-
세계 최고 수명을 지닌 불타지 않는 ESS(에너지저장시스템) 수계전지 개발
우리 대학 생명화학공학과 김희탁 교수(나노융합연구소 차세대배터리센터) 연구팀이 아연 전극의 열화 메커니즘을 규명하고 이를 해결함으로써 전 세계에서 보고된 모든 레독스 흐름 전지 가운데 가장 오래가는 수명을 가지는 수계 아연-브롬 레독스 흐름 전지 개발에 성공했다고 5일 밝혔다.
생명화학공학과 이주혁 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `Energy and Environmental Science'에 최근(9월) 게재되는 한편 표지논문으로 선정됐다. (논문명: Dendrite-free Zn electrodeposition triggered by interatomic orbital hybridization of Zn and single vacancy carbon defects for aqueous Zn-based flow batteries)
최근 들어 신재생에너지의 간헐성을 보완하고 전력 피크 수요를 충당하기 위해 신재생에너지 및 심야 전력을 대용량으로 저장, 필요할 경우 저장된 에너지를 설비에 공급함으로써 에너지 이용 효율을 높일 수 있는 에너지저장시스템(Energy storage systems, 이하 ESS) 기술이 각광받고 있다.
현재 대부분의 ESS는 값이 저렴한 `리튬이온전지' 기술을 채택하고 있지만, 리튬이온전지는 태생적으로 발화로 인한 화재 위험성 때문에 대용량의 전력을 저장하는 ESS에는 적합하지 않다는 지적을 받아왔다. 실제 2017년~ 2019년까지 2년간 국내에서 발생한 리튬이온전지로 인한 ESS 화재사고 33건 가운데 가동이 중단된 곳은 전체 중 35%에 달한다. 현재까지 집계된 손해액만도 약 7,000억 원 이상으로 추정되고 있다.
따라서 최근에는 배터리 과열 현상을 원천적으로 차단할 수 있는 수계(물) 전해질을 이용한 *레독스 흐름 전지가 큰 주목을 받고 있다. 특히, 초저가의 브롬화 아연(ZnBr2)을 활물질로 이용하는 아연-브롬 레독스 흐름 전지는 다른 수계 레독스 흐름 전지와 비교할 때 높은 구동 전압과 함께 에너지 밀도를 높일 수 있고, 가격이 싸다는 장점 때문에 70년대부터 ESS용으로 개발돼왔다.
☞ 레독스 흐름 전지(Redox flow battery): 레독스 흐름 전지는 양극 및 음극 전해액 내에 활물질을 녹여서 외부 탱크에 저장한 후 펌프를 이용해 전극에 공급하면 전극 표면에서 전해액 내의 활성 물질의 산화·환원 반응을 이용해 에너지는 저장하는 전지이다.
문제는 아연-브롬 레독스 흐름 전지의 경우 아연 음극이 나타내는 짧은 수명 때문에 상용화가 지연되고 있다는 점이다. 특히 아연 금속이 충·방전 과정 중에 보이는 불균일한 돌기 형태의 *덴드라이트 형성은 전지의 내부 단락을 유발해 수명을 단축하는 주요 원인으로 지적되고 있다.
현재 덴드라이트 형성 메커니즘은 명확히 규명되진 않고 있지만 충전 초기 전극 표면에 형성되는 아연 핵의 불균일성 때문일 것으로 전문가들은 추정하고 있다. 이런 문제 해결을 위해 그동안 균일한 핵의 생성을 유도하는 기술이 경쟁적으로 개발돼왔으나, 여전히 충분한 수명향상 효과를 얻지 못하고 있다.
☞ 덴드라이트(Dendrite): 아연 이온이 환원되어 금속 전극 표면에 증착될 때, 금속 표면 일부에서 비정상적으로 성장하는 나뭇가지 형태의 결정.
