본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%97%90%EB%84%88%EC%A7%80
최신순
조회순
AI대학원 김기응 교수 연구팀, 인공지능 전력망 운영관리 국제대회 1위 달성
우리 대학 AI대학원 김기응 교수 연구팀(홍성훈, 윤든솔 석사과정, 이병준 박사과정)이 인공지능 기반 전력망 운영관리 기술을 겨루는 국제경진대회인 'L2RPN 챌린지(Learning to Run a Power Network Challenge 2020 WCCI)'에서 최종 1위를 차지했다. 이 대회는 기계학습 연구를 촉진하기 위한 각종 경진대회를 주관하는 비영리단체 ChaLearn, 유럽 최대 전력망을 운영관리하는 프랑스 전력공사의 자회사 RTE(Réseau de Transport d'Électricité)社 및 세계 최대 규모의 전력 회사 SGCC(State Grid of China)의 자회사인 GEIRI North America(Global Energy Interconnection Research Institute)에서 공동주최해, 세계 각국의 약 50팀이 약 40일간 (2020.05.20.~06.30) 온라인으로 참여해 성황리에 마감됐다. 단순한 전력망이 스마트 그리드를 넘어서 에너지 클라우드 및 네트워크로 진화하려면 신재생 에너지의 비율이 30% 이상이 돼야 하고, 신재생 에너지 비율이 높아지면 전력망 운영의 복잡도가 매우 증가한다. 실제로 독일의 경우 신재생 에너지 비율이 30%가 넘어가면서 전력사고가 3,000건 이상 증가할 정도로 심각하며, 미국의 ENRON 사태 직전에도 에너지 발전과 수요 사이의 수급 조절에 문제가 생기면서 잦은 정전 사태가 났던 사례도 있다. 전력망 운영에 인공지능 기술 도입은 아직 초기 단계이며, 현재 사용되고 있는 전력망은 관리자의 개입 없이 1시간 이상 운영되기 힘든 실정이다. 이에 프랑스의 RTE(Réseau de Transport d'Électricité) 社는 전력망 운영에 인공지능 기술을 접목하는 경진대회 'L2RPN'을 2019년 처음 개최했다. 2019년 대회는 IEEE-14라는 14개의 변전소를 포함하는 가상의 전력망에서 단순한 운영을 목표로 열렸다. 2020년 대회는 L2RPN 2020 WCCI 챌린지라는 이름으로 특정 국가 수도 규모의 복잡한 전력망을 72시간 동안 관리자의 개입 없이 스스로 안전하고 효율적으로 운영될 수 있는 인공지능 전력망 관리 에이전트를 개발하는 것을 목표로 열렸다. 시간에 따른 공급-수요의 변화, 시설 유지보수 및 재난에 따른 급작스러운 단전 등 다양한 시나리오에 대해 전력망 운영관리 능력의 평가가 이뤄졌다. 김 교수 연구팀은 이번 2020년 대회에서 전력망 구조를 효과적으로 반영할 수 있는 그래프 신경망 모델 기반의 강화학습 에이전트를 개발해 참가했다. 기존의 에이전트들은 소규모의 전력망에서만 적용 가능하다는 한계가 있었지만, 김 교수 연구팀은 국가 수도 규모의 복잡한 전력망에도 적용 가능한 에이전트를 개발했다. 연구팀이 개발한 인공지능 전력망 운영관리 에이전트는 주어진 모든 테스트 시나리오에 대해 안전하고 효율적으로 전력망을 운영해 최종 1위의 성적을 거뒀다. 우승팀에게는 상금으로 미국 실리콘밸리에 있는 GEIRI North America를 방문할 수 있는 여행경비와 학회참가 비용 3,000달러가 주어진다. 연구진은 앞으로도 기술을 고도화해 국가 규모의 전력망과 다양한 신재생 에너지원을 다룰 수 있도록 확장할 계획이다. 한편 이번 연구는 과기정통부 에너지 클라우드 기술개발 사업의 지원으로 설치된 개방형 에너지 클라우드 플랫폼 연구단과제로 수행됐다. (연구단장 KAIST 전산학부 문수복 교수) ※ 대회 결과 사이트 관련 링크: https://l2rpn.chalearn.org/competitions ※ 개방형 에너지 클라우드 플랫폼 연구단 사이트: https://www.oecp.kaist.ac.kr
2020.07.28
조회수 27498
김용훈 교수 연구팀, 점점 작아지는 나노소자 더 똑똑하게 설계한다
우리 대학 연구진이 차세대 반도체 소자 설계의 기반이 되는 물리학 표준이론의 대안(alternative)을 제시했다. 전기및전자공학부 김용훈 교수 연구팀은 현대 양자수송 표준이론의 대안을 제시, 나노소자의 에너지 특성 까지 정확히 예측할 수 있는 이론을 확립하고 소프트웨어로 구현 했다고 14일 밝혔다. 일상적으로 쓰는 가전제품에서는 전자가 입자적 성격을 띠고 고전적으로 흐르지만, 최신 전자제품에 들어있는 첨단 나노소자에서는 전자가 양자적 특성을 띠고 전혀 다르게 움직인다. 원자나 분자 수준에서 단위정보를 처리하는 신개념 반도체 소자나 수소전지 같은 차세대 에너지 소자의 설계를 위해서는 이 같은 미시세계에서의 전자 및 스핀의 양자수송(quantum transport) 특성을 반영하여 소자의 동작을 미리 예측하는 과정이 필수적이다. 20세기 후반에 확립된 양자수송에 대한 표준이론은 나노소자를 채널영역과 그에 연결된 무한한 두 개의 전극으로 구성된 열린 양자계(open quantum system)로 기술한다. 이를 바탕으로 첨단 트랜지스터, 태양전지, LED 등 다양한 반도체 소자의 구동을 해석하려는 노력이 있지만, 이 방법으로는 전도성 이외 무한한 전극이 포함된 소자의 에너지를 기술할 수 없어 에너지 소자의 설계에 활용하기에는 한계가 있었다. 연구팀은 이 한계를 극복하고자 비평형 상태의 나노소자를 닫힌 양자계로 보고, 이 안에서의 양자수송 현상을 한 쪽 전극에서 다른 쪽 전극으로 전자가 광학여기(optical excitation) 되는 현상에 대응시키는 관점을 제안했다. 또한 이를 통해 소자의 에너지를 최소화하는 방식의 이론을 개발 하고 소프트웨어로 구현했다. 이 계산방식을 활용하면 소자의 전류-전압 특성 이외 에너지 특성까지 기술할 수 있어, 특히 배터리 같은 에너지 저장소자, 촉매나 연료전지 같은 에너지 변환소자 등 원자 수준 에너지 소자 설계의 중요한 실마리가 될 것으로 기대된다. 과학기술정보통신부와 한국연구재단이 추진하는 중견연구지원사업, 나노소재원천기술개발사업, 기초연구실지원사업, 글로벌프론티어 사업의 지원으로 수행된 이번 연구의 성과는 세계적인 학술지 어드밴스드 사이언스(Advanced Science)에 7월 1일 게재됐다.
