본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%8B%9C%EC%8A%A4%ED%85%9C
최신순
조회순
소량의 데이터로 딥러닝 정확도 향상기술 발표
최근 다양한 분야에서 심층 학습(딥러닝) 기술을 활용한 서비스가 급속히 증가하고 있다. 서비스 구축을 위해서는 심층 학습 모델을 훈련해야 하며, 이를 위해서는 충분한 훈련 데이터를 준비해야 한다. 특히 훈련 데이터에 정답지를 만드는 레이블링(labeling) 과정이 필요한데 (예를 들어, 낙타 사진에 `낙타'라고 정답을 적어줌), 이 과정은 일반적으로 수작업으로 진행되므로 엄청난 노동력과 시간이 소요된다. 따라서 훈련 데이터가 충분하지 않은 상황을 효과적으로 타개하는 방법이 요구되고 있다. 우리 대학 전산학부 이재길 교수 연구팀이 적은 양의 훈련 데이터가 존재할 때도 높은 예측 정확도를 달성할 수 있는 새로운 모델 훈련 기술을 개발했다고 27일 밝혔다. 심층 학습 모델의 훈련은 주어진 훈련 데이터에서 레이블과 관련성이 높은 특성을 찾아내는 과정으로 볼 수 있다. 예를 들어, `낙타'의 주요 특성이 등에 있는 `혹'이라는 것을 알아내는 것이다. 그런데 훈련 데이터가 불충분할 경우 바람직하지 않은 특성까지도 같이 추출될 수 있는 문제가 발생한다. 예를 들어, 낙타 사진의 배경으로 종종 사막이 등장하기에 낙타에 대한 특성으로 `사막'이 추출되는 것도 가능하다. 사막은 낙타의 고유한 특성이 아닐뿐더러, 이러한 바람직하지 않은 특성으로 인해 사막이 아닌 곳(예: 동물원)에 있는 낙타는 인식하지 못할 수 있다. 이 교수팀이 개발한 기술은 심층 학습 모델의 훈련에서 바람직하지 않은 특성을 억제해 충분하지 않은 훈련 데이터를 가지고도 높은 예측 정확도를 달성할 수 있게 해준다. 우리 대학 지식서비스공학대학원에 재학 중인 박동민 박사과정 학생이 제1 저자, 송환준 박사, 김민석 박사과정 학생이 제2, 제3 저자로 각각 참여한 이번 연구는 최고권위 국제학술대회 `신경정보처리시스템학회(NeurIPS) 2021'에서 올 12월 발표될 예정이다. (논문명 : Task-Agnostic Undesirable Feature Deactivation Using Out-of-Distribution Data) 바람직하지 않은 특성을 억제하기 위해서 분포 外(out-of-distribution) 데이터를 활용한다. 예를 들어, 낙타와 호랑이 사진의 분류를 위한 훈련 데이터에 대해 여우 사진은 분포 외 데이터가 된다. 이때 이 교수팀이 착안한 점은 훈련 데이터에 존재하는 바람직하지 않은 특성은 분포 외 데이터에도 존재할 수 있다는 점이다. 즉, 위의 예에서 여우 사진의 배경으로도 사막이 나올 수 있다. 따라서 다량의 분포 외 데이터를 추가로 활용해 여기에서 추출된 특성은 영(0) 벡터가 되도록 심층 학습 모델의 훈련 과정을 규제해 바람직하지 않은 특성의 효과를 억제한다. 훈련 과정을 규제한다는 측면에서 정규화 방법론의 일종이라 볼 수 있다. 분포 외 데이터는 쓸모없는 것이라 여겨지고 있었으나, 이번 기술에 의해 훈련 데이터 부족을 해소할 수 있는 유용한 보완재로 탈바꿈될 수 있다. 연구팀은 이 정규화 방법론을 `비선호(比選好) 특성 억제'라고 이름 붙이고 이미지 데이터 분석의 세 가지 주요 문제에 적용했다. 그 결과, 기존 최신 방법론과 비교했을 때, 이미지 분류 문제에서 최대 12% 예측 정확도를 향상했고, 객체 검출 문제에서 최대 3% 예측 정확도를 향상했으며, 객체 지역화 문제에서 최대 8% 예측 정확도를 향상했다. 제1 저자인 박동민 박사과정 학생은 "이번 기술은 훈련 데이터 부족 현상을 해결할 수 있는 새로운 방법ˮ 이라면서 "분류, 회귀 분석을 비롯한 다양한 기계 학습 문제에 폭넓게 적용될 수 있어, 심층 학습의 전반적인 성능 개선에 기여할 수 있다ˮ 고 밝혔다. 연구팀을 지도한 이재길 교수도 "이 기술이 텐서플로우(TensorFlow) 혹은 파이토치(PyTorch)와 같은 기존의 심층 학습 라이브러리에 추가되면 기계 학습 및 심층 학습 학계에 큰 파급효과를 낼 수 있을 것이다ˮ고 말했다. 한편, 이 기술은 과학기술정보통신부 재원으로 정보통신기획평가원의 지원을 받아 SW컴퓨팅산업원천기술개발사업 SW스타랩 과제로 개발한 연구성과 결과물(2020-0-00862, DB4DL: 딥러닝 지원 고사용성 및 고성능 분산 인메모리 DBMS 개발)이다. (끝).
2021.10.27
조회수 9949
신경신호 모사를 통한 인공 감각 시스템 개발
우리 대학 바이오및뇌공학과 박성준 교수 연구팀이 고려대학교 천성우 교수, 한양대학교 김종석 박사 공동 연구팀과 함께 인간 피부-신경 모사형 인공 감각 인터페이스 시스템을 개발했다고 12일 밝혔다. 이번 연구 결과는 국제 학술지 `네이처 일렉트로닉스(Nature Electronics)'에 2021년 6월 3일 字로 출판됐다. (논문명: Artificial Neural Tactile Sensing System) 가상/증강 현실, 메타버스, 화상 환자를 위한 인공피부, 로봇형 의수/의족 등에 사용될 수 있는 인공 감각 시스템은, 구현해야 할 원리와 그 시스템의 복잡성 때문에 실제 감각기관처럼 만들기 어려운 상황이었다. 특히 사람은 다양한 유형의 촉각 수용기를 통해 (압력, 진동 등) 정보를 조합하여 촉각을 감지하므로, 완벽한 인공 감각 시스템의 구현은 더욱 어려울 수 밖에 없다. 연구팀은 문제 해결을 위해 나노입자 기반의 복합 촉각 센서를 제작하고, 이를 실제 신경 패턴에 기반한 신호 변환 시스템과 연결하는 방법을 사용하였다. 이 두 가지 기술의 조합을 통해 연구팀은 인간의 촉각 인식 프로세스를 최대로 모방하는 인공 감각 인터페이스 시스템을 구현하는데 성공했다. 연구팀은 우선 압전재료 및 압전 저항성 재료의 조합으로 이루어진 전자 피부를 제작했다. 이 센서는 나노입자의 적절한 조합을 통해 피부 내의 압력을 감지하는 늦은 순응 기계적 수용기(SA mechanoreceptor)와 진동을 감지하는 빠른 순응 기계적 수용기(FA mechanoreceptor)를 동시에 모사할 수 있다는 특징을 가지고 있다. 해당 센서를 통해 생성된 전위는, 연구팀이 제작한 회로 시스템을 통해 실제 감각 신호와 같은 형태의 패턴으로 변환된다. 이때 생체 내 상황을 최대한 모사하기 위해, 실제 감각신경을 추출, 다양한 감각에 의한 신호를 측정하여 함수화하는 방법이 사용됐다. 해당 시스템을 동물 모델에 적용한 결과, 연구팀은 인공 감각 시스템에서 발생한 신호가 생체 내에서 왜곡 없이 전달되며, 근육 반사 작용 등 생체 감각 관련 현상들을 구현할 수 있음을 확인했다. 또한 연구팀은 지문 구조로 만든 감각 시스템을 20여 종의 직물과 접촉함으로써, 딥 러닝 기법을 통해 직물의 질감을 99% 이상 분류할 수 있을 뿐만 아니라 학습된 신호를 기반으로 인간과 동일하게 예측할 수 있음을 보여줬다. 박성준 교수는 "이번 연구는 실제 신경 신호의 패턴 학습을 바탕으로 한 인간 모사형 감각 시스템을 세계 최초로 구현했다는 데 의의가 있다. 해당 연구를 통해 향후 더욱 현실적인 감각 구현이 가능할 뿐만 아니라, 연구에 사용된 생체신호 모사 기법이 인체 내 다양한 종류의 타 감각 시스템과 결합될 경우 더욱 큰 시너지를 낼 수 있으리라 기대한다ˮ 라고 말했다. 한편 이번 연구는 한국연구재단 신진연구사업, 범부처의료기기개발 사업, 나노소재원천기술개발사업, 차세대 지능형 반도체 개발사업, KK-JRC 스마트 프로젝트, KAIST 글로벌 이니셔티브 프로그램, Post-AI 프로젝트 사업의 지원을 받아 수행됐다.