김희탁 교수 연구팀은 낮은 표면에너지를 지닌 탄소 전극 계면에서는 아연 핵의 `표면 확산(Surface diffusion)'을 통한 `자가 응집(Self-agglomeration)' 현상이 발생한다는 사실에 주목하고 양자 역학 기반의 컴퓨터 시뮬레이션과 전송 전자 현미경 분석을 통해 자가 응집 현상이 아연 덴드라이트 형성의 주요 원인임을 규명하는 데 성공했다. 연구팀은 이와 함께 특정 탄소결함구조에서는 아연 핵의 표면 확산이 억제되기 때문에 덴드라이트가 발생하지 않은 사실을 발견했다.
탄소 원자 1개가 제거된 단일 빈 구멍 결함(single vacancy defect)은 아연 핵과 전자를 교환하며, 강하게 결합함으로써 표면 확산이 억제되고 균일한 핵생성 또는 성장을 가능하게 한다. 김 교수 연구팀은 고밀도의 결함 구조를 지닌 탄소 전극을 아연-브롬 레독스 흐름 전지에 적용해, 리튬이온전지의 30배에 달하는 높은 충·방전 전류밀도(100 mA/cm2)에서 5,000 사이클 이상의 수명 특성을 구현하는데 성공했다. 연구팀 관계자는 지금까지 다양한 레독스 흐름 전지에 대해 보고된 결과 중 가장 뛰어난 수명성능을 지닌 전지라는 점을 강조했다.
우리 대학 나노융합연구소 차세대배터리센터장 김희탁 교수는 "차세대 수계 전지의 수명 한계를 극복하기 위한 새로운 기술을 제시한 게 이번 연구의 성과”라면서 "기존 리튬이온전지보다 저렴할 뿐만 아니라 에너지 효율 80% 이상에서 5,000 사이클 이상 구동이 가능하다는 점에서 신재생에너지의 확대 및 ESS 시장 활성화에 기여할 것”이라고 밝혔다.
한편 이번 연구는 우리 대학 나노융합연구소와 과학기술정보통신부의 지원을 받아 수행됐다.
2020.10.05
조회수 30266
-
중증 코로나19 환자의 사이토카인 폭풍 원인 찾았다
우리 대학 의과학대학원 신의철 교수와 생명과학과 정인경 교수 연구팀이 서울아산병원 김성한 교수·연세대 세브란스병원 최준용·안진영 교수, 충북대병원 정혜원 교수와의 공동연구를 통해 중증 코로나19 환자에서 나타나는 과잉 염증반응을 일으키는 원인을 발견했다.
과잉 염증반응이란 흔히 '사이토카인 폭풍'이라고도 불리는 증상인데 면역 물질인 사이토카인(cytokine)이 과다하게 분비돼 이 물질이 정상 세포를 공격하는 현상이다.
☞ 사이토카인(cytokine): 면역세포로부터 분비되는 단백질 면역조절제로서 자가분비형 신호전달(autocrine signaling), 측분비 신호전달(paracrine signaling), 내분비 신호전달(endocrine signaling) 과정에서 특정 수용체와 결합하여 면역반응에 관여한다. 세포의 증식, 분화, 세포사멸 또는 상처 치료 등에 관여하는 다양한 종류의 사이토카인이 존재하며, 특히 면역과 염증에 관여하는 것이 많다. 세포를 의미하는 접두어인 ‘cyto’와 그리스어로 ‘움직이다’를 의미하는 ‘kinein’으로부터 cytokine이 명명됐다.
☞ 사이토카인 폭풍(cytokine storm): 인체에 바이러스가 침투하였을 때 면역 물질인 사이토카인이 과다하게 분비되어 정상 세포를 공격하는 현상
빠르게 확산하고 있는 코로나19 바이러스는 전 세계적으로 이미 1,300만 명 이상이 감염됐고 이 중 50만 명 이상이 사망했다. 코로나19 바이러스에 감염된 환자들은 경증 질환만을 앓고 자연적으로 회복되는 경우가 많으나, 어떤 환자들은 중증 질환으로 발전해 심한 경우 사망하기도 한다. 흔히 사이토카인 폭풍 때문에 중증 코로나19가 유발된다는 사실이 널리 알려져 있다. 하지만 어떤 이유에서 과잉 염증반응이 일어나는지 구체적인 원인은 아직도 알려지지 않아 중증 코로나19 환자의 치료에 많은 어려움을 겪고 있다.
