트폰 상에서도 체험 가능하며 개발 중인 증강현실 기능이 완성되면 현장에서 활용 가능한 수준의 어플리케이션이 될 것으로 기대된다.
우 교수 연구팀은 문화유산 데이터베이스와 증강-가상현실 콘텐츠의 표준화된 메타데이터를 구축하고 이를 적용했다. 이를 활용해 일시적으로 개발 후 소비되는 기존 어플리케이션과는 달리 추가적인 콘텐츠 생성 및 추가가 가능하다.
우 교수는 “증강현실 콘텐츠의 상호 활용성과 재활용성을 증진해 스마트관광 분야의 새로운 시장을 선점할 수 있을 것이다”며 “콘텐츠 개발 비용 절감과 증강현실 콘텐츠 생태계 활성화를 가능하게 하는 다양한 부가 효과도 기대한다”고 말했다.
이번 연구는 ㈜포스트미디어(대표 홍승모)와 문화체육관광부 CT R&D 사업과의 공동 수행을 통해 이뤄졌으며, 관련 연구 성과는 올 7월 캐나다에서 진행되는 HCII 2017 학회를 통해 발표될 예정이다.
□ 그림 설명
그림1. 360 VR 서비스 개념도
그림2. K-Culture Time Machine의 모바일 증강현실 기능 구동 화면
그림3. K-Culture Time Machine의 360도 파노라마 이미지-비디오 기능 화면
2017.05.23
조회수 16421
-
성형진 교수, 미세유체칩 내 액적 위치 제어 기술 개발
우리 대학 기계공학과 성형진 교수 연구팀(유동제어연구실)이 열모세관 현상을 이용해 미세유체칩 내 액적의 위치를 정교하게 제어하는 기술을 개발했다.
박진수 박사과정이 1저자로 참여한 이번 연구는 영국왕립화학회(Royal Society of Chemistry)에서 발간하는 미세유체기술 및 마이크로타스(microTAS) 분야의 국제학술지인 랩온어칩(Lab on a Chip)지 2017년 6호의 표지논문으로 선정됐다.
(논문명: Acoustothermal tweezer for droplet sorting in a disposable microfluidic chip)
극소량의 유체 샘플을 이용해 동전만한 크기의 미세유체칩 내에서 복잡한 실험을 수행하기 위해서는 정교한 미세유체 기술이 필요하다.
특히 서로 섞이지 않는 두 유체로 구성된 액적을 기반으로 하는 미세유체역학 분야에서 액적의 위치를 정교하게 제어할 수 있는 기술이 필수적이다.
하지만 기존의 액적위치 제어기술은 한 쪽 방향으로만 제어할 수 있거나 마이크로 크기 수준에서는 정교하게 제어하지 못했다.
연구팀은 독자적으로 개발한 음향열적가열법을 통해 마이크로 수준의 동적 온도구배를 형성했고 이를 통해 미세유체칩 내에서 액적의 위치를 마이크로 크기 수준에서 정교하게 제어했다.
궁극적으로는 원하는 배출 유로로 액적을 분리할 수 있음을 증명했다.
성형진 교수 연구팀은 그동안 광력과 음향력 기반의 미세유체역학, 난류, 고체-유체 상호작용 연구 분야에서 탁월한 연구 성과를 내 SCI급 국제 학술지에 300여 편의 논문을 게재한 바 있다.
이번 연구는 한국연구재단의 창의연구지원사업, 글로벌박사펠로우십과 KAIST-KUSTAR의 지원으로 수행됐다.
박진수 박사과정은 “본 연구에서 개발된 기술은 액적의 양쪽에서 서로 반대방향으로 작용해 균형을 이루는 열모세관 힘을 이용해 액적의 위치를 마이크로스케일에서 정교하게 제어할 수 있다”고 말했다.
성 교수는 “본 연구에서 개발된 기술이 액적 기반 미세유체칩 내 생화학반응, 제약, 물질 합성 등에 널리 활용될 수 있을 것으로 기대된다”고 말했다.