2021.07.12
조회수 11495
시스템생물학 이용 세계 최초 알츠하이머성 치매 환자 맞춤형 치료 효능 예측 기술 개발
우리 대학 바이오및뇌공학과 조광현 교수 연구팀 (장소영 박사과정(제1저자), 강의룡 박사과정, 장홍준 박사과정)은 서울대학교 의과대학 묵인희 교수 연구팀과 공동연구를 통해 시스템생물학*과 알츠하이머 환자 유래 뇌 오가노이드** 모델의 융합으로 환자 맞춤형 약물 효능평가 플랫폼(Drug-screening platform)을 세계 최초로 개발했다고 13일 밝혔다. * 시스템생물학: IT의 수학모델링 및 컴퓨터시뮬레이션과 BT의 분자세포생물학 실험을 융합하여 복잡한 생명현상을 규명하고 설명하는 연구 패러다임 ** 뇌 오가노이드: 환자의 역분화 줄기세포(iPSC) 유래 인공 미니 뇌 알츠하이머병은 치매의 약 70%를 차지하는 대표적 치매 질환이나 현재까지 발병 원인이 불명확하며, 근본적인 치료제도 없는 인류가 극복하지 못한 질병 중 하나다. 알츠하이머병 치료제 개발 난제 중 하나는 실제 살아있는 환자의 뇌를 직접 실험 샘플로 사용할 수 없다는 것이었다. 이는 수많은 치료제 후보군의 약물 효능을 정확히 평가하기가 어려워 치료제 개발의 걸림돌로 작용해왔다. 조광현 교수 공동 연구팀은 실제 치매환자에서 유래한 뇌 오가노이드 기반으로 생물학적 메커니즘에 대한 수학 모델링을 융합하여 약물효능 예측이 가능한 플랫폼을 세계 최초로 개발했다. 환자 혈액으로부터 역분화줄기세포(Induced-pluripotent stem cell)*를 구축 후 이를 이용하여 3D 뇌 오가노이드를 제작해 실제 환자의 뇌와 유사한 환경 구축을 통해 실험적 한계를 극복했다. * 역분화줄기세포: 다능성이 없는 혈액 면역세포에 역분화를 일으키는 4가지 특정 유전자를 도입하여 배아 줄기세포와 같이 모든 종류의 세포로 분화할 수 있는 성질(다능성)을 가진 줄기세포 또한, 시스템생물학 기반 수학 모델링 기법으로 알츠하이머병의 신경세포 특이적 네트워크망을 구축하고, 이를 실제 알츠하이머병 환자 및 정상군 유래 뇌 오가노이드를 통하여 신경세포 컴퓨터 모델의 실효성을 검증했다. 이 연구결과는 알츠하이머병의 시스템생물학 기반 신경세포 컴퓨터 모델을 실제 환자 유래 뇌 오가노이드로 검증한 세계 최초의 사례이다. 이는 환자 맞춤형 치료(Precision medicine)의 불모지로 여겨졌던 뇌 질환분야에서도 알츠하이머병 환자의 유전형에 따른 최적의 약물 효능 예측이 가능하게 됨을 의미하며 향후 약물 타겟 발굴에 기여할 것으로 기대된다. 조광현 교수는 “이번에 개발한 시스템생물학 기반 알츠하이머성 치매환자 약물 효능평가 플랫폼을 통해 향후 치매 치료제 개발 경쟁에서 우리나라가 국가적 우위를 선점할 수 있을 것으로 기대한다”고 밝혔다. 이번 연구는 보건복지부 한국보건산업진흥원의 국가치매극복기술개발 사업 및 한국연구재단의 중견연구자지원사업으로 수행됐으며, 연구성과는 국제학술지 네이처 커뮤니케이션즈(Nature Communications)의 2021년 1월 12일자 논문으로 게재됐다. (https://www.nature.com/articles/s41467-020-20440-5)
2021.01.13
조회수 70644
미생물 기반 다양한 일차 아민 생산 기술 최초 개발
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 `비식용 바이오매스를 여러 가지 짧은 길이의 일차 아민들로 전환하는 미생물 균주 개발'에 성공했다고 11일 밝혔다. 이번 연구결과는 국제적인 학술지인 `네이쳐 커뮤니케이션스(Nature Communications)'에 게재됐다. ※ 논문명 : Microbial production of multiple short-chain primary amines via retrobiosynthesis ※ 저자 정보 : 이상엽(한국과학기술원, 교신저자), 김동인(한국과학기술원, 공동 제1저자), 채동언(한국과학기술원, 공동 제1저자), 김현욱(한국과학기술원, 공동 제1저자), 장우대(한국과학기술원, 제4저자), 포함 총 5명 석유화학산업은 화석원료를 이용해 우리 생활 전반에 광범위하게 이용되는 범용화학물질들을 생산해왔다. 그러나 원유 매장량 고갈에 대한 우려와 원유 산업으로부터 발생하는 지구 온난화 등의 환경문제가 전 세계적으로 매우 심각한 상황이다. 특히 우리나라의 경우 석유를 전량 수입에 의존하기 때문에, 국제 유가 변동에 매우 취약한 실정이다. 이에 환경문제를 해결하면서 원유를 대체할 수 있는 지속 가능한 바이오리파이너리의 구축이 시급히 요구되고 있다. 바이오 리파이너리란 화석원료가 아닌 비식용 바이오매스를 원료로 사용해 미생물로 산업적으로 유용한 화학물질들을 생산하는 기술이다. 여기서 미생물은 원료인 바이오매스를 우리가 원하는 화학물질로 전환하는 세포 공장과 같은 역할을 한다. 이러한 미생물의 복잡한 대사회로를 효과적으로 조작할 수 있게 하는 시스템 대사공학은 바이오 리파이너리에서 핵심기술 중 하나다. 지금껏 석유화학 공정을 통해서 합성되던 화학물질 중에는 미생물 시스템 대사공학을 통해서 바이오 기반으로 생산되는 사례가 점차 늘고 있지만, 아직 의약품 및 농약품들의 전구체로 널리 사용되는 짧은 탄소 길이를 가진 일차 아민들의 생산은 보고된 바가 없었다. 이에 KAIST 이상엽 특훈교수 연구팀은 여러 가지 짧은 탄소 길이를 갖는 일차 아민들을 생산할 수 있는 대장균 균주 개발 연구를 수행했다. 지금까지 이러한 일차 아민들을 생산하는 균주들이 개발되지 못한 가장 큰 이유는 생합성 대사회로의 부재였다. 이러한 문제를 해결하기 위해 역 생합성 시뮬레이션을 통해 모든 가능한 대사경로들을 예측했다. 그 후 전구체 선택과정을 통해 가장 유망한 대사회로들을 선정했다. 이렇게 디자인된 신규 대사회로들을 실제 실험을 통해 검증했으며 이를 통해 10가지 종류의 다른 짧은 길이의 일차 아민들을 생산하는 대장균 균주들을 최초로 개발하는 데 성공했다. 또한 대표적인 일차 아민들을 선정해 폐목재, 잡초 등 지구상에서 가장 풍부한 바이오매스의 주원료인 포도당을 단일 탄소원으로 사용한 생산과 시스템 대사공학을 통한 생산량 증대를 보임으로써 바이오 기반 생산의 가능성을 보여줬다. 이번 연구에서 활용된 역 생합성과 전구체 선택과정을 같이 사용한 전략은 짧은 탄소 길이를 가진 일차 아민들 뿐만 아니라 다른 그룹의 여러 가지 화학물질들을 동시에 생산하는 대사회로들을 구축하는 데도 유용하게 쓰일 것으로 예상된다. 이상엽 특훈교수는 “이번 연구는 지금까지 석유화학 산업 기반으로만 생산할 수 있었던 짧은 탄소 길이를 가진 일차 아민들을 재생 가능한 바이오 기반 화학산업을 통해 생산할 가능성을 세계 최초로 제시한 점에 의의가 있다”며 “앞으로 더 많은 연구를 통해 생산량과 생산성을 증대시킬 계획이다”라고 밝혔다. 한편 이번 연구는 과기정통부가 지원하는 기후변화대응기술개발사업의 '바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제'의 지원을 받아 수행됐다.