우리 대학 의과학대학원 이정석 연구원 및 생명과학과 박성완 연구원이 주도한 이번 연구에서 공동연구팀은 중증 및 경증 코로나19 환자로부터 혈액을 얻은 후 면역세포들을 분리하고 단일 세포 유전자발현 분석이라는 최신 연구기법을 적용해 그 특성을 상세히 분석했다. 그 결과, 중증 또는 경증을 막론하고 코로나19 환자의 면역세포에서 염증성 사이토카인의 일종인 종양괴사인자(TNF)와 인터류킨-1(IL-1)이 공통으로 나타나는 현상을 발견했다. 연구팀은 특히 중증과 경증 환자를 비교 분석한 결과, 인터페론이라는 사이토카인 반응이 중증 환자에게서만 특징적으로 강하게 나타남을 확인했다.
☞ 인터페론(interferon): 사이토카인(cytokine)의 일종으로 숙주 세포가 바이러스, 세균, 기생균 등 다양한 병원체에 감염되거나 혹은 암세포 존재 하에서 합성되고 분비되는 당단백질이다. 일반적으로 바이러스에 감염된 세포에서 분비되는 제 1형 인터페론이 많이 알려져 있으며 주변 세포들이 항바이러스 방어 효과를 나타낼 수 있도록 돕는다.
지금까지 인터페론은 항바이러스 작용을 하는 착한(?) 사이토카인으로 알려져 있으나, 공동연구팀은 인터페론 반응이 코로나19 환자에서는 오히려 과도한 염증반응을 촉발하는 원인이 될 수 있다는 사실을 다양한 방법을 통해 이를 증명했다.
삼성미래기술육성재단과 서경배과학재단의 지원을 받아 수행한 공동연구팀의 이번 연구결과는 면역학 분야 국제 학술지인 사이언스 면역학(Science Immunology)誌 7월 10일 字에 게재됐다(논문명: Immunophenotyping of COVID-19 and Influenza Highlights the Role of Type I Interferons in Development of Severe COVID-19).
연구팀은 중증 코로나19 환자의 과잉 염증반응 완화를 위해 현재에는 스테로이드제와 같은 비특이적 항염증 약물이 사용하고 있는데 이번 연구 성과를 계기로 인터페론을 표적으로 하는 새로운 치료방법도 고려할 수 있음을 보여준다며 중증 코로나19 환자 치료에 새로운 패러다임을 제시한 획기적인 연구라고 이 연구에 대한 의미를 부여했다.
관련 학계와 의료계에서도 코로나19의 재확산 등 팬데믹이 지속되는 현 상황에서 KAIST와 대학병원 연구팀이 긴밀한 협력을 통해 코로나19의 면역학적 원리를 밝히고 새로운 치료전략을 제시한 이번 연구를 중개 연구(translational research)의 주요 성과로 높게 평가했다.
공동연구팀은 현재 중증 코로나19 환자의 과잉 염증반응을 완화해 환자 생존율을 높일 수 있는 약물을 시험관 내에서 효율적으로 검색하고 발굴하는 방법을 개발하는 후속연구를 진행중에 있다.
이번 연구를 주도한 이정석 연구원은 내과 전문의로서 의과학대학원 박사과정에 재학 중인데 "중증 코로나19 환자의 의료적 문제를 해결하기 위해 정인경 교수 연구팀과 함께 이번 연구를 긴박하게 시작했는데 서울아산병원과 연세대 세브란스병원·충북대병원의 적극적인 지원에 힘입어 불과 3개월 만에 마칠 수 있게 됐다ˮ고 말했다.