□ 그림 설명
그림1. 랩온어칩 표지
2017.03.20
조회수 17093
-
박희성 교수, 맞춤형 단백질 변형기술 동물 모델 적용에 성공
우리 대학 화학과 박희성 교수 연구팀이 아주대 의과대학 박찬배 교수와의 공동 연구를 통해 동물 모델에서 단백질의 아세틸화 변형을 조절할 수 있는 기술을 개발했다.
인간의 질병 연구에 대표적으로 쓰이는 쥐 모델에서 단백질 아세틸화를 조절할 수 있게 돼 다양한 질병의 원인을 밝힐 수 있을 것으로 기대된다.
이번 연구는 미래창조과학부의 글로벌프런티어사업(의약바이오컨버젼스연구단, 단장 김성훈)과 지능형 바이오시스템 설계 및 합성연구단(단장 김선창), 식약처의 미래 맞춤형 모델동물개발 연구사업단(단장 이한웅)의 지원을 받아 수행됐다.
이번 연구 결과는 국제 학술지인 ‘네이처 커뮤니케이션즈(Nature Communications)’ 21일자 온라인 판에 게재됐다.
우리 몸의 세포에서 만들어지는 2만 여종의 단백질은 생합성 이후 인산화, 아세틸화, 당화 등 200여 종의 다양한 변형(post-translational modification)이 발생하게 된다.
세포 내 단백질들은 다양한 변형을 통해 기능과 활성이 조절되며 이러한 변형은 생체 내에서 세포 신호 전달 및 성장 등 우리 몸의 정상적인 신진대사 활동을 조절하는 매우 중요한 역할을 한다.
하지만 유전적 또는 환경적 요인으로 인해 단백질 변형이 비정상적으로 일어나면 세포의 신호 전달, 대사 활동 등이 손상돼 암, 치매, 당뇨를 포함한 다양한 중증 질환을 유발한다.
기존에는 이러한 비정상적 단백질 변형을 동물 모델에서 인위적으로 유발시키고 제어하는 기술이 존재하지 않아 질병의 원인 규명 및 신약 개발 연구에 어려움이 있었다.
박 교수팀은 2016년 9월 다양한 비정상 변형 단백질을 합성할 수 있는 맞춤형 단백질 변형 기술을 개발해 사이언스(Science)지에 발표한 바 있다.
연구팀은 기존 연구를 더 발전시켜 각종 암과 치매 등의 이유가 되는 퇴행성 신경질환의 원인인 비정상적인 단백질 아세틸화를 동물 모델에서 직접 구현하는 기술을 개발했다.
연구팀은 이 기술을 바탕으로 실험용 쥐의 특정한 발달 단계나 시기에 표적 단백질의 특정 위치에서 아세틸화 변형을 조절할 수 있음을 증명했다.
또한 다른 조직에 영향을 주지 않고 간이나 콩팥 등 특정 조직이나 기관에서만 표적 단백질의 아세틸화 변형 제어가 가능함을 확인했다.
연구팀은 “이 기술은 암과 치매 등 단백질의 비정상적 변형으로 발생하는 각종 질병의 바이오마커 발굴 등 질병 원인 규명 연구의 획기적인 전기를 마련할 것으로 기대된다”고 말했다.
박희성 교수는 “실용화 될 경우 지금까지 실현이 어려웠던 다양한 질병에 대한 실질적 동물 모델을 제조할 수 있을 것으로 전망된다”며 “향후 맞춤형 표적 항암제 및 뇌신경 치료제 개발 등 글로벌 신약 연구에 새 패러다임을 열 것이다”고 말했다.
□ 그림 설명
그림1. 아세틸화 변형 조절 마우스 개발 및 아세틸화 제어 결과
그림2. 비정상적인 단백질 변형 및 각종 질병의 모식도
2017.03.06
조회수 17263
-
오지훈 교수, 이산화탄소 90%이상 분해 가능한 광전극 구조 개발
우리 대학 EEWS 대학원 오지훈 교수 연구팀이 빛을 이용해 이산화탄소를 분해하기 위한 금 나노 다공성 박막과 실리콘(Silicon) 기반의 새로운 광전극 구조를 개발했다.