2021.01.11
조회수 61172
노화된 세포를 젊은 세포로 되돌리는 초기 원천기술 개발
우리 연구진이 노화된 세포를 젊은 세포로 되돌리는 역 노화 원천기술을 개발했다. 이를 활용하면 노화 현상을 막고 각종 노인성 질환을 사전 억제할 수 있는 치료제를 개발할 단서를 찾을 수 있을 것으로 기대된다. 우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 시스템생물학 연구를 통해 노화된 인간 진피 섬유아세포를 정상적인 젊은 세포로 되돌리는 역 노화의 초기 원천기술을 개발했다고 26일 밝혔다. 조광현 교수팀의 이번 연구 결과는 ㈜아모레퍼시픽 기술연구원과의 산학 공동연구를 통해 최초로 개발된 노화 인공피부 모델에서 이 기술을 적용함으로써 입증하는 데 성공했다. 조 교수팀은 이번 연구를 위해 인간 진피 섬유아세포의 세포노화 신호전달 네트워크의 컴퓨터 모델을 개발한 후 시뮬레이션 분석을 통해 노화된 인간 진피 섬유아세포를 젊은 세포로 되돌리는데 필요한 핵심 인자를 찾아냈다. 이후 노화 인공피부 모델에서 핵심 인자를 조절함으로써 노화된 피부조직에서 감소된 콜라겐의 합성을 증가시키고 재생 능력을 회복시켜 젊은 피부조직의 특성을 보이게 하는 역 노화 기술을 개발했다. 연구팀 관계자는 이러한 역 노화 기술은 노화된 피부 등을 포함한 노화 현상 및 많은 노인성 질환의 발생을 사전에 억제할 수 있도록 근본적인 치료전략을 제시한 것으로 건강 수명을 오랫동안 유지하고 싶은 인류의 꿈을 실현하는데 한 걸음 다가선 결과라고 의미를 부여했다. 바이오및뇌공학과 안수균 박사과정 학생, 강준수 연구원, 이수범 연구원과 ㈜아모레퍼시픽의 바이오사이언스랩이 참여한 이번 연구 결과는 국제저명학술지인 `미국국립과학원회보(PNAS)'에 게재됐다.(논문명: Inhibition of 3-phosphoinositide-dependent protein kinase 1 (PDK1) can revert cellular senescence in human dermal fibroblasts) 현재 널리 연구되고 있는 회춘 전략은 이미 분화된 세포를 역분화시키는 4개의 `OSKM(Oct4, Sox2, Klf4, c-Myc) 야마나카 전사인자'를 일시적으로 발현시켜 후성유전학적 리모델링(epigenetic remodeling)을 일으킴으로써 노화된 세포를 젊은 상태로 되돌리는 부분적 역분화(partial reprogramming) 전략이다. 이 기술은 노화된 세포가 젊은 세포로 되돌아갈 수 있다는 것을 증명했지만 종양의 형성과 암의 진행을 유발하는 부작용이 생긴다. 따라서 이와 같은 부작용을 배제할 수 있는 정교한 제어 전략이 과학 난제로 남아있었다. 조 교수팀은 이러한 난제 해결을 위해 시스템생물학 연구 방법을 통해 노화된 인간 진피 섬유아세포를 정상적인 젊은 세포로 되돌릴 수 있는 핵심 조절인자를 오래전부터 탐구하기 시작했다. 4년에 걸친 연구 끝에 단백질 합성, 세포의 성장 등을 조절하는 mTOR와 면역 물질 사이토카인의 생성에 관여하는 NF-kB를 동시에 제어하고 있는 상위 조절 인자인 `PDK1(3-phosphoinositide-dependent protein kinase 1)'을 찾아냈다. 연구팀은 PDK1을 억제함으로써 노화된 인간 진피 섬유아세포를 다시 정상적인 젊은 세포로 되돌릴 수 있음을 분자 세포실험 및 노화 인공피부 모델 실험을 통해 입증했다. 연구를 통해 노화된 인간 진피 섬유아세포에서 PDK1을 억제했을 때 세포노화 표지 인자들이 사라지고 주변 환경에 적절하게 반응하는 정상 세포로서 기능을 회복하는 현상을 확인했다. 연구 결과 노화된 인간 진피 섬유아세포에서는 PDK1이 mTOR와 NF-kB를 활성화해 노화와 관련된 분비 표현형(SASP: Senescence Associated Secretary Phenotype)을 유발하고 노화 형질을 유지하는 것과 연관돼 있음을 밝혀냈다. 즉, PDK1을 억제함으로써 다시 원래의 정상적인 젊은 세포 상태로 안전하게 되돌릴 수 있음을 증명한 것이다. 조 교수팀이 연구 과정에서 찾아낸 표적 단백질의 활성을 억제할 수 있는 저분자화합물과 관련된 신약개발과 그리고 전임상실험을 통해 노화된 세포의 정상 세포화라는 연구 결과는 새로운 노인성 질환의 치료 기술과 회춘 기술에 관한 연구를 본 궤도에 올려놓은 초석을 다진 획기적인 연구로 평가받고 있다. 실제 ㈜아모레퍼시픽 기술연구원은 이번 연구 결과로부터 동백추출물에서 PDK1 억제 성분을 추출해 노화된 피부의 주름을 개선하는 화장품을 개발중이다. 조광현 교수는 "그동안 비가역적 생명현상이라고 인식돼왔던 노화를 가역화할 가능성을 보여줬다ˮ라며 "이번 연구는 노화를 가역적 생명현상으로 인식하고 이에 적극적으로 대처해 건강 수명을 연장하는 한편 노인성 질환을 예방할 수 있는 새로운 시대의 서막을 열었다ˮ라고 의미를 부여했다. 이번 연구는 조광현 교수 연구팀의 시스템생물학 기반 가역화 기술 개발의 일환으로 이뤄졌으며, 연구팀은 지난 1월 같은 기술을 적용해 대장암세포를 다시 정상 대장 세포로 되돌리는 연구에 성공한 바 있다. 한편 이번 연구는 한국연구재단의 중견연구자지원사업과 KAIST 그랜드챌린지 30 (KC30) 프로젝트 및 아모레퍼시픽 R&D 센터의 지원으로 수행됐다.