정인경 교수는 "코로나19와 같은 신규 질환의 특성을 신속하게 규명하는데 있어 최신 단일세포 전사체 빅데이터 분석법이 매우 효과적ˮ이었음을 밝혔다.
신의철 교수도 "이번 연구는 코로나19 환자의 면역세포에서 어떤 일이 벌어지는지 상세히 연구함으로써 향후 치료전략을 설계할 수 있는 토대를 마련했다는 점에서 매우 중요하고 의미가 있는 연구ˮ라고 평가했다.
신의철 교수와 정인경 교수는 이와 함께 "중증 코로나19 환자의 생존율을 높일 수 있도록 새로운 면역기전 연구 및 환자 맞춤 항염증 약물 사용에 관한 연구를 지속적으로 수행할 것ˮ이라고 강조했다.
2020.07.14
조회수 27789
-
초안정 광대역 광주파수 안정화 기술 개발
기계공학과 김정원 교수 연구팀이 광섬유 광학 기술을 이용한 고성능 주파수 안정화 기술을 개발했다.
이 기술을 이용하면 150테라헤르츠(THz)의 넓은 대역폭에 걸쳐 일정한 간격으로 분포한 60만 개 이상의 광주파수 모드들의 선폭을 동시에 1헤르츠(Hz) 수준으로 낮출 수 있다. 이를 통해 원자시계나 주파수 분광학에 활용할 수 있고, 광주파수를 기반으로 한 양자 센서의 성능도 크게 높일 수 있을 것으로 기대된다.
권도현 박사과정이 1 저자로 참여하고 한국표준과학연구원 시간표준센터와 공동연구로 수행된 이번 연구는 국제학술지 ‘사이언스 어드밴시스(Science Advances)’ 3월 27일 자에 게재됐다. (논문명: Generation of multiple ultrastable optical frequency combs from an all-fiber photonic platform)
레이저의 선폭과 광주파수의 안정도는 시간/주파수 표준, 양자광학, 분광학 등 기초과학 분야뿐 아니라 거리 측정, 형상 이미징 및 분산형 센서 등 다양한 공학 응용에서의 측정 분해능을 결정한다.
특히 작년 5월 기본단위의 재정의를 통해 7개의 국제 단위계(SI) 중 6개(시간, 길이, 질량, 전류, 온도 및 광도)가 주파수를 기반으로 정의되기 때문에 광주파수의 안정도를 확보하는 것은 초정밀 측정 및 센서 분야에서 매우 중요한 이슈이다.
기존에는 다수의 광주파수를 안정화하기 위해 Q인자가 높은 초안정 공진기에 연속파 레이저를 주파수 잠금한 후 이를 다시 펄스 레이저에 주파수 잠금하는 방식을 사용했다. 하지만 이 방식은 장치의 크기가 클 뿐 아니라 주변 환경에 매우 민감한 수억 원 이상의 고가 장치이기 때문에 소수의 표준 연구소에서만 활용됐다.
연구팀은 부품의 신뢰성과 가격 경쟁력이 확보된 광통신용 광섬유 광학 기술을 이용한 광주파수 안정화 기술을 개발했다. 그 결과 A4 용지 절반보다 작은 면적의 소형 장치를 이용해 펄스 레이저에서 발생하는 60만 개 이상의 광주파수 모드들의 선폭을 1Hz 수준으로 낮출 수 있었다. 또한, 각각의 주파수 모드에서 1천조 분의 1(10-15) 수준의 주파수 안정도를 확보했다.
연구팀의 기술은 다양하게 활용 가능해, 특히 최근 대기 중 유해물질 모니터링 등의 분야에서 활용되고 있는 듀얼콤 분광학을 위한 고성능 광원으로 활용할 수 있다.
연구팀은 하나의 광섬유 링크에 두 펄스 레이저를 동시에 안정화하는 방식을 통해 150THz의 넓은 주파수 대역에 걸쳐 1Hz 수준의 선폭으로 흡수 스펙트럼을 측정할 수 있는 고분해능 듀얼콤 분광학 광원을 선보였다.