2020.07.14
조회수 20529
전해액 사용량을 4배 줄인 리튬-황 전지 개발
우리 연구진이 리튬-황 전지를 경제적으로 설계하되 성능은 획기적으로 개선한 기술개발에 성공해 차세대 배터리 기술개발에 한 발 더 다가섰다. 우리 대학 생명화학공학과 김희탁 교수팀이 기존 대비 전해액의 함량을 4배 이상 줄인 리튬-황 전지를 개발했다고 25일 밝혔다. 리튬-황 전지는 차세대 배터리 기술 중 연구개발이 가장 활발하게 이뤄지는 기술이다. 리튬-황 전지는 휴대용 전자기기와 전기자동차에 사용되는 리튬이온전지에 비해 에너지 밀도가 2~3배 높아서 이를 사용하면 전기동력 기체 무게를 크게 줄일 수 있기 때문이다. 리튬-황 전지는 가벼운 황과 리튬금속을 활물질(화학적으로 반응하여 전기에너지를 생산하는 물질)로 이용하기 때문에 중금속 기반인 리튬이온전지에 비해 경량화가 가능하다. 특히 지구에 풍부하게 존재하는 황을 활용해 저가의 전지를 구현할 수 있다는 점 때문에 산업계와 학계로부터 그동안 많은 주목을 받아왔다. 다만 리튬-황 전지는 리튬이온전지와 달리 매우 높은 전해액 함량을 갖고 있다. 전지 무게의 40%에 달하는 과량의 전해질 사용은 전지 무게 증가로 인해 그동안 리튬-황 전지의 고에너지밀도 구현에 큰 걸림돌이 돼왔다. 리튬-황 전지는 황이 방전되고 난 후의 산물인 `리튬 폴리 설파이드(Lithium poly sulfide)'가 전해액에 용해된 상태에서 빠른 충 ‧ 방전 특성을 갖는다. 이 전해액 양을 낮추면 리튬 폴리 설파이드의 용해량이 감소해 용량 및 출력이 저하되는 문제가 발생한다. 또 리튬금속 음극이 전해액을 분해해 전해액이 고갈되는 문제는 낮은 전해 액체량에서 더욱 심해져 결국 전지 수명을 떨어뜨린다. 김희탁 교수 연구팀은 이번 연구를 통해 리튬 나이트레이트 염과 같이 높은 전자공여(다른 화합물에 전자를 주는 성질) 능력이 있는 염을 전해질에 주입하면 폴리 설파이드의 용해도를 증가시킴과 동시에 리튬금속에서 전해질 분해를 억제할 수 있음을 규명했다. 리튬이온과 결합력이 강한 나이트레이트 음이온이 리튬이온의 `용매화 껍질(Solvation Shell)' 역할을 수행함으로써 리튬 폴리 설파이드의 해리도를 증가시켜 결과적으로 용해도가 향상된다는 사실도 증명했다. 아울러 용매화 껍질 구조변화가 전해액 용매 분자와 리튬금속과의 접촉을 낮춰 분해반응을 억제하는 현상도 확인했다. 김희탁 교수팀은 이번 연구를 통해 전해액 성분 중 리튬 염 물질 하나만을 교체하는 간단한 방법으로 에너지 밀도를 높이면서 고가의 전해액 사용량을 4배 이상 줄여 가격을 대폭 절감하는 성과를 거뒀다. 김희탁 교수는 "이번 연구는 황 양극과 리튬금속 음극의 성능을 동시에 높일 수 있는 전해액 설계원리를 제시했다는 점에서 의미가 크다ˮ면서 "차세대 전지 전해액 설계산업 전반에 걸쳐 넓게 응용되기를 기대한다ˮ고 말했다. KAIST 생명화학공학과 석사졸업생인 추현원 학생(現 MIT 박사과정 재학 중)과 정진관 박사과정이 공동 제1 저자로 참여한 이번 연구결과는 국제 학술지 `어드밴스드 에너지 머티리얼즈(Advanced energy materials)' 6월 2일 字 표지논문으로 실렸다. (논문명: Unraveling the Dual Functionality of High-Donor-Number Anion in Lean-Electrolyte Lithium-Sulfur Batteries) 한편, 이번 연구는 LG화학, KAIST 나노융합연구소, 과학기술정보통신부 기후변화대응과제의 지원을 받아 수행됐다.