2020.11.26
조회수 42812
이상엽 특훈교수팀, 세계 최고 농도의 글루타르산 생산이 가능한 미생물 균주 개발
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 세계 최고 농도의 *글루타르산 생산이 가능한 미생물 균주를 개발했다고 19일 밝혔다. 연구 결과는 국제학술지인 `미국 국립과학원 회보(PNAS)' 11월 16일 자에 게재됐다. (논문명: Glutaric acid production by systems metabolic engineering of an L-lysine-overproducing Corynebacterium glutamicum) ※ 글루타르산(glutaric acid) : 두 개의 카복실산기를 가진 유기 화합물. 무색의 고체로 사탕무나 양모의 추출물 속에 들어있다. 폴리에스터, 나일론 등의 제조에 쓰인다. ※ 저자 정보 : 한태희(KAIST 박사과정 학생, 제1 저자), 김기배(KAIST 박사과정 학생, 제2 저자), 이상엽 교수(교신저자) 등 총 3명 최근 들어 기후 변화에 대한 우려가 증대되고 화석 자원에 대한 의존도가 높아지면서 재생 가능한 자원에서 화학 연료와 재료를 바이오 기반으로 생산하기 위한 관심이 증가하고 있다. 글루타르산은 폴리아미드, 폴리우레탄, 글루타르산 무수물, 1,5-펜탄디올의 생산을 포함한 다양한 응용 분야에 널리 사용되는 중요한 유기 화합물이다. 지금까지 글루타르산은 석유화학에 기반한 다양한 화학적 방법으로 생산돼왔는데, 이들은 대개 재생 불가능하고 독성이 강한 시작 물질에 의존해 친환경적이지 않다는 단점이 있다. 따라서 포도당과 같은 재생 가능한 자원에서 글루타르산을 생물학적으로 생산하기 위한 연구가 활발히 이뤄지고 있다. 다만 기존에 발표된 미생물을 이용한 글루타르산 생산 연구는 높은 글루타르산 생산 농도를 달성하는 데 한계가 존재했다. 또 균주 전체의 대사 밸런스를 고려하지 않고 알려진 표적 유전자들만을 개량했기 때문에 균주 개발에 어려움도 많았다. 이 교수 연구팀도 앞서 토양 세균의 일종인 `수도모나스 푸티다(Pseudomonas putida)' 균주의 유전자를 대장균에 도입해 최초로 글루타르산을 생산하는 미생물 개발에 관한 연구 결과를 발표한 바 있는데 문제는 생산된 글루타르산의 농도가 매우 낮다는 점이다. 연구팀은 이러한 취약점 개선을 위해 그간 아미노산 생산에 주로 사용되는 세균의 일종인 `코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)'을 이용한 글루타르산 생산공정에 관한 연구에 주목했다. 해당 균주가 글루타르산의 전구체(전 단계의 물질)인 `라이신'을 130 g/L 이상 생산 가능하다는 점을 고려하면 높은 농도의 글루타르산 생산도 가능할 것으로 연구팀은 판단했다. 이상엽 특훈교수 연구팀은 우선 라이신을 과량 생산하는 코리네박테리움 글루타미쿰 균주에 수도모나스 푸티다균에서 유래한 외래 유전자와 코리네박테리움 글루타미쿰의 유전자로 이뤄진 생합성 경로 구축을 통해 포도당으로부터 글루타르산을 효율적으로 생산하는 데 성공했다. 연구팀은 특히 이번 연구 과정에서 라이신을 과량 생산하는 균주에 대한 게놈(genome), 전사체(transcriptome), 흐름체(fluxome)을 아우르는 다중 오믹스 분석을 진행해 균주의 대사 흐름에 대한 이해도를 높였다. 또 이를 통해 예측한 11개의 표적 유전자들을 프로모터 교환, 유전자 결실 및 추가 유전자 도입 등의 방법으로 조작했다. 또한 연구팀은 효율적인 글루타르산 생산을 위해 새로운 글루타르산 수송체 유전자를 발견했고, 해당 유전자의 발현 수준 조작과 발효 조건 최적화를 통해 포도당으로부터 세계 최고 농도(105.3 g/L, 기존 연구 대비 1.17배)를 지닌 글루타르산을 생산하는 데 성공했다. 연구팀 관계자는 이번 연구에 적용한 시스템 대사공학 전략과 발효 공정 최적화 기술을 활용하면 글루타르산 외에도 다양한 고부가 가치 화학물질을 생산하는 미생물 세포 공정 개발도 가능하다고 내다봤다. 이상엽 특훈교수는 “이번 연구는 시스템 대사공학을 활용해 재생 가능한 탄소원으로부터 폴리에스터와 나일론 등의 원료인 글루타르산을 친환경적으로 세계 최고 농도로 생산하는 균주를 제작했다는 점에 의미가 있다”면서 “향후 화학·환경·의료 분야 등 다양한 산업적 응용이 가능할 것”이라고 강조했다. 한편, 이번 연구는 과기정통부가 지원하는 한국연구재단 바이오·의료기술개발사업의 `에스테르계 차세대 바이오 플라스틱 합성 원천기술개발’ 과제 지원을 받아 수행됐다.