불변하는 원자의 특성을 이용해 고정확도 측정이 가능한 양자 센서의 경우도 광주파수 분광학 기반이기 때문에, 광주파수의 선폭과 안정도가 측정의 정확도와 신뢰도에 매우 중요하다.
김 교수는 “이번 연구 결과를 활용하면 소형, 경량, 저가의 장치로 1천조분의 1 수준의 광주파수 안정화가 가능해 다양한 양자 센서를 센서 네트워크 형태로 확장하는 데 기여할 수 있을 것이다”라고 말했다.
이번 연구는 한국연구재단 중견연구자지원사업의 지원을 받아 수행됐다.
2020.04.09
조회수 16493
-
광 투과 방식의 웨어러블 유연 인장 센서 개발
기계공학과 박인규 교수 연구팀이 신체 동작 및 자세 모니터링에 활용이 가능한 탄소 나노튜브–탄성 중합체 복합소재 광 투과 방식의 웨어러블 유연 인장 센서를 개발했다.
이번 기술을 통해 인체의 다양한 관절 굽힘 동작, 자세, 맥박 및 표정 등 다양한 생체 동작을 연속적으로 측정해, 운동 시 관절부 움직임 자세 교정 및 맥박 측정을 통한 헬스케어 모니터링 시스템 등에 활용할 수 있을 것으로 기대된다.
구지민 박사과정이 1 저자로 참여한 이번 연구는 나노기술 분야 국제 학술지 ‘ACS Applied Materials & Interfaces’ 3월 4일 자 표지 논문에 게재됐다. (논문명: Wearable Strain Sensor Using Light Transmittance Change of Carbon Nanotube Embedded Elastomer with Microcrack)
최근 헬스케어에 대한 관심이 커짐에 따라 웨어러블 유연 센서 개발이 활발히 진행되면서 인체에 적용하는 센서로서의 유연 소재를 기반으로 다양한 전기저항식, 정전용량 방식의 플랫폼을 이용한 인장 센서가 많이 개발되고 있다.
그러나 기존의 전기저항식 센서는 장시간 반복 신호 안정성, 선형성에 한계를 보이며, 정전용량식 센서의 경우 외부 전기장의 영향에 취약하고 센서 민감도가 낮다. 이러한 점을 보완하기 위해 광학 방식의 유연 인장 센서가 개발됐으나 여전히 민감도가 낮다는 한계점이 있다.
문제 해결을 위해 연구팀은 탄소 나노튜브가 함침된 탄성중합체의 인장에 따른 광 투과도 변화 현상을 활용해 수 퍼센트에서 400%에 달하는 넓은 범위의 인장률을 안정적으로 측정할 수 있는 유연 인장 센서를 개발했다.
연구팀이 개발한 센서는 외부 인장에 따라 탄성중합체에 함침된 탄소 나노튜브 필름에 틈이 형성돼 광 투과도를 크게 변화시켜 기존의 광학 방식 인장 센서에 비해 10배 이상의 높은 감도를 가진다. 또한, 1만 3천 회 이상의 인장 변형에도 안정적인 신호 회복을 보이고, 다양한 환경 요인(온도, 습도)에도 안정적인 감지 성능을 보여 웨어러블 기기로 활용할 수 있는 큰 가능성을 보였다.
연구팀은 이러한 성능을 바탕으로 손가락 굽힘 동작을 측정해 이를 로봇 조종에 활용했으며, 3축 센서로 패키징 해 인체 자세 모니터링에 활용했다. 또한, 경동맥 근처의 맥박 모니터링과 발음할 때의 입 주변 근육 움직임 등 미세한 동작도 관찰하는 데 성공했다.
박인규 교수는 “이번 연구에서는 기존의 전기저항식, 정전용량식 및 광학 방식의 유연 인장률 센서가 갖는 한계점을 극복할 수 있는 새로운 플랫폼을 개발했다”라며 “헬스케어, 엔터테인먼트, 로보틱스 등 다양한 분야에 널리 활용할 수 있는 우수한 성능의 웨어러블 센서를 실현했다”라고 말했다.