광전기화학적 이산화탄소 변환은 태양광 에너지를 이용해 물과 이산화탄소를 연료로 바꿔주는 기술로 많은 주목을 받고 있다. 연구팀이 개발한 기술은 이를 위한 반도체 광전극 구조의 기본 틀을 제공할 것으로 기대된다.
송준태 박사가 1저자로 참여한 이번 연구는 화학, 에너지 및 소재 분야의 국제 학술지 ‘어드밴스드 에너지 머티리얼즈(Advanced Energy Materials)’ 8일자 내면 표지 논문에 게재됐다.
안정적인 이산화탄소를 환원시키기 위해서는 낮은 과전압을 지닌 우수한 촉매가 필요하다. 그 중 금(Au)은 이산화탄소를 일산화탄소로 환원시키는 전기 촉매로 알려져 있다.
그러나 금은 과전압이 비교적 높고 일산화탄소 생산성이 낮아 수소가 많이 발생하는 문제점이 있다. 또한 가격이 비싸기 때문에 사용량도 조절을 해야 한다.
연구팀은 문제 해결을 위해 나노 다공성 구조를 갖는 금 박막을 제작하는 데 성공했다. 금을 박막형태로 기판 재료에 증착해 이를 양극산화 처리한 뒤 연속적인 환원 처리를 통해 제작했다.
높은 전류 효율을 보였다. 이전의 나노구조 촉매는 0.1mm의 두꺼운 호일을 이용해 제작됐다면 연구팀의 박막은 약 5만 배 정도 얇은 200나노미터 수준으로서 금 기반 촉매의 제작비용을 최소화했다.
나아가 연구팀은 직접 제작한 나노다공성 금 박막을 촉매로 활용하기 위해 새로운 실리콘(Si) 광전극 구조를 개발했다. 기존 방법인 나노 입자 형태로 반도체 표면에 촉매를 형성하면 전기화학적 처리 과정에서 기판 자체에 영향을 주게 된다.
따라서 연구팀은 금 박막을 표면 전체에 연결될 수 있는 메쉬 패턴 구조로 제작해 광전극에 영향을 주지 않고도 독립적으로 표면의 전극 접합을 통해 전기화학처리를 가능하게 했다.
제작된 광전극은 실리콘에서 생성된 광전압과 금 박막층의 높은 촉매 특성이 작용돼 기존의 일산화탄소 변환을 위해 필요한 에너지보다 더 낮은 양으로도 변환이 가능하다.
오 교수는 “다양한 반도체 및 촉매 재료도 쉽게 적용 가능한 플랫폼 역할을 할 수 있을 것이다”며 “다른 연구자들이 우리 연구팀의 구조를 적용해 이산화탄소 광전환의 광변환 효율을 향상시킬 수 있을 것이다”고 말했다.
1저자인 송준태 박사는 “발상의 전환을 통해 매우 간단하지만 중요한 새로운 타입의 광전극 구조를 개발했고, 이를 통해 효율적인 이산화탄소 환원이 가능해졌다”며 “생성물의 평형 전위보다 더욱 낮은 전위조건에서 이산화탄소 환원을 하는 결과를 낸 것은 처음이다”고 말했다.
이번 연구는 KAIST EEWS 대학원 정성윤 교수가 공동으로 참여했고 한국이산화탄소 포집 및 처리 연구개발센터의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 게재된 논문 이미지
그림2. 실리콘 광전극 모식도 및 전자현미경 사진
그림3. 제작된 광전극의 광전기화학적 이산화탄소 특성
2017.02.24
조회수 19089
-
조병진, 이건재 교수, 레이저빔 공정을 이용한 고성능 유연 열전소자 개발
우리 대학 전기및전자공학부 조병진 교수와 신소재공학과 이건재 교수 공동 연구팀이 전자기기의 전력공급원으로 사용될 수 있는 고성능 유연 열전 소자를 개발했다.