2020.11.20
조회수 36717
메모리-중심 인공지능 가속기 시스템 개발
삼성미래기술육성재단이 지원한 우리 대학 연구진이 세계 최초로 `프로세싱-인-메모리(Processing-In-Memory, 이하 PIM)' 기술을 기반으로 한 인공지능 추천시스템 학습 알고리즘 가속에 최적화된 지능형 반도체 시스템 개발에 성공했다. 전기및전자공학부 유민수 교수 연구팀은 PIM 기술 기반의 메모리-중심 인공지능 가속기 반도체 시스템을 개발했다고 16일 밝혔다. 유 교수는 관련 분야에서 그동안의 탁월한 연구 성과를 인정받아 올해 아시아에서 유일하게 페이스북 패컬티 리서치 어워드(Facebook Faculty Research Award)를 수상했다. 인공지능 기술을 기반으로 고안된 추천시스템 알고리즘은 구글(Google), 페이스북(Facebook), 유튜브(YouTube), 아마존(Amazon) 등 빅테크 기업들이 콘텐츠 추천 및 개인 맞춤형 광고를 제작하는데 기반이 되는 핵심 인공지능 (AI) 기술이다. 온라인 광고를 통한 수입은 구글과 페이스북과 같은 실리콘밸리의 빅테크 기업의 주 수익 모델인 만큼 고도화된 추천 인공지능 기술에 대한 수요는 최근 들어 급상승하는 추세다. 페이스북이 최근 공개한 자료에 따르면 페이스북 데이터센터에서 처리되는 인공지능 연산의 70%가 추천 알고리즘을 처리하는 데에 사용되며, 인공지능 알고리즘 학습을 위한 컴퓨팅 자원의 50%를 추천 알고리즘을 학습하는 데 사용하고 있다. 유민수 교수 연구팀은 최근 메모리 반도체에 인공지능 연산 기능이 추가된 프로세싱-인-메모리(PIM) 기술 기반의 지능형 반도체 시스템을 개발하는 데 성공했다. 유 교수팀이 개발한 이 시스템은 인공지능 추천시스템 알고리즘의 학습 과정을 엔비디아(NVIDIA)의 그래픽카드(GPU)를 사용하는 기존 인공지능 가속 시스템 대비 최대 21배까지 빠르다고 연구팀 관계자는 설명했다. 지능형 메모리 반도체 기술은 우리나라의 AI 반도체 세계시장 공략을 위한 핵심기술로 주목받고 있다. 특히 정부에서도 `AI 종합 반도체 강국 실현'이라는 비전 아래 막대한 국가적 투자를 아끼지 않는 핵심 투자 분야다. 따라서 유 교수팀의 연구 성과는 향후 막대한 수요와 급성장이 예상되는 세계 AI 반도체 시장에서 메모리-중심으로 설계된 PIM 기술의 상용화 및 성공 가능성을 시사한다는 점에서 의미가 크다고 전문가들은 평가하고 있다. 유민수 교수는 서강대와 KAIST에서 각각 학사와 석사를 거쳐 미국 텍사스 오스틴 주립대에서 박사학위를 취득한 후 지난 2014년 인공지능 컴퓨팅 기술 기업인 미국 엔비디아(NVIDIA) 본사에 입사했다. 엔비디아에 입사한 이후 줄곧 인공지능 컴퓨팅 가속을 위한 다양한 하드웨어 및 소프트웨어 시스템 연구를 주도했으며 지난 2018년부터 우리 대학 전기및전자공학부 교수로 재직 중이다. 전기및전자공학부 권영은 박사과정이 제1 저자, 이윤재 석사과정이 제2 저자로 참여한 이번 연구 결과는 세계 최초의 추천시스템 학습용 가속기 시스템 개발 성과라는 학술 가치를 인정받아 컴퓨터 시스템 구조 분야 최우수 국제 학술대회인 IEEE International Symposium on High-Performance Computer Architecture(HPCA)에서 `Tensor Casting: Co-Designing Algorithm-Architecture for Personalized Recommendation Training' 이라는 논문 제목으로 내년 2월에 발표된다.
2020.11.16
조회수 32744
세계 최고 수명을 지닌 불타지 않는 ESS(에너지저장시스템) 수계전지 개발
우리 대학 생명화학공학과 김희탁 교수(나노융합연구소 차세대배터리센터) 연구팀이 아연 전극의 열화 메커니즘을 규명하고 이를 해결함으로써 전 세계에서 보고된 모든 레독스 흐름 전지 가운데 가장 오래가는 수명을 가지는 수계 아연-브롬 레독스 흐름 전지 개발에 성공했다고 5일 밝혔다. 생명화학공학과 이주혁 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `Energy and Environmental Science'에 최근(9월) 게재되는 한편 표지논문으로 선정됐다. (논문명: Dendrite-free Zn electrodeposition triggered by interatomic orbital hybridization of Zn and single vacancy carbon defects for aqueous Zn-based flow batteries) 최근 들어 신재생에너지의 간헐성을 보완하고 전력 피크 수요를 충당하기 위해 신재생에너지 및 심야 전력을 대용량으로 저장, 필요할 경우 저장된 에너지를 설비에 공급함으로써 에너지 이용 효율을 높일 수 있는 에너지저장시스템(Energy storage systems, 이하 ESS) 기술이 각광받고 있다. 현재 대부분의 ESS는 값이 저렴한 `리튬이온전지' 기술을 채택하고 있지만, 리튬이온전지는 태생적으로 발화로 인한 화재 위험성 때문에 대용량의 전력을 저장하는 ESS에는 적합하지 않다는 지적을 받아왔다. 실제 2017년~ 2019년까지 2년간 국내에서 발생한 리튬이온전지로 인한 ESS 화재사고 33건 가운데 가동이 중단된 곳은 전체 중 35%에 달한다. 현재까지 집계된 손해액만도 약 7,000억 원 이상으로 추정되고 있다. 따라서 최근에는 배터리 과열 현상을 원천적으로 차단할 수 있는 수계(물) 전해질을 이용한 *레독스 흐름 전지가 큰 주목을 받고 있다. 특히, 초저가의 브롬화 아연(ZnBr2)을 활물질로 이용하는 아연-브롬 레독스 흐름 전지는 다른 수계 레독스 흐름 전지와 비교할 때 높은 구동 전압과 함께 에너지 밀도를 높일 수 있고, 가격이 싸다는 장점 때문에 70년대부터 ESS용으로 개발돼왔다. ☞ 레독스 흐름 전지(Redox flow battery): 레독스 흐름 전지는 양극 및 음극 전해액 내에 활물질을 녹여서 외부 탱크에 저장한 후 펌프를 이용해 전극에 공급하면 전극 표면에서 전해액 내의 활성 물질의 산화·환원 반응을 이용해 에너지는 저장하는 전지이다. 문제는 아연-브롬 레독스 흐름 전지의 경우 아연 음극이 나타내는 짧은 수명 때문에 상용화가 지연되고 있다는 점이다. 특히 아연 금속이 충·방전 과정 중에 보이는 불균일한 돌기 형태의 *덴드라이트 형성은 전지의 내부 단락을 유발해 수명을 단축하는 주요 원인으로 지적되고 있다. 현재 덴드라이트 형성 메커니즘은 명확히 규명되진 않고 있지만 충전 초기 전극 표면에 형성되는 아연 핵의 불균일성 때문일 것으로 전문가들은 추정하고 있다. 이런 문제 해결을 위해 그동안 균일한 핵의 생성을 유도하는 기술이 경쟁적으로 개발돼왔으나, 여전히 충분한 수명향상 효과를 얻지 못하고 있다. ☞ 덴드라이트(Dendrite): 아연 이온이 환원되어 금속 전극 표면에 증착될 때, 금속 표면 일부에서 비정상적으로 성장하는 나뭇가지 형태의 결정. 김희탁 교수 연구팀은 낮은 표면에너지를 지닌 탄소 전극 계면에서는 아연 핵의 `표면 확산(Surface diffusion)'을 통한 `자가 응집(Self-agglomeration)' 현상이 발생한다는 사실에 주목하고 양자 역학 기반의 컴퓨터 시뮬레이션과 전송 전자 현미경 분석을 통해 자가 응집 현상이 아연 덴드라이트 형성의 주요 원인임을 규명하는 데 성공했다. 연구팀은 이와 함께 특정 탄소결함구조에서는 아연 핵의 표면 확산이 억제되기 때문에 덴드라이트가 발생하지 않은 사실을 발견했다. 탄소 원자 1개가 제거된 단일 빈 구멍 결함(single vacancy defect)은 아연 핵과 전자를 교환하며, 강하게 결합함으로써 표면 확산이 억제되고 균일한 핵생성 또는 성장을 가능하게 한다. 김 교수 연구팀은 고밀도의 결함 구조를 지닌 탄소 전극을 아연-브롬 레독스 흐름 전지에 적용해, 리튬이온전지의 30배에 달하는 높은 충·방전 전류밀도(100 mA/cm2)에서 5,000 사이클 이상의 수명 특성을 구현하는데 성공했다. 연구팀 관계자는 지금까지 다양한 레독스 흐름 전지에 대해 보고된 결과 중 가장 뛰어난 수명성능을 지닌 전지라는 점을 강조했다. 우리 대학 나노융합연구소 차세대배터리센터장 김희탁 교수는 "차세대 수계 전지의 수명 한계를 극복하기 위한 새로운 기술을 제시한 게 이번 연구의 성과”라면서 "기존 리튬이온전지보다 저렴할 뿐만 아니라 에너지 효율 80% 이상에서 5,000 사이클 이상 구동이 가능하다는 점에서 신재생에너지의 확대 및 ESS 시장 활성화에 기여할 것”이라고 밝혔다. 한편 이번 연구는 우리 대학 나노융합연구소와 과학기술정보통신부의 지원을 받아 수행됐다.