이번 연구는 한국연구재단의 중견 연구 과제(올인원 스마트 스킨을 위한 웨어러블 멀티센서 시스템 핵심기술 연구)와 선도연구센터지원 사업(초정밀 광 기계기술 연구센터)의 지원을 통해 수행됐다.
2020.04.02
조회수 18305
-
고효율 페로브스카이트-실리콘 탠덤 태양전지 개발
신소재공학과 신병하 교수 연구팀 주도의 공동 연구팀(서울대학교 김진영 교수, 세종대학교 김동회 교수, 미국 국립재생에너지 연구소 Kai Zhu 박사, 노스웨스턴 대학 정희준 박사)이 큰 밴드갭의 페로스카이트 물질을 개발하고 이를 적용해, 26.7%의 광 변환 효율을 갖는 고효율 페로브스카이트-실리콘 탠덤(tandem) 태양전지를 구현했다.
이번 연구는 과거 불안정하다고 알려진 큰 밴드갭 유무기 하이브리드 페로브스카이트 물질(Organic-Inoraganic Hybrid Perovskite)의 안정화 및 고효율화하는 기술을 개발함과 동시에, 이를 실리콘 태양전지와 적층해 고효율 탠덤 태양전지를 개발했다는 점에서 향후 30% 이상의 초고효율 태양전지 개발에 이바지할 수 있을 것으로 기대된다.
신병하 교수가 교신저자로, 김대한 박사과정이 1 저자로 참여한 이번 연구결과는 국제 학술지 ‘사이언스(Science)’ 3월 26일 자 온라인판에 게재됐다.(논문명: Efficient, stable silicon tandem cells enabled by anion-engineered wide bandgap perovskites)
기존의 단일 태양전지로는 약 30% 초반의 한계효율을 넘을 수 없다는 쇼클리-콰이저(Shockley-Queisser) 이론이 존재한다. 이에 단일 태양전지 효율의 한계를 극복하기 위해 연구자들이 2개 이상의 태양전지를 적층 형태로 연결하는 기술인 탠덤 태양전지 개발을 위해서 노력하고 있다.
하지만 탠덤 태양전지의 상부 셀(cell)로 적합한 큰 밴드갭의 페로브스카이트는 빛, 수분, 산소 등의 외부 환경에 민감하게 반응하는 낮은 안정성 때문에 고품질의 소자를 합성할 수 없다는 한계가 존재했다.
연구팀은 새로운 음이온을 포함한 첨가제를 도입해 페로브스카이트 박막 내부에 형성되는 2차원 안정화 층(passivation layer)의 전기적·구조적 특성을 조절할 수 있다는 것을 밝혔고, 이를 통해 최고 수준의 큰 밴드 갭 태양전지 소자를 제작했다. 공동 연구팀은 더 나아가 개발한 페로브스카이트 물질을 상용화된 기술인 실리콘 태양전지에 적층해 탠덤 태양전지를 제작하는 데 성공했고, 최고 수준인 26.7%의 광 변환 효율을 달성했다.
연구팀의 기술은 향후 첨가제 도입법을 통한 반도체 소재의 2차원 안정화 기법에 대한 방향을 제시할 수 있으며, 유무기 하이브리드 페로브스카이트 물질을 이용한 태양전지, 발광 다이오드, 광 검출기와 같은 광전자 소자 분야에 응용될 수 있을 것으로 기대된다.
신병하 교수는 “페로브스카이트 태양전지 기술은 지난 10년간 눈부신 발전을 이뤄, 이제는 상용화를 고민해야 하는 시기이다. 실리콘 태양전지와의 이종 접합 구조를 통한 고효율 달성은 페로브스카이트 태양전지 기술의 상용화를 앞당기는 데 도움이 될 것이다”라며 “연구결과는 향후 30% 이상의 초고율 탠덤 태양전지 구현에 초석이 될 것이다”라고 말했다.