김선진 박사와 이한얼 박사과정이 공동 1저자로 참여한 이번 연구는 나노 및 에너지소재 분야 국제학술지 ‘에이씨에스 나노(ACS Nano)’ 2016년 12월 27일자에 게재됐다.
연구팀은 쿼츠 기판위에 스크린 프린팅 공정으로 열전 후막을 형성한 후 레이저빔 공정을 이용해 단단한 쿼츠 기판을 제거함으로써 쉽게 휘어지는 유연 열전 소자를 개발했다.
기존 상용 열전소자 양면에는 단단하고 무거운 세라믹 기판이 있어 휘어지지 않고 중량이 무거운 단점이 있었다. 따라서 굴곡이 있는 열원에 열전소자를 부착하여 사용하기 어려웠으며 활용이 매우 제한적이었다.
연구팀은 레이저빔을 열전소자 양면에 조사해 딱딱한 기판을 완전히 분리시키는 공정을 개발했다.
레이저빔을 이용한 기판 박리기술은 30 ns (ns : 10억분의 1초)의 매우 짧은 시간의 레이저빔을 조사하기 때문에 지난 2014년 동연구실에서 발표한 니켈박리 기술 (논문명: Wearable Thermoelectric Generator Fabricated on Glass Fabric) 보다 간편하고 공정 안전성이 매우 높다.
레이저를 이용한 기판 박리 공정기술을 개발함으로써 기존의 기판에서 발생하는 열에너지 손실문제를 개선함과 동시에 열전소자의 경량화와 유연화를 동시에 달성했다.
또한 스크린 프린팅으로 형성되는 열전후막 공정의 최적화를 통해 유연열전소자의 성능을 더욱 개선했다.
연구팀이 시험 개발한 유연 열전소자는 온도차 25 ֯C에서 단위 면적당 발전량 4.78 mW/cm2, 단위 무게당 발전량 20.8 mW/g로 최근 보고된 프린팅 기반 유연열전소자 중 가장 높은 전력밀도를 갖는다.
유연 열전소자는 잘 휘어지는 특성 때문에 굴곡이 있는 열원에 쉽게 부착해 여분의 전기에너지를 생산해 낼 수 있고 열이 발생하는 다양한 곳에 광범위하게 활용할 수 있다.
인체, 자동차, 항공기, 발전소, 산업현장 등 열이 발생하는 다양한 곳에 적용하여 여분의 전기에너지를 생산할 수 있기 때문에 그 활용성이 매우 넓다.
일례로 따뜻한 물이 흐르는 수도관 외부에 유연 열전소자를 부착하게 되면 물에서 발생하는 열을 이용해 전기에너지를 생산해 낼 수 있고, 무선 전자기기(wireless electronic device)를 동작 시킬 수 있다.
이번 연구는 미래창조과학부와 한국연구재단이 추진하는 선도연구센터지원사업의 지원으로 수행됐다.
□ 그림 설명
그림1. 레이저 멀티스캔 박리 공정으로 제작된 유연 열전소자
2017.01.23
조회수 15230
-
김대영 교수, EU와 글로벌 IoT 농식품 생태계 구축을 위한 공동 연구
우리 대학 전산학부 김대영 교수 연구팀과 유럽연합(EU)이 사물인터넷(IoT) 개방형 표준 및 아키텍쳐를 통한 글로벌 농식품 비즈니스 통합 에코시스템 개발 공동연구(The Internet of Food & Farm 2020, IoF2020)를 시작한다.
EU IoF2020 프로젝트는 스마트 팜과 농식품 서비스 분야에 첨단 ICT 융합기술을 활용하여 효율적이면서도 안전하고 건강한 먹거리를 보장하는 글로벌 생태계 조성을 목표로 한다.