2020.06.25
조회수 21091
공기중 산소로 충전되는 차세대 배터리용 에너지 저장 소재 개발
우리 연구진이 공기 중에 널리 퍼져있는 산소로 충전되는 차세대 배터리인 리튬-공기 배터리의 에너지 저장 소재를 개발했다. 기존 리튬-이온 배터리에 비해 약 10배 큰 에너지 밀도를 얻을 수 있어 친환경 전기자동차용 배터리에 널리 쓰일 것으로 기대된다. 우리 대학 신소재공학과 강정구 교수가 숙명여대 화공생명공학부 최경민 교수 연구팀과 공동연구를 통해 원자 수준에서 촉매를 제어하고 분자 단위에서 반응물의 움직임 제어가 가능해 차세대 배터리로 주목받는 리튬-공기 배터리용 에너지 저장 전극 소재(촉매)를 개발했다. 연구팀은 이번 소재개발을 위해 기존 나노입자 기반 소재의 한계를 극복하는 원자 수준의 촉매를 제어하는 기술과 금속 유기 구조체(MOFs, Metal-Organic Frameworks)를 형성해 촉매 전구체와 보호체로 사용하는 새로운 개념을 적용했다. 금속 유기 구조체는 1g만으로도 축구장 크기의 넓은 표면적을 갖기 때문에 다양한 분야에 적용 가능한 신소재다. 이와 함께 물 분자의 거동 메커니즘 규명을 통해 물 분자를 하나씩 제어하는 기술도 함께 활용했다. 이 결과, 합성된 원자 수준의 전기화학 촉매는 금속 유기 구조체의 1nm(나노미터) 이하 기공(구멍) 내에서 안정화가 이뤄져서 뛰어난 성능으로 에너지를 저장한다는 사실을 밝혀냈다. KAIST 신소재공학과 최원호 박사과정이 제1 저자로 참여한 이 연구결과는 재료 분야 저명 국제 학술지 `어드밴스드 사이언스 (Advanced Science)' 5월 6일 字에 게재됐다. (논문명 : Autogenous Production and Stabilization of Highly Loaded Sub-Nanometric Particles within Multishell Hollow Metal-Organic Frameworks and Their Utilization for High Performance in Li-O2 Batteries) 리튬-이온 배터리는 낮은 에너지 밀도의 한계로 인해 전기자동차와 같이 높은 에너지 밀도를 요구하는 장치들의 발전 속도를 따라잡지 못하고 있다. 이를 대체하기 위해 다양한 종류의 시스템들이 연구되고 있는데 이 가운데 높은 에너지 밀도의 구현이 가능한 리튬-공기 배터리가 가장 유력한 후보로 꼽힌다. 다만 리튬-공기 배터리는 사이클 수명이 매우 짧아서 이를 개선하기 위해 공기 전극에 촉매를 도입하고 촉매 특성을 개선하려는 연구가 활발히 진행되고 있다. 공동연구팀은 원자 수준의 촉매 도입 후 사이클 수가 3배 정도 증가하는 결과를 얻었다. 또 촉매의 경우 크기가 1nm(나노미터) 이하로 작아지면 서로 뭉치는 현상이 발생해서 성능이 급격하게 떨어진다. 공동연구팀은 이런 문제 해결을 위해 원자 수준 촉매 제어기술을 사용했는데 물 분자가 금속 유기 구조체의 1nm(나노미터) 이하의 공간에서 코발트 이온과 반응해 코발트 수산화물을 형성했고, 그 공간 내부에서도 안정화를 이뤘다. 안정화가 이뤄진 코발트 수산화물은 뭉침 현상이 방지되고, 원자 수준의 크기가 유지되기 때문에 활성도가 향상되면서 리튬-공기 배터리의 사이클 수명 또한 크게 개선되는 결과를 얻었다. 강정구 교수는 "금속-유기 구조체 기공 내에서 원자 수준의 촉매 소재를 동시에 생성하고 안정화하는 기술은 수십만 개의 금속-유기 구조체 종류와 구현되는 촉매 종류에 따라 다양화가 가능하다ˮ면서 "이는 곧 원자 수준의 촉매 개발뿐만 아니라 다양한 소재개발 연구 분야로 확장할 수 있다는 의미ˮ라고 설명했다. 한편 이번 연구는 과학기술정보통신부의 글로벌프론티어사업 및 수소에너지혁신기술개발사업의 지원을 받아 수행됐다.
2020.06.01
조회수 14836
자기장과 자성체 없이 전기로만 작동 가능한 그래핀 스핀 트랜지스터 돌파구 마련
우리 대학 물리학과 조성재 교수 연구팀이 그래핀으로 자기장, 자성체 없이 스핀 전류를 생성, 검출하는 실험에 성공해 차세대 그래핀 스핀 트랜지스터 개발의 돌파구를 마련했다. 차세대 신소재로 주목받는 그래핀은 탄소 원자가 벌집 모양으로 이루어진 2차원 물질(원자만큼 얇은 물질)로서 전기전도성, 탄성, 안정성이 높아 ‘꿈의 나노 물질’이라고 불린다. 이 그래핀은 전자의 스핀 확산 거리가 길어, 전자스핀을 정보화하는 분야인 스핀트로닉스 응용에 큰 기대를 받아왔다. 하지만 그래핀은 전자의 스핀과 전자의 궤도가 상호작용하는 스핀-궤도 결합 에너지가 매우 약하다는 이유로 스핀 전류를 직접 생성하거나 검출할 수 없다는 한계가 있었다. 조성재 교수 연구팀은 그래핀에 스핀-궤도 결합이 매우 큰 전이금속이자 디칼코게나이드 물질인 2H-TaS2를 접합시켜서 그 인접효과로 그래핀의 스핀-궤도 결합을 100배 이상 증가시키는 데 성공했고 이어 ‘라쉬바 효과’를 유도하는 데 성공했다. ‘라쉬바 효과’란 강한 스핀 궤도 결합으로 그래핀과 같은 2차원 물질 내부의 전기장이 자기장으로 전환되는 효과를 말한다. 이것을 이용해 스핀 전류를 생성, 검출하는 효과를 ‘라쉬바-에델스타인 효과’라고 부르는데 이번 연구에서는 이 효과를 그래핀에서 최초로 구현했다. 리준리 박사후 연구원이 제1 저자로 참여한 이번 연구는 국제 학술지 ‘에이씨에스 나노 (ACS Nano)’ 4월 8일 字 온라인판에 게재됐다. (논문명 : Gate-Tunable Reversible Rashba−Edelstein Effect in a Few-Layer Graphene/2H-TaS2 Heterostructure at Room Temperature). 라쉬바 효과가 그래핀에 유도되면, 라쉬바-에델스타인 효과에 의해 전하 전류와 스핀 전류가 상호 전환이 가능하다. 다시 말해, 자기장이나 자성체 없이 그래핀에 전류를 흘려줌으로써 스핀 전류를 생성시킬 수 있고, 그래핀 층에 흘러들어오는 스핀 전류를 전하 전류 혹은 전압 측정을 통해 검출할 수 있다. 조 교수 연구팀은 또 트랜지스터의 단자 사이에 인가되는 전압인 게이트 전압으로 그래핀 이종접합에 생성되는 스핀 전류의 크기와 방향을 제어하는 데 성공했다. 이는 추후 자기장, 자성체 없이 동작 가능한 그래핀 스핀 트랜지스터의 초석을 마련한 획기적인 연구성과로 평가받는다. 조성재 교수는 “이번 연구는 그래핀 이종접합에 자기장, 자성체 없이 전기적으로만 스핀 전류를 생성, 검출, 제어할 수 있음을 보인 최초의 연구로서 전기적으로만 작동 가능한 그래핀 스핀 트랜지스터의 개발로 이어질 것”이라며 “특히, 상온에서 실험이 성공했기 때문에 응용 가능성이 매우 크기 때문에 향후 우리나라 비메모리 산업뿐 아니라 세계적으로 스핀트로닉스 관련 물리학 및 산업에 응용할 수 있는 효과를 기대할 수 있어 의미가 매우 크다”고 강조했다. 한편, 이번 연구는 한국연구재단 미래반도체 신소자원천기술개발사업의 지원을 받아 수행됐다.