2020.10.05
조회수 30222
광유전학 · 광치료 연구를 위한 투명 전극 개발
우리 대학 전기및전자공학부 이현주 교수와 이정용 교수, 의과학대학원 이정호 교수 공동연구팀이 폴리머 전기방사 기술을 미세 전자 기계 시스템(MEMS, Micro Electro Mechanical Systems) 공정에 접목해 실시간으로 뇌피질 전도 측정이 가능한 투명하고 유연한 미세전극 어레이(배열)를 개발했다고 15일 밝혔다. ☞ 폴리머: 한 종류 또는 수 종류의 구성단위가 서로에게 많은 수의 화학결합으로 중합돼 연결된 상태의 분자로 구성된 화합물. 통상적으로 고분자 화합물(분자량이 1만 이상의 화합물)과 같은 의미로 사용되는 경우가 많은데 고분자를 영어로는 폴리머(polymer)라고 부른다. ☞ 전기방사: 폴리머(고분자) 용액에 고전압을 인가해 나노파이버(나노섬유)를 생산하는 첨단 기술 ☞ 미세 전자 기계 시스템: 마이크로 단위의 기계적 구조물과 전자 회로가 결합된 초소형 정밀 기계 제작 기술. 전자(반도체) 기술·기계 기술·광 기술 등을 융합해 마이크로 단위의 작은 부품 및 시스템을 설계·제작하고 응용하는 기술을 의미 이번에 개발된 뇌피질 전도 미세전극 어레이는 기존의 불투명한 금속 전극과는 달리 빛에 의해 발생하는 잡음 신호가 매우 작고 자유로운 빛의 전달이 가능해 광유전학 및 광 치료 연구에 큰 도움을 줄 것으로 기대된다. 최근 빛의 새로운 활용법과 생체 내 효능에 대한 발견으로 인해 빛을 생체 내의 특정 영역에 조사해 생기는 반응과 효과에 관한 연구들이 주목을 받고 있다. 대표적인 예가 광유전학, 광 치료 기술 등이다. 광유전학은 기존 신경 자극기술과는 달리 매우 국소적인 부위의 신경 세포를 자극하고, 광 치료법은 수면장애와 알츠하이머병의 치료 가능성으로 이 분야에 관한 연구들이 활발히 진행되고 있다. 빛에 의한 생체 내 반응을 측정하는 대표적인 방법으로는 체내에 센서 등을 장착해서 호르몬의 분비과정에서 발생하는 전기생리 신호를 측정하는 방법이다. 통상적으로 전기생리 신호 측정을 위해 사용하는 일반적인 금속 박막 전극은 높은 반사도와 낮은 투과도 때문에 빛의 전달을 방해할 뿐만 아니라 빛을 쬘 때 베크렐 효과(금속 전극이 빛을 받으면 전극에 전위차가 생겨 전류가 흐르는 현상)에 의해 '포토일렉트릭 아티팩트'라는 잡음 신호가 발생한다. 따라서 일반 금속 박막 전극은 정확한 전기생리 신호를 측정하기가 어렵다. 이현주 교수팀은 그간 이런 문제해결을 위해 MEMS 공정을 통해 제작되는 미세전극 어레이를 투명화하기 위한 연구를 지속적으로 수행해왔는데 최근 폴리머 전기방사 기술을 MEMS 공정에 접목해 뇌피질 전도(ECoG, ElectroCorticoGram)측정을 위한 유연하고 투명한 미세전극 어레이를 제작하는데 성공했다. 이 장치는 높은 투과도를 지니고 있어 '포토일렉트릭 아티팩트'가 매우 약하고 또 빛의 전달이 매우 용이하기 때문에 다른 투명 미세전극 어레이와 비교해 보면 전기화학 임피던스가 낮아 뇌피질 전도 측정이 매우 유리하다. 연구팀은 자체개발한 유연·투명한 미세전극 어레이 성능평가를 위해 외부 변형에 따른 저항 변화와 전기방사 시간에 따른 전기화학 임피던스, 전하 저장 용량 등을 측정한 결과, 전극 자체의 특성을 쉽게 조절이 가능한 점 등 여러 면에서 우수한 성능을 보였다고 설명했다. 연구팀은 특히 미세 전극에서 발생하는 `포토일렉트릭 아티팩트'를 비교 분석했는데 10배 이상 감쇄 효과가 있음을 확인했다. 이와 함께 쥐 뇌의 다양한 피질 영역에 걸쳐 유연·투명한 미세전극 어레이를 위치시킨 후 광 자극을 통해 발생하는 뇌피질 전도 신호를 측정한 결과, 신호를 정량적으로 비교하고 빛이 원활하게 전달되는 현상을 관측하는데 성공했다. 연구팀은 현재 이 신기술을 기반으로 광 자극과 함께 정확한 뇌피질 전도를 실시간으로 측정할 수 있는 미세전극과 미세광원이 집적된 다기능성 미세전극 어레이 개발을 위한 후속연구를 진행 중이다. 광원과 전극이 함께 집적된 다기능성 소자 개발에 성공할 경우 광유전학이나 광 치료 등의 연구를 진행하는 뇌과학자들이 편하게 사용할 수 있는 뉴로 툴(Tool) 개발로 이어질 것으로 전문가들은 예상하고 있다. 이현주 교수는 "기존에는 광전 효과로 인해 불가피하게 발생하는 잡음 신호로 인해서 광 자극과 동시에 뇌피질 전도 측정이 불가능했지만 유연하고 투명한 미세전극 개발을 계기로 광 자극과는 무관하게 실시간으로 뇌피질 전도 측정이 가능하게 됐다”고 말했다. 이현주 교수 연구팀의 서지원 박사와 김기업 박사과정생, 그리고 이정용 교수 연구팀의 서기원 박사과정생이 각각 주도하고 의과학대학원 이정호 교수와 김정욱 박사가 참여한 이번 연구결과는 국제 학술지 '어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)'誌 7월 2일 字에 게재됐으며 표지논문(Front Cover)으로 선정됐다. (논문명: Artifact-Free 2D Mapping of Neural Activity In Vivo through Transparent Gold Nanonetwork Array) 한편, 이 연구는 과학기술정보통신부 한국연구재단의 선도연구센터 사업의 지원으로 수행됐다.