유럽 연합이 4년간 3,000만 유로를 지원하는 등 총 3,500만 유로가 투자되는 이번 공동연구는 대학, 연구소, 기업 등 16개국 71개 기관이 참여하는 대형 프로젝트다. 한국에서는 유일하게 KAIST가 참여한다.
연구팀은 자체 개발한 국제 표준 사물인터넷 오픈소스 플랫폼인 올리옷(Oliot)을 활용한 스마트 팜과 푸드 서비스 생태계 테스트베드를 국내 농식품 비즈니스 전반에 구축하고 유럽의 테스트베드와 연동한다. 이들 생태계로부터 수집한 글로벌 빅데이터 분석을 위한 딥러닝 등 최신 인공지능 기술을 개발하여 궁극적으로 사물인터넷 플랫폼과 인공지능 기술이 통합된 시스템을 정부, 기관, 기업, 농민들이 활용할 수 있도록 공개할 예정이다.
IoF2020 프로젝트를 통해 개발되는 기술은 스마트팜 및 농식품 서비스 시장에 직접 투입하여 국내 농식품 산업에 활용될 수 있으며, 갈수록 높아지는 농식품 안전에 대한 요구를 만족시킬 수 있을 것으로 전망된다.
또한 핵심 기술인 올리옷(Oliot) 플랫폼은 농식품 분야 뿐 만 아니라, 스마트 시티, 스마트 팩토리, 헬스케어, 커넥티드 자동차등 다양한 산업에 활용될 것으로 기대된다.
IoF2020 프로젝트 코디네이터인 조지 비어스(George Beers)는 "IoF2020이 농장에서 소비자 식탁으로까지의 유통방식에 패러다임 변화를 가져올 것이며, 푸드 서비스 분야에서의 경쟁력과 우수성을 강화하는 데 기여할 것이라고 믿는다”라고 말했다.
KAIST 김대영 교수(전산학부, 오토아이디랩스(Auto-ID Labs) KAIST 센터장)는 “이미 국내에서 사물인터넷 국제표준 기술 적용을 시작했으며, 이번 프로젝트를 통해 유럽뿐 아니라 중국, 일본, 대만 등 아시아 국가와 남미 국가와도 글로벌 농식품 비즈니스 생태계 통합을 위한 노력이 진행 중이다”라고 밝혔다.
KAIST는 지난 2005년부터 전 세계 6개 대학(MIT(미국), 케임브리지대(영국), 취리히공대(스위스), 푸단대(중국), 게이오대(일본))과 함께 세계 최초로 사물인터넷의 개념을 소개한 ‛오토아이디랩스(Auto-ID Labs)' 국제공동연구소를 운영하며 사물인터넷 생태계 구축을 위한 선행 표준기술을 연구하고 있다.
2017.01.17
조회수 16621
-
김일두 교수, 새집증후군 유발하는 톨루엔 초정밀 감지센서 개발
우리 대학 신소재공학과 김일두 교수 연구팀이 새집증후군, 새차증후군의 대표적 유해 가스인 톨루엔을 극미량의 농도에서도 검출할 수 있는 초고감도 감지소재 센서를 개발했다.
이번 연구 결과는 화학분야 권위 학술지 미국화학회지(JACS : Journal of the American Chemical Society) 10월자 온라인 판에 게재됐다.
톨루엔은 대표적 유독성, 휘발성 유기화합물로 중추신경계와 호흡기관에 이상을 유발한다. 두통을 유발하고 장기간 노출될 경우에는 사망에 이를 수도 있다.
실내 공기질 관련 톨루엔 농도의 정부 권고기준은 약 244ppb(10억분의 1 단위) 이하로 기준 수치를 넘어가면 새집증후군, 새차증후군 등을 유발시킨다.
하지만 공기 중의 톨루엔을 정밀 분석하기 위해서는 고가의 설비를 활용해야 하는 어려움이 있다. 현재까지 개발된 반도체식(저항 변화식) 휴대용 톨루엔 센서들은 톨루엔의 유무만 구분 가능할 뿐 십 억분의 1에서 백만분의 1(ppm) 사이의 극미량의 톨루엔은 검출할 수 없다는 한계가 있다.