2020.05.18
조회수 15844
빛 투과율 조절하는 능동형 광학 필름 개발
우리 대학 연구진이 기존 창호시스템을 교체하지 않고서도 투과율을 큰 폭으로 자유롭게 조절할 수 있는 에너지 절감형 스마트 윈도우 등으로 활용이 가능한 새로운 광학 필름 제작 기술을 개발했다. 우리 대학 신소재공학과 전석우 교수와 건설및환경공학과 홍정욱 교수·신소재공학과 신종화 교수 공동연구팀이 3차원 나노 복합체를 이용, 에너지의 효율적인 신축변형을 통해 세계 최고 수준의 가시광 투과율 조절이 가능한 능동형 광학 필름을 개발하는데 성공했다고 14일 밝혔다. 전석우 교수와 홍정욱 교수가 교신 저자로, 조동휘 박사과정 학생과 신라대학교 심영석 교수가 공동 1저자로 참여한 이번 연구는 재료 분야의 세계적인 학술지 ‘어드밴스드 사이언스(Advanced Science)’ 4월 26일 字 온라인판에 게재됐다. (논문명: High-Contrast Optical Modulation from Strain-Induced Nanogaps at Three-Dimensional Heterogeneous Interfaces) 해당 연구진들은 정렬된 3차원 나노 네트워크에 기반한 신축성 나노 복합체를 이용해, 가시광 투과율을 최대 90%에서 16%까지 조절 가능한 넓은 면적의 광학 필름 제작에 필요한 원천 기술을 확보했다. 약 74%의 범위를 갖는 이는 평균적으로 46%의 범위를 가졌던 기존 2차원 필름의 수준을 훨씬 뛰어넘는 세계 최고 수준의 기술이다. 최근 제로 에너지 빌딩, 스마트 윈도우, 사생활 보호 등 에너지 저감/감성 혁신 응용에 대한 관심이 급증함에 따라, 능동형 광학 변조 기술이 주목받고 있다. 기존 외부 자극 (전기/열/빛 등)을 이용한 능동형 광학 변조 기술은 느린 반응속도와 불필요한 색 변화를 동반하고 낮은 안정성 등의 이유로 선글라스, 쇼케이스, 광고 등 매우 제한적인 분야에 적용돼왔기 때문에 현재 새로운 형태의 광학 변조 기술 개발이 활발히 진행 중이다. 에너지 효율적인 신축 변형을 이용한 광학 변조 기술은 비교적 간단한 구동 원리와 낮은 에너지 소비로 효율적으로 투과율을 제어할 수 있는 장점을 지녀 그동안 학계 및 관련 업계에서 집중적인 관심을 받아왔다. 그러나 기존 연구에서 보고된 광 산란 제어를 유도하는 구조는 대부분 광학 밀도가 낮은 2차원 표면 구조에 기반하기 때문에 좁은 투과율 변화 범위를 갖고, 물 등 외부 매질과 인접할 때 광학 변조기능을 잃는 문제를 가지고 있다. 특히, 비 정렬 구조에 바탕을 두고 있어 광학 변조 특성이 균일하지 못해서 넓은 면적으로 만들기도 힘들다. 연구팀은 정렬된 3차원 나노구조 제작에 효과적인 근접장 나노패터닝 (PnP, Proximity-field nanopatterning) 기술과 산화물 증착(증기를 표면에 얇은 막으로 입힘)을 정교하게 제어할 수 있는 원자층 증착법 (ALD, Atomic layer deposition)을 이용했다. 이에 주기적인 3차원 나노쉘 (nanoshell) 구조의 알루미나 (alumina)가 탄성중합체에 삽입된 신축성 3차원 나노복합체 필름을 현존하는 광학 변조 필름 중 가장 큰 면적인 3인치×3인치 크기로 제작하는 데 성공했다. 광학 필름을 약 60% 범위에서 당겨 늘리는 경우, 산화물과 탄성중합체의 경계면에서 발생하는 수없이 많고 작은 구멍에서 빛의 산란 현상이 발생하는데 연구진은 이를 이용해 세계 최고 수준의 가시광 투과율 조절 범위인 약 74%를 달성했다. 동시에 10,000회에 걸친 반복적인 구동 시험과 굽힘과 뒤틀림 등 거친 변형, 70℃ 이내 고온 환경에서의 구동, 물속에서의 구동 특성 등을 확인한 결과 높은 내구성과 안정성을 확인했다. 이와 함께 재료역학적‧광학적 이론 해석을 바탕으로 경계면에서 발생하는 광 산란 현상 메커니즘도 규명하는 데 성공했다. 전 교수 공동연구팀이 개발한 이 기술은 기존 창호 시스템 교체 없이도, 간단한 얇은 필름 형태로 유리 표면에 부착함으로써 투과율 조절이 가능한 에너지 절감형 스마트 윈도우로 활용이 가능하다. 이 밖에 두루마리 타입의 빔프로젝터 스크린 응용 등 감성 혁신적인 폭넓은 응용이 가능할 것으로 기대된다. 이번 연구는 한국연구재단 원천기술개발사업의 다부처 공동사업과 글로벌 프론티어 사업, 그리고 이공분야기초개발사업의 지원을 통해 수행됐다.