2020.07.15
조회수 27043
이상엽 특훈교수팀 학생들, 천연물 생산 미생물 개발 전략 총정리
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀 소속 대학원생 4명이 대장균 세포 공장을 개발해 생산된 대표 천연물들의 생합성 경로를 총망라해 최신의 연구 내용과 흐름을 한눈에 파악할 수 있도록 대사 회로를 정리한 `천연물 생산을 위한 대장균에서의 대사공학'을 주제로 논문을 발표했다. 학생들은 이번 논문에서 천연물 생산 대장균 세포 공장 개발을 위한 주요 시스템 대사공학 전략을 `효소 개량'과 `대사흐름 최적화', 그리고 `시스템 접근법' 등 3단계로 정리했으며 각 단계별로 활용이 가능한 최신 도구 및 전략을 대사공학이 나아가야 할 방향과 함께 제시했다. 양동수·박선영·은현민 박사과정과 박예슬 석사과정 학생이 참여한 이번 연구결과는 국제학술지인 셀(Cell)誌가 발행하는 생명공학 분야 권위 리뷰지인 `생명공학의 동향(Trends in Biotechnology)' 7월호(특별호: 대사공학) 표지논문 및 주 논문(Featured Article)으로 1일 게재됐다. 인류 역사에서 천연물은 식품과 의약품 등의 분야에 널리 사용되고 있는데 많은 천연물이 그 자체로 의약 물질로 쓰이거나 새로운 의약 물질 개발의 구조적인 근간이 되고 있다. 고부가가치 천연물에 대한 국제적인 수요와 시장규모는 지속적으로 증가하는 추세인 데 반해 천연자원으로부터 얻을 수 있는 양은 극히 제한적이며 완전한 화학합성은 대체로 효율이 낮고 유기 용매를 다량으로 이용하기 때문에 환경 오염과 인류 건강에 악영향을 초래할 수 있다. 따라서 전 세계적으로 천연물을 친환경적이며 고효율로 생산이 가능한 미생물 세포 공장을 개발하려는 노력이 이뤄지고 있다. 미생물 세포 공장 구축을 위한 핵심전략인 시스템 대사공학은 기존 석유화학산업을 대체할 바이오산업의 핵심이 되는 미생물 균주를 보다 효과적으로 개발하기 위해 KAIST 이상엽 특훈교수가 창시한 연구 분야다. 이상엽 특훈교수 연구팀은 실제 시스템 대사공학 전략을 이용, 천연물·아미노산·생분해성 플라스틱·환경친화적인 플라스틱 원료와 바이오 연료 등을 생산하는 고성능 균주들을 다수 개발한 성과를 거뒀다. 이들 4명의 학생을 지도한 이상엽 특훈교수는 "천연물 생산을 위한 대사공학 연구를 체계적으로 분석, 정리하고 또 향후 전략을 제시했다는 점에서 큰 의미가 있다ˮ면서 "권위가 있는 학술지에 주 논문이자 표지논문으로 게재된 이번 연구를 수행한 학생들이 자랑스럽다ˮ고 말했다. 공동 제1 저자인 양동수·박선영 박사과정 학생도 "고령화가 진행되는 사회에서 헬스케어 산업은 그 중요성이 더욱 대두되고 있다ˮ면서 "인류가 건강한 삶을 지속적으로 영위하기 위해서 필수적인 각종 천연물을 대사공학적으로 생산하는 연구 또한 갈수록 중요해질 것ˮ이라고 강조했다. 한편 이번 연구는 과학기술정보통신부가 지원하는 기후변화대응기술개발사업의 `바이오리파이너리를 위한 시스템 대사공학 원천기술개발 과제' 및 노보 노디스크 재단의 지원을 받아 수행됐다.
2020.07.02
조회수 23734
세계 최고 성능을 지닌 데이터베이스 관리 시스템(DBMS) 기술 개발
우리 연구진이 방대한 정보를 저장하고 목적에 맞게 검색, 관리할 수 있는 시스템을 통칭하는 데이터베이스관리시스템(DBMS, DataBase Management System)을 세계 최고 수준의 성능으로 끌어올렸다. 우리 대학 전산학부 김민수 교수 연구팀이 데이터베이스 질의 언어 SQL(Structured Query Language, 구조화 질의어) 처리 성능을 대폭 높인 세계 최고 수준의 DBMS 기술을 개발했다. 김 교수 연구팀은 데이터 처리를 위해 산업 표준으로 사용되는 SQL 질의를 기존 DBMS와는 전혀 다른 방법으로 처리함으로써 성능을 기존 옴니사이(OmniSci) DBMS 대비 최대 88배나 높인 신기술을 개발했다. 김 교수팀이 개발한 이 기술은 오라클·마이크로소프트 SQL서버·IBM DB2 등 타 DBMS에도 적용할 수 있어 고성능 SQL 질의 처리가 필요한 다양한 곳에 폭넓게 적용될 수 있을 것으로 기대된다. 대부분의 DBMS는 SQL 질의를 처리할 때 내부적으로 데이터 테이블들을 `왼쪽 깊은 이진 트리(left-deep binary tree)' 형태로 배치해 처리하는 방법을 사용한다. 지난 수십 년간 상용화돼 온 대부분의 DBMS는 데이터 테이블들의 배치 가능한 가지 수가 기하급수적으로 많기 때문에 이를 `왼쪽 깊은 이진 트리' 형태로 배치해 SQL 질의를 처리해 왔다. 임의의 두 테이블이 기본 키(primary key, PK)와 외래 키(foreign key, FK)라 불리는 관계로 결합(조인 연산)하는 경우에는 이러한 방법으로 SQL 질의를 효과적으로 처리할 수 있다. 여기서 기본 키는 각 데이터 행(row)을 유일하게 식별할 수 있는 열(column)이고, 외래 키는 그렇지 않은 열이다. 지난 수십 년간 산업에서 사용되는 DB의 구조가 점점 복잡해지면서 두 테이블은 PK-FK 관계가 아닌 FK-FK 관계, 즉 외래 키와 외래 키의 관계로 결합하는 복잡한 형태의 SQL 질의들이 많아지고 있다. 실제 DBMS의 성능을 측정하는 산업 표준 벤치마크인 TPC-DS에서 전체 벤치마크의 26%가 이런 복잡한 SQL 질의들로 구성돼 있고 기계학습(머신러닝), 생물 정보학 등 다양한 분야들서도 이러한 복잡한 SQL 질의 사용이 점차 증가하는 추세다. 이전에 나온 DBMS들은 두 테이블이 주로 PK-FK 관계로 결합한다는 가정하에 개발됐기 때문에 FK-FK 결합이 필요한 복잡한 SQL 질의를 매우 느리거나 심지어 처리하지 못하는 실패를 거듭해왔다. 김 교수팀은 문제 해결을 위해 테이블들을 하나의 커다란 `왼쪽 깊은 이진 트리' 형태가 아닌 여러 개의 작은 `왼쪽 깊은 이진 트리'를 `n항 조인 연산자'로 묶는 형태로 배치해 처리하는 기술을 개발했다. 이때 각각의 `작은 이진 트리' 안에는 FK-FK 결합 관계가 발생하지 않도록 테이블들을 배치하는 것이 핵심이다. 각각의 `작은 이진 트리'의 처리 결과물을 `n항 조인 연산자'로 결합해 최종 결과물을 구하는 것도 난제로 꼽히는데 연구팀은 `최악-최적(worst-case optimal) 조인 알고리즘'이라는 방법으로 이 문제를 해결했다. `최악-최적 조인 알고리즘'은 그래프 데이터를 처리할 때 이론적으로 가장 우수하다고 알려진 알고리즘이다. 김 교수 연구팀은 세계에서 가장 먼저 이 알고리즘을 SQL 질의 처리에 적용해 난제를 해결하는 데 성공했다. 김민수 교수 연구팀은 새로 개발한 DBMS 기술을 GPU 기반의 DBMS 개발업체인 미국 옴니사이(OmniSci)社 제품에 적용한 결과, OmniSci DBMS보다 성능이 최대 88배나 향상된 결과를 얻었다. 또 TPC-DS 벤치마크에서도 세계 최고 수준의 성능을 가진 기존의 상용 DBMS보다 5~20배나 더 빠른 사실을 확인했다. TPC-DS는 DBMS의 성능을 측정하기 위한 산업 표준의 최신 벤치마크이다. 교신저자로 참여한 김민수 교수는 "연구팀이 개발한 새로운 기술은 대부분의 DBMS에 적용할 수 있기 때문에 산업적 측면에서 파급 효과가 매우 클 것으로 기대한다ˮ 라고 말했다. 이번 연구에는 김 교수의 제자이자 미국 옴니사이(OmniSci)社에 재직 중인 남윤민 박사가 제1 저자로, 김 교수가 교신저자로 참여했으며 지난 18일 미국 오리건주 포틀랜드에서 열린 데이터베이스 분야 최고의 국제학술대회로 꼽히는 `시그모드(SIGMOD)'에서 발표됐다. (논문명 : SPRINTER: A Fast n-ary Join Query Processing Method for Complex OLAP Queries). 한편, 이 연구는 한국연구재단 선도연구센터 사업 및 중견연구자 지원사업, 과기정통부 IITP SW스타랩 사업의 지원을 받아 수행됐다.