연구팀은 기존 센서의 한계를 극복하기 위해 다공성 물질인 금속유기구조체(metal-organic framework)의 내부에 3나노미터 크기의 촉매 입자를 담지하고, 이를 나노섬유 소재에 붙여 최고 수준의 톨루엔 감지 특성을 갖는 센서를 개발했다.
연구팀은 금속유기구조체를 팔라듐 촉매와 결합시켜 복합 촉매로 활용했다. 이 복합 촉매는 다공성 금속산화물 나노섬유에 결착된 구조로 나노섬유 표면에서 형성되는 비균일 접합(heterojunction) 구조와 나노 촉매의 시너지 효과로 인해 초고감도의 톨루엔 감지특성을 보였다.
연구팀이 개발한 센서는 100ppb 수준의 극미량의 톨루엔 가스 노출에도 일반 공기 중의 상태에 비해 4배 이상의 탁월한 감도 변화를 보였다.
금속유기구조체 기반의 이종 촉매가 결합된 나노섬유 감지소재는 실내외 공기 질 측정기, 환경 유해가스 검출기, 호흡기반 질병진단 센서 등 다양한 분야에서 활용 가능하다.
또한 나노입자 촉매 및 금속유기구조체의 종류만 바꿔주면 톨루엔 외의 다른 특정 가스에 선택적으로 반응하는 고성능 소재를 대량으로 합성할 수 있다. 향후 다양한 센서 소재 라이브러리 구축이 가능할 것으로 기대된다.
김 교수는 “다종 감지 소재를 활용해 수많은 유해가스를 보다 정확히 감지할 수 있는 초고성능 감지소재로 적용 가능하다”며 “대기 환경 속의 유해 기체들을 손쉽게 검출해 각종 질환의 예방이 가능하고 지속적인 건강 관리에 큰 도움을 줄 것이다”고 말했다.
신소재공학과 구원태 박사 과정이 1저자로 참여한 이번 연구는 한국과 미국에 특허 출원됐다. 이번 연구는 미래창조과학부 X-프로젝트와 한국이산화탄소포집 및 처리연구개발센터의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 나노섬유 감지소재가 코팅된 개별 가스센서 및 가스센서가 장착된 스마트 시계
그림2. 저널 JACS에 게재된 논문 대표 이미지
그림3. 나노섬유사진
그림4. 1 ppm의 극미량 톨루엔 가스에 대한 우수한 선택성 및 반응성을 보여주는 표
2016.10.10
조회수 11833
-
전기자동차용 차세대 전지의 성능 극대화
〈 김 일 두 교수〉
우리 대학 신소재공학과 김일두 연구팀이 리튬-공기전지의 핵심 구성요소인 촉매를 대량생산할 수 있는 기술을 개발했다.
리튬-공기전지는 전기자동차에 쓰이는 리튬-이온전지를 대체할 차세대 전지로 주목받고 있으며, 이번에 연구팀이 개발한 원천기술을 통해 리튬-공기전지의 상용화에 한 발짝 다가갈 것으로 기대된다.
연구팀은 촉매활성이 뛰어난 두 소재인 루테늄산화물(RuO2)과 망간산화물(Mn2O3)이 균일하게 분포된 이중 나노튜브 구조를 손쉽게 대량 제조하는 원천기술을 확보했고, 이를 리튬-공기전지에 적용하는데 성공했다.
이번 연구는 나노재료 분야의 국제 학술지 ‘나노 레터스(Nano Letters)’ 3일자 온라인 판에 게재됐다. (논문명: One-Dimensional RuO2/Mn2O3 Hollow Architectures as Efficient Bifunctional Catalysts for Lithium-Oxygen Batteries)
리튬-공기전지는 리튬-이온전지에 비해 용량이 10배 이상 높고 대기 중의 산소를 연료로 활용하기 때문에 전기자동차를 위한 에너지 저장장치로 큰 주목을 받고 있다.