2020.05.14
조회수 18697
고효율 페로브스카이트-실리콘 탠덤 태양전지 개발
신소재공학과 신병하 교수 연구팀 주도의 공동 연구팀(서울대학교 김진영 교수, 세종대학교 김동회 교수, 미국 국립재생에너지 연구소 Kai Zhu 박사, 노스웨스턴 대학 정희준 박사)이 큰 밴드갭의 페로스카이트 물질을 개발하고 이를 적용해, 26.7%의 광 변환 효율을 갖는 고효율 페로브스카이트-실리콘 탠덤(tandem) 태양전지를 구현했다. 이번 연구는 과거 불안정하다고 알려진 큰 밴드갭 유무기 하이브리드 페로브스카이트 물질(Organic-Inoraganic Hybrid Perovskite)의 안정화 및 고효율화하는 기술을 개발함과 동시에, 이를 실리콘 태양전지와 적층해 고효율 탠덤 태양전지를 개발했다는 점에서 향후 30% 이상의 초고효율 태양전지 개발에 이바지할 수 있을 것으로 기대된다. 신병하 교수가 교신저자로, 김대한 박사과정이 1 저자로 참여한 이번 연구결과는 국제 학술지 ‘사이언스(Science)’ 3월 26일 자 온라인판에 게재됐다.(논문명: Efficient, stable silicon tandem cells enabled by anion-engineered wide bandgap perovskites) 기존의 단일 태양전지로는 약 30% 초반의 한계효율을 넘을 수 없다는 쇼클리-콰이저(Shockley-Queisser) 이론이 존재한다. 이에 단일 태양전지 효율의 한계를 극복하기 위해 연구자들이 2개 이상의 태양전지를 적층 형태로 연결하는 기술인 탠덤 태양전지 개발을 위해서 노력하고 있다. 하지만 탠덤 태양전지의 상부 셀(cell)로 적합한 큰 밴드갭의 페로브스카이트는 빛, 수분, 산소 등의 외부 환경에 민감하게 반응하는 낮은 안정성 때문에 고품질의 소자를 합성할 수 없다는 한계가 존재했다. 연구팀은 새로운 음이온을 포함한 첨가제를 도입해 페로브스카이트 박막 내부에 형성되는 2차원 안정화 층(passivation layer)의 전기적·구조적 특성을 조절할 수 있다는 것을 밝혔고, 이를 통해 최고 수준의 큰 밴드 갭 태양전지 소자를 제작했다. 공동 연구팀은 더 나아가 개발한 페로브스카이트 물질을 상용화된 기술인 실리콘 태양전지에 적층해 탠덤 태양전지를 제작하는 데 성공했고, 최고 수준인 26.7%의 광 변환 효율을 달성했다. 연구팀의 기술은 향후 첨가제 도입법을 통한 반도체 소재의 2차원 안정화 기법에 대한 방향을 제시할 수 있으며, 유무기 하이브리드 페로브스카이트 물질을 이용한 태양전지, 발광 다이오드, 광 검출기와 같은 광전자 소자 분야에 응용될 수 있을 것으로 기대된다. 신병하 교수는 “페로브스카이트 태양전지 기술은 지난 10년간 눈부신 발전을 이뤄, 이제는 상용화를 고민해야 하는 시기이다. 실리콘 태양전지와의 이종 접합 구조를 통한 고효율 달성은 페로브스카이트 태양전지 기술의 상용화를 앞당기는 데 도움이 될 것이다”라며 “연구결과는 향후 30% 이상의 초고율 탠덤 태양전지 구현에 초석이 될 것이다”라고 말했다. 이번 연구는 한국연구재단 나노소재기술개발사업, 중견연구자지원사업, 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP) 에너지기술개발사업, 알키미스트 프로젝트, BK21 사업의 지원을 통해 수행됐다.
2020.03.30
조회수 17147
원자 틈 이용해 이산화탄소의 연료 변환 성공
신소재공학과 강정구 교수 연구팀이 성균관대, UNIST, 부산대, 미국 버클리대학, 칼텍과의 공동 연구를 통해 구리 입자 내 원자의 틈을 제어하는 기술을 적용해 온실가스인 이산화탄소를 에틸렌 등의 고부가 연료로 변환할 수 있는 전기화학촉매 소재기술을 개발했다. 이는 이산화탄소로부터 에틸렌 생성비율을 최고 80%까지 높이는 기술로, 연구팀은 기존 나노입자기반 촉매의 한계를 뛰어넘기 위해 원자수준의 촉매제어 기술을 도입했다. 이번 연구결과는 기존 촉매소재 설계에서 제시되지 않은 ‘원자 틈’을 처음으로 촉매설계의 주요인자로 적용해 산업적 가치가 높은 에틸렌의 생산성을 획기적으로 높였다. 동시에 천연가스에서 손쉽게 얻을 수 있는 메탄의 생성을 실험적으로 완전히 억제했으며, 양자역학 계산 기술을 이용해 원자 틈의 촉매반응 활성 원리를 이론적으로 규명했다. 이번 연구 결과는 에너지 분야 국제 학술지 ‘어드밴스드 에너지 머티리얼즈 (Advanced Energy Materials)’ 3월 10일자에 표지논문으로 게재 됐다. (논문명: Atomic-Scale Spacing between Copper Facets for the Electrochemical Reduction of Carbon Dioxide) 전기화학적 촉매반응을 활용한 이산화탄소 변환 기술은 지구 온난화를 일으키는 이산화탄소를 저감하는 대표 기술 중의 하나로, 효율적인 이산화탄소 전환 촉매기술의 개발을 통해 대기 중의 이산화탄소 농도를 줄이면서 산업에 유용한 연료나 화합물을 생산하는 기술이다. 이산화탄소 전환을 위해 다양한 전이금속 기반의 전기화학 촉매가 개발되고 있으나, 에틸렌과 같은 탄화수소 계열의 연료를 생산할 수 있는 원소는 구리가 유일하다. 