2020.06.23
조회수 18612
사생활 침해 논란없는 코로나19 감염병 확산방지시스템 개발
세계 각국에서 주목을 받는 K-방역을 떠받쳐 온 코로나19 관련 검사·추적·치료 등 기존 3T 시스템을 한층 업그레이드시킨 새로운 `코로나19 감염병 확산방지시스템(앱&웹)'이 개발됐다. 우리 대학이 개발한 이 시스템은 GPS·무선랜·블루투스·기압계·관성 센서의 신호를 주기적으로 수집, 기록하는 스마트폰 블랙박스를 기반으로 하고 있어 사생활 침해 논란을 최소화하면서 신속한 역학조사와 격리자 관리 등 코로나19 상황에 효율적인 대응이 가능하다. 기존 3T 시스템은 신용카드 이용 내역 등 광범위한 개인정보 접근을 통해 확진자 동선을 공개하는 과정에서 사생활 노출로 인한 인권침해 우려가 꾸준히 제기돼 왔다. 전산학부 지능형서비스통합연구실 한동수 교수 연구팀은 스마트폰의 이동 동선을 기록하는 스마트폰 블랙박스를 기반으로 `코로나19 감염병 확산방지시스템(앱&웹)'을 개발했다고 10일 밝혔다. 한 교수 연구팀이 개발한 스마트폰 블랙박스 시스템은 스마트폰에 내장돼있는 GPS와 와이파이·블루투스·관성 센서 등을 통해서 수집된 신호를 보관했다가 2주가 지나면 자동으로 폐기한다. 또 개인 스마트폰 블랙박스에 저장된 기록은 일체 외부로 유출되지 않으며 특히 확진자의 동선을 공개하는 경우에도 문자로 표현되는 장소 정보가 아닌 신호 정보를 공개하기 때문에 확진자의 사생활 보호가 가능하다. 따라서 코로나19 집단감염대응 차원에서 그동안 꾸준히 지적돼 온 개인의 사생활 침해 문제에 대해 기존과는 다르게 보다 섬세한 방법으로 접근했다는 점이 이 시스템의 가장 큰 특징이다. 한 교수팀의 `코로나19 감염병 확산방지시스템'은 크게 일반인을 위한 `바이러스 노출 자가진단 시스템'과 감염병 관리기관을 위한 `확진자 역학조사 시스템', 그리고 `격리자 관리 시스템' 등 3개 시스템으로 이뤄져 있다. 우선 `바이러스 노출 자가진단 시스템'은 확진자의 동선과 개인의 스마트폰 블랙박스에 기록된 동선의 중첩 여부를 체크해 이뤄진다. 현재 방식은 확진자의 정보가 메시지를 통해 전달되고 개개인이 직접 확진자의 동선을 확인하는 불편함이 따르지만 한 교수팀이 개발한 시스템에서는 사용자가 수시로 해당 앱의 버튼을 눌러 바이러스 노출 여부를 쉽고 빠르게 체크할 수 있다. `확진자 역학조사 시스템'을 통해 확진자 관련 역학조사를 빠르고 정확하게 수행할 수 있다. 코로나19 감염병 확진을 받은 환자의 스마트폰 블랙박스에 기록된 신호를 지도상에 표시를 해주기 때문에 역학 조사관이 확진자의 이동 동선을 쉽게 파악할 수 있다. 한동수 교수는 이와 함께 이 시스템에 지난 10여년간 개발해 온 실내·외 통합 위치 인식시스템 KAILOS(KAIST Locating System)의 기능도 적용했다. 이에 따라 실내지도와 신호지도가 준비된 건물에서는 건물 내부에서도 확진자의 이동 동선을 확인할 수 있다. 스마트폰 블랙박스는 격리자 관리에도 활용된다. 격리자의 스마트폰 블랙박스가 수집한 신호는 주기적으로 `격리자 관리 시스템'에 전송된다. `격리자 관리 시스템'은 전송받은 신호를 실시간으로 분석해 격리자의 격리공간 이탈 여부를 확인한다. GPS 신호뿐 아니라 무선랜 신호를 사용함으로써 실외뿐 아니라 실내에서의 확진자 격리공간 이탈 여부를 확인할 수 있어 기존 방식보다 더 정확하게 격리자를 관리할 수 있다는 게 강점이다. 한동수 교수는 "현재 약 30여 종의 스마트폰이 사용되고 있는데 스마트폰마다 탑재된 센서의 종류가 매우 다양해서 연구팀이 개발한 시스템을 다양한 스마트폰에 이식하고 테스트하는 작업을 진행하고 있다ˮ면서 "이 작업을 마치는 대로 곧 시스템을 출시할 계획ˮ이라고 소개했다. KAIST 신성철 총장도 "PreSPI(Prevention System for Pandemic Disease Infection)로 이름 붙인 이 시스템을 활용하면 코로나19 재확산으로 수고하는 의료진 등 방역 분야 종사자들의 수고와 시간을 획기적으로 줄일 수 있고 사생활 침해 논란 없이 신속하고 정확한 역학조사가 가능해져 K-방역의 우수성을 다시 한번 세계 각국에 과시하는 계기가 될 것ˮ이라고 강조했다.
2020.06.11
조회수 21395
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
>
다음 페이지
>>
마지막 페이지 9