그러나 방전 시 생성되는 고체 리튬산화물(Li2O2)이 충전 과정에서 원활히 분해되지 않아 전지의 효율 및 수명특성이 저하돼 상용화에 어려움을 겪었다. 따라서 탄소재 양극 내의 리튬산화물의 형성 및 분해를 안정적으로 도와주는 촉매 개발이 필수적으로 요구됐다.
리튬-공기전지용 촉매는 가벼우면서 내구성이 우수하고 촉매의 표면적을 최대한 넓히는 것이 중요하다. 현재 상용화 수준으로 대량생산이 가능하고 우수한 촉매 활성을 갖는 소재는 아직 개발되지 않았었다.
연구팀은 위의 문제 해결을 위해 루테늄과 망간 전구체가 녹아 있는 고분자 용액을 전기 방사했다. 이는 누에가 실을 뽑듯이 고분자 용액을 재료로 삼은 실을 뽑아내 루테늄-망간 전구체를 기반으로 한 고분자 복합 섬유를 합성해내는 기술이다.
이후 이 섬유를 고온 열처리하면 거푸집 역할을 하는 고분자 템플릿(Template)이 타서 없어지고, 루테늄산화물 및 망간산화물의 이종 물질이 함께 복합체를 이루는 이중튜브 구조의 촉매가 완성된다.
연구팀이 개발한 이중 튜브는 직경 220 나노미터의 외부튜브와 80 나노미터의 내부튜브로 이뤄져 안쪽 및 바깥쪽 벽이 동시에 촉매 반응에 참여 가능하고, 비어있는 공간이 많아 가볍다는 장점을 갖는다.
연구팀은 초기 충전, 방전 시의 과전압 차이가 약 0.8V 이내로 감소하는 효과를 얻었다. 기존 탄소재 사용시 과전압은 약 2.0V 이상이다. 또한 용량제한 1000 mAh/g 하에서 100사이클 이상의 안정적인 리튬-공기전지 특성을 확인했다.
위의 기술 향상이 가능한 이유는 리튬산화물의 생성반응(산소환원 반응)을 도와주는 망간산화물 촉매와 분해반응(산소발생 반응)을 돕는 루테늄산화물 촉매가 내, 외부 튜브에서 나노단위로 균일하게 존재하기 때문이다.
김 교수 연구팀의 핵심 기술인 전기방사 기술은 고분자, 금속 전구체가 포함된 용액을 전기적 인력으로 연신시켜 수십에서 수백 나노 직경의 나노섬유를 얻을 수 있는 기술이다.
이 기술은 쉽게 기능성 나노섬유를 대량생산할 수 있어 수처리용 필터, 황사 마스크, 마스크팩 소재, 바이오 필터 등에 활발히 사용되고 있다.
연구팀은 “휘발점이 다른 두 용매의 온도 상승 속도를 조절하는 간단한 공정을 통해 리튬-공기전지의 충전 및 방전에 이상적인 촉매구조 디자인에 성공했다”고 밝혔다.
김 교수는 “생산 공정이 매우 손쉽고 대량생산이 가능한 기술이다”며 “촉매의 성능이 우수해 차세대 전지로 각광받는 리튬-공기전지의 상용화를 앞당기는 데 기여할 것이다”고 말했다.
신소재공학과 김상욱 교수와 공동 연구로 진행된 이번 연구는 윤기로 박사과정이 제1저자로 참여했고, ‘한국 이산화탄소 포집 및 처리 연구개발센터(Korea CCS R&D Center)’ 및 현대자동차의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 루테늄산화물-망간산화물 코어-쉘 나노튜브 및 이중 나노튜브 미세구조 사진
그림2. 나노튜브 촉매가 사용된 리튬-공기전지의 구성
그림3. 리튬-공기전지의 구동 원리
그림4. 루테늄산화물-망간산화물 코어-쉘 나노튜브 및 이중 나노튜브 형성원리
2016.02.16
조회수 16067