하지만 일반적으로 구리 촉매는 반응 속도 및 생성물의 선택성이 높지 않아 이산화탄소 저감의 실효성과 생성물의 경제성이 떨어졌다. 이를 해결하기 위해 구리촉매의 특성을 개선하려는 연구가 세계적으로 활발히 진행되고 있다. 연구팀은 산화된 구리의 환원반응을 전기화학적으로 미세하게 제어해 구리 결정면 사이에 1나노미터 미만의 좁은 틈을 생성했다. 이 원자 틈에서 이산화탄소 환원반응 중간생성물의 촉매표면 흡착에너지를 최적화해 촉매반응의 활성을 극대화했다. 동시에 탄소-탄소 결합을 유도해 에틸렌과 같은 고부가 화합물이 효율적으로 생산되는 것을 규명했다. 연구에서 제안한 신규 활성인자인 원자 틈 원리는 다양한 전기화학 촉매 연구 분야로 확장할 수 있다는 의의를 갖는다. 강정구 교수는 “구리 기반 촉매소재에 간단한 공정 처리기술을 도입해 온실가스인 이산화탄소를 전환함으로써 고부가 화합물인 에틸렌을 효율적으로 생산하는 소재기술이다”라며, “기후변화 및 온실가스 문제 대응을 위한 핵심 대안기술이 될 수 있을 것으로 전망한다”라고 말했다. 이번 연구는 강정구 교수, 성균관대학교 정형모 교수, UNIST 권영국 교수, 부산대 김광호 교수, 그리고 미국 버클리, 칼텍 연구팀과 공동연구를 통해서 이뤄졌으며, 과학기술정보통신부의 글로벌프론티어사업, 신진연구자지원사업 및 차세대탄소자원화사업단의 지원을 받아 수행됐다.
2020.03.16
조회수 18172
김희탁 김상욱 교수, 멤브레인 필요 없는 새로운 물 기반 전지 개발
우리 대학 생명화학공학과 김희탁 교수와 신소재공학과 김상욱 교수 공동 연구팀이 전기화학 소자의 핵심 부품인 멤브레인을 사용하지 않고도 에너지 효율 80% 이상을 유지하면서 1천 번 이상 구동되는 새로운 개념의 물 기반 아연-브롬 전지를 개발했다. 이번 연구를 통해 일본, 미국의 수입에 의존해 온 다공성 분리막이나 불소계 이온교환막을 사용하지 않는 기술로, 해당 기술에 대한 대외 의존도를 낮출 수 있을 것으로 기대된다. 이주혁 박사과정과 변예린 박사후연구원이 공동 1 저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced materials)’12월 27일자 표지논문에 선정됐다.(논문명: High-Energy Efficiency Membraneless Flowless Zn-Br Battery: Utilizing the Electrochemical-Chemical growth of Polybromides) 최근 태양광, 풍력 등 신재생에너지의 불안정한 전력 공급을 해결하기 위해 전기 에너지를 미리 저장했다가 필요한 시간대에 사용할 수 있는 에너지저장장치(ESS)가 주목받고 있다. 현재는 리튬이온전지가 에너지저장장치용 이차전지로 사용되고 있으나 발화성 유기 전해액 및 리튬계 소재로 인한 발화의 위험성을 지니고 있다. 지난 2017년부터 올해 10월까지 총 21건의 에너지저장장치 화재사고가 발생했으며, 전체 에너지저장장치 시설 1천 490개 중 35%인 522개의 가동이 중단되기도 했다. 이러한 이유로 물을 전해질로 사용한 비 발화성 물 기반 이차전지 기술이 에너지저장장치용 차세대 이차전지로 주목받고 있다. 특히 다양한 물 기반 전지 기술 중 아연과 브롬을 활물질로 사용하는 아연-브롬 레독스 흐름 전지는 높은 구동 전압 및 높은 에너지 밀도를 가져 1970년대부터 지속해서 개발돼왔다. 그러나 아연-브롬 레독스 전지는 브롬이 아연과 반응해 전지 수명을 단축시키는 문제로 인해 상용화가 지연됐다. 이러한 반응을 억제하기 위해 펌프를 이용해 브롬이 함유된 전해질을 외부 탱크로 이송해 왔으나, 이는 펌프 구동을 위한 에너지 소모 및 브롬에 의한 외부 배관이 부식되는 문제를 동반한다. 브롬을 포획하는 전해질 첨가제 및 브롬의 이동을 차단할 수 있는 멤브레인에 대한 개발이 진행됐으나, 가격증가 및 출력 저하의 문제점이 발생했다. 김희탁 교수와 김상욱 교수 공동 연구팀은 일본, 미국에 의존하던 값비싼 멤브레인 소재와 어떠한 첨가제도 사용하지 않는 새로운 물 기반 아연-브롬 전지를 개발했다. 전해질 내의 이온과 외부 전기회로 사이의 전자를 주고받는 한정된 역할만 수행하던 전극의 기능에 멤브레인과 첨가제가 담당하던 브롬을 포획할 수 있는 기능을 추가했다. 질소가 삽입된 미세기공 구조를 전극 표면에 도입해 미세기공 내부에서 비극성 브롬을 극성 폴리브롬화물로 전환한 뒤, 질소 도핑 카본과 폴리브롬화물간 쌍극자-쌍극자 상호 작용을 통해 폴리브롬화물을 기공 내부에 고정했다. 이 기술은 멤브레인의 기능을 전극이 담당하므로 고가의 멤브레인이 필요 없으며, 브롬을 외부 탱크가 아닌 전극 내부에 저장함으로써 펌프 및 배관을 제거할 수 있어 가격 저감 및 에너지 효율을 증대했다. 연구팀이 개발한 다기능성 전극을 이용한 멤브레인을 사용하지 않는 물 기반의 아연-브롬 전지는 리튬-이온 전지보다 45배 저렴할 뿐 아니라, 에너지 효율 83% 이상을 보이며 1천 사이클 이상 운전이 가능하다. 김상욱 교수는 “차세대 물 기반 전지의 한계를 극복하기 위한 나노소재 기술을 이용한 새로운 해결책을 제시했다”라고 말했다. 김희탁 교수는 “이번 연구를 통해 기존보다 안전하고 경제적인 에너지저장장치의 개발이 가속화되기를 기대한다”라고 말했다. 이번 연구는 KAIST 나노융합연구소, 에너지클라우드 사업단, 과학기술정보통신부 리더연구자지원사업인 다차원 나노조립제어 창의연구단의 지원을 받아 수행됐다. 그림 1. 브롬 활물질을 전극내부에서 폴리브롬화물로 전환하여 저장하는 다기능성 전극의 메커니즘의 모식도와 멤브레인을 장착하지 않고 구동되는 전지의 실제 모습 그림 2. 질소가 도핑된 미세기공이 코팅된 다기능성 전극의 제조 과정
2020.01.08
조회수 17054
김일두 교수, 물 몇 방울로 전기 만들어내는 기술 개발
〈 배재형 박사과정, 김일두 교수, 윤태광 박사 〉 우리 대학 신소재공학과 김일두 교수 연구팀이 아주 소량의 물(0.15ml) 또는 대기 중의 수분을 자발적으로 흡수하는 조해성 물질을 활용해 전기에너지를 생성하는 친환경 발전기를 개발했다. 연구 결과는 나노과학 분야의 권위적인 학술지 ‘ACS Nano’ 11월 26일자 논문으로 발표됐다. 또한, 환경 분야의 권위 학술지인 에너지 및 환경과학 (Energy & Environmental Science) 온라인판에 게재됐으며, 1월호 후면 표지 논문으로 발표될 예정이다. ACS Nano 연구는 증산 작용을 활용한 자가발전기의 원리를 규명한 논문으로 윤태광 박사와 배재형 박사과정 학생이 제 1 저자로 참여했으며, 테크니온 재료공학과의 아브너 로스칠드(Avner Rothschild) 교수가 공저자로 참여했다. Energy & Environmental Science 논문은 조해성염을 활용하여 대기중의 수분 흡수를 통해 지속적으로 에너지를 생성하는 발전기에 관한 연구내용으로 제 1 저자인 배재형 박사과정과 윤태광 박사의 주도하에 진행이 됐고, 생명화학공학과의 서봉임 박사 , 김지한 교수가 공저자로 참여했다. 김 교수 연구팀은 전도성 탄소 나노 입자가 코팅된 면(cotton)섬유 표면에 소량의 물을 떨어뜨리면 젖은 영역과 마른 영역으로 나뉘게 되면서 작은 양의 전기에너지가 발생하는 것을 발견했다. 이를 통해 물이 완전히 증발하기 전까지 수소 이온이 천천히 이동하며 약 1시간 동안 발전이 가능함을 확인했지만, 물이 완전히 증발하게 되면 전기 발생이 멈추게 된다. 지속적인 발전을 위해서는 주기적으로 물을 떨어뜨려야 하는 실용성 측면에 문제가 있다. 연구팀은 발전 시간을 늘리기 위해 대기 중의 물을 스스로 흡수한 후 천천히 방출하는 조해성 물질 중 하나인 염화칼슘(CaCl2)에 주목했다. 탄소 입자가 코팅된 면섬유의 한쪽 면에 염화칼슘을 묻혔더니, 습도 20% 이상에서는 자발적인 수분 흡착으로 전력이 지속해서 유지되는 결과를 얻었다. 이렇게 개발한 자가발전기 6개를 직렬로 연결해 전압 4.2V, 에너지 밀도 22.4mWh/cm3를 얻어 LED 전구(20mW)의 불을 켜는 데 성공했다. 태양광, 풍력 발전 등 친환경 발전기들이 외부의 환경적인 요소에 제약을 많이 받는 것에 비해 연구팀이 개발한 발전기는 20∼80% 습도 구간에서는 외부에서 물을 공급해 주지 않더라도 전기를 만들어 낼 수 있어 다양한 사물인터넷, 웨어러블 기기 등에 활용할 수 있을 것으로 기대된다. 김 교수는 "움직이기만 해도 생기는 땀이나 대기 중 흩날리다 사라지는 수분을 에너지원으로 활용할 수 없을까? 라는 의문에서 연구를 시작했다"라며, "조해성 염이 포함된 자가발전기는 일반 대기 환경에서 2주 이상 발전하는 성능을 보임을 확인했고, 사물인터넷용 지속 전력 공급원 또는 자가 발전기 크기 증대를 통해 이차전지를 충전하는 용도 등으로 활용할 수 있다"라고 말했다. 이번 연구 성과는 삼성전자미래육성재단 과제(SRFC-MA1802-05)의 지원으로 진행됐다. □ 그림 설명 그림1. 물의 증산작용을 이용한 자가 발전기 그림2. 식물의 증산 과정을 통해 수분이 순환하는 원리를 모사하여, 수분의 순환을 전기 에너지로 변환하는 발전기
2019.12.16
조회수 14582
이정용 교수, 유기고분자-양자점 기반 하이브리드 태양전지 개발
〈 이정용 교수 〉 우리 대학 EEWS 대학원 이정용 교수 연구팀과 캐나다 토론토 대학교 전기 및 컴퓨터 공학부 테드 사전트(Ted Sargent) 교수 공동 연구팀이 유기 단분자 물질 도입을 통한 고효율, 고 안정성 유무기 하이브리드 태양전지 제작 기술을 개발했다. 연구팀이 개발한 유기 고분자-양자점 하이브리드 태양전지는 단순 성능 개선을 넘어 기존의 구조에서 성능이 제한된 문제점을 해결할 수 있는 구체적인 방안을 제시하고, 차세대 에너지원으로써 하이브리드 태양전지에 적용할 수 있을 것으로 기대된다. 백세웅, 전선홍 박사, 김병수 박사과정 및 앤드류 프로페(Andrew H. Proppe) 박사가 공동 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 에너지(Nature Energy)’ 11월 11일 자 온라인판에 게재됐다. (논문명: Efficient hybrid colloidal quantum dot/organic solar cells mediated by near-infrared sensitizing small molecules) 높은 기계적 특성 및 흡광 계수를 갖는 유기 고분자와 근적외선 영역을 흡수할 수 있는 콜로이달 양자점을 이용해 제작되는 하이브리드 태양전지는 용액공정으로 제작할 수 있고 두 물질의 장점을 모두 취할 수 있다는 점에서 많은 관심을 받아왔다. 하지만 유기 고분자-양자점 기반의 하이브리드 구조는 낮은 광전변환 효율과 안정성 측면에서 기존의 차세대 태양전지들과 경쟁하기에 부족한 점이 있다. 낮은 전하추출 능력과 그로 인해 발생하는 재결합 문제로 인해 최근까지도 10% 이하의 낮은 광전변환 효율에 머무르는 하이브리드 태양전지의 성능 개선이 필요한 실정이다. 연구팀은 문제 해결을 위해 고분자와 양자점의 매개체 역할을 할 수 있는 새 유기 단분자 구조를 도입했다. 이렇게 유기 단분자 매개체 도입된 유기 고분자-양자점 하이브리드 구조는 기존의 구조보다 다양한 강점을 가진다. 우선 기존의 유기 고분자에서 생성된 엑시톤을 원활하게 추출할 수 있으며, 상호 보완적인 흡광 대역이 형성돼 추가적인 전류 향상을 얻을 수 있고, 계단형 에너지 레벨을 형성해 에너지 및 전하를 효과적으로 운반할 수 있다. 이러한 강점을 통해 연구팀은 13.1%의 광전변환 효율을 달성했으며, 이는 기존의 유기 고분자와 양자점을 이용하는 하이브리드 태양전지보다 30% 이상 높은 효율이다. 그뿐만 아니라 제작 후 약 1천 500시간 이후에도 초기 효율의 90% 성능을 유지했으며, 최대전력조건에서 약 150시간 이후에도 초기 효율의 80% 이상의 성능을 유지했다. 이 교수는 “단분자를 도입해 기존의 하이브리드 구조의 고질적인 한계를 극복하고 고효율의 차세대 태양전지를 구현했다”라며 “개발한 고효율 태양전지는 최근 주목받고 있는 웨어러블 전자기기를 넘어서 모바일, IoT, 드론 및 4차산업에 적용 가능한 차세대 에너지 동력원으로써 주목받게 될 것이다”라고 말했다. 이 연구는 한국연구재단 중견연구자지원사업, 기후변화대응기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 새롭게 제시한 하이브리드 소재 구조의 작동 원리
2019.11.19
조회수 13220
신병하 교수, 홀 효과 한계 보완한 새 반도체 분석기술 개발
〈 신병하 교수, 배성열 박사과정 〉 우리 대학 신소재공학과 신병하 교수와 IBM 연구소의 오키 구나완(Oki Gunawan) 박사 공동 연구팀이 반도체 특성 분석의 핵심 기술인 홀 효과(Hall effect)의 한계를 넘을 수 있는 새로운 반도체 정보 분석 기술을 개발했다. 이번 연구는 140년 전에 처음 발견된 이래로 반도체 연구 및 재료 분석의 토대가 된 홀 효과 측정에 대한 새로운 발견으로 향후 반도체 기술 개발에 이바지할 수 있을 것으로 기대된다. 신병하 교수와 오키 구나완 박사가 교신 저자로, 배성열 박사과정이 2 저자로 참여한 이번 연구 결과는 국제 학술지‘네이처(Nature)’ 10월 07일 자 온라인판에 게재됐으며 11월 07일 정식 게재됐다. (논문명: Carrier-Resolved Photo Hall Effect) 1879년 에드윈 홀(Edwin Hall)이 발견한 홀 효과는 물질의 전하 특성(유형, 밀도, 이동성 또는 속도)에 대한 중요한 정보를 제공한다. 이는 반도체 소자를 이해하고 설계하는 데 필요한 가장 기본적인 특성들이다. 이러한 이유로 홀 효과는 지난 100년이 넘는 시간 동안 가장 일반적인 반도체 특성 분석 기법의 하나며 전 세계의 반도체 연구기관에서 보편적으로 사용되고 있다. 그러나 현재까지의 분석 기법으로는 홀 효과를 통해 다수 운반체(Majority carrier)와 관련한 특성만 파악할 수 있고, 태양 전지와 같은 소자의 구동 원리 파악에 필수인 소수 운반체(Minority carrier) 정보는 얻을 수 없다는 한계를 가지고 있었다. 연구팀은 문제 해결을 위해 ‘포토 홀 효과(Carrier-Resolved Photo-Hall" (CRPH))’ 기술을 개발했다. 이 기술을 사용하면 한 번의 측정으로 다수 운반체 및 소수 운반체에 대한 많은 정보를 동시에 추출할 수 있다. 기존 홀 측정에서는 세 가지 정보를 얻을 수 있었다면 연구팀의 새로운 기술은 실제 작동 조건을 포함한 여러 광도에서 광여기 전하의 농도, 다수 운반체 및 소수 운반체의 전하 이동도, 재결합 수명, 확산 거리 등 최대 일곱 개의 중요한 정보를 얻을 수 있다. 연구팀의 이 기술은 태양 전지, 발광 다이오드와 같은 광전자 소자 분야에서 사용 가능한 신소재 개발 및 최적화에 핵심적인 역할을 할 것으로 기대된다. 신 교수는 “지난 2년간의 연구가 좋은 결심을 맺게 되어 기쁘고, 이 기술을 통해 새로운 광소자 물질의 전하 수송 특성을 이해하고 더 나은 소자를 개발하는 데 큰 도움이 되리라 믿는다”라고 말했다. 이번 연구는 한국연구재단 기후변화대응기술개발사업, 산업통상자원부와 한국에너지기술평가원(KETEP) 에너지기술개발사업의 지원을 통해 수행됐다. □ 그림 설명 그림1. 포토 홀 효과 개념도
2019.11.14
조회수 13313
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
>
다음 페이지
>>
마지막 페이지 7