이번 연구는 한국연구재단 나노소재기술개발사업, 중견연구자지원사업, 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP) 에너지기술개발사업, 알키미스트 프로젝트, BK21 사업의 지원을 통해 수행됐다.
2020.03.30
조회수 17220
-
딥러닝 통해 MRI 다중 대조도 영상 복원 기법 개발
바이오및뇌공학과 박성홍 교수 연구팀이 자기공명영상장치(MRI)의 다중 대조도 영상을 복원하기 위한 새로운 딥러닝 네트워크를 개발했다. 이번 연구를 통해 병원에서 반복적으로 획득하는 다중 대조도 MRI 영상을 얻는 시간이 크게 줄어 편의성 증대, 촬영비용 절감 등의 효과를 볼 것으로 기대된다.
도원준 박사가 1 저자로, 서성훈 박사과정이 공동 1 저자로 참여한 이번 연구는 우수성을 인정받아 국제 학술지 ‘메디컬 피직스 (Medical Physics)’ 2020년 3월호 표지 논문으로 게재됐다.
일반적으로 임상적 환경에서 MRI 촬영은 정확한 진단을 위해 두 개 이상의 대조도로 진행돼 촬영시간이 길어진다. 이에 따라 MRI 촬영비용도 비싸지며 환자들의 불편함을 유발하고, 영상의 품질 역시 환자의 움직임 등으로 인해 낮아질 수 있다.
문제 해결을 보완하기 위해 박 교수 연구팀은 다중 대조도 획득의 특징을 활용한 새로운 딥러닝 기법을 개발해 기존 방식보다 데이터를 적게 수집하는 방식으로 MRI 영상획득 시간을 크게 단축했다. MRI 영상에서 데이터를 적게 수집하는 것은 영상의 주파수 영역에서 이뤄지며, 일반적으로 위상 인코딩의 개수를 줄이는 것으로 영상획득 시간을 감소시키는 것을 뜻한다. 영상획득 시간은 줄어든 인코딩 개수의 비율만큼 줄어들게 되며, 이번 연구에서는 촬영시간을 최대 8배까지 줄여 영상을 복원했다.
연구팀은 임상에서 정확한 진단을 위해 MRI 영상을 다중 대조도로 얻는다는 점을 활용해 복원의 효율을 높였으며, 실제로 데이터를 얻을 당시의 전략을 고려해 네트워크들을 따로 개발했다. 구체적으로 ▲다중 대조도 전체 프로토콜의 촬영시간을 모두 줄이는 네트워크(X-net)와 ▲하나의 프로토콜은 전체 인코딩 데이터를 획득하고 나머지 프로토콜들은 촬영시간을 크게 줄이는 네트워크(Y-net)를 따로 개발해 MRI 다중 대조도 영상을 촬영하는 목적에 맞춰 다르게 최적화했다.
박성홍 교수는 “병원에서 반복적으로 시행하는 다중 대조도 MRI 촬영의 특성을 잘 살려서 성능을 극대화한 딥러닝 네트워크의 개발에 의의가 있다”라며, “병원에서 환자의 MRI 촬영시간을 줄이는 데 도움을 줄 것으로 기대한다”라고 말했다.
서울대학교병원 최승홍 교수와 공동연구로 진행한 이번 연구는 한국연구재단과 한국보건산업진흥원의 지원을 받아 수행됐다.
2020.03.27
조회수 12884
-
50년 만에 스핀구름 존재 규명
물리학과 심흥선 교수 연구팀(응집상 양자 결맞음 선도연구센터)이 금속과 반도체 안에서 불순물의 자성을 양자역학적으로 가리는 스핀 구름의 존재를 규명하는 데 성공했다.
이는 50년 동안 입증되지 않아 논란이 있던 스핀 구름의 존재를 밝힌 것으로, 향후 차세대 양자정보 소자 개발 등에 활용할 수 있을 것으로 기대된다.
일본이화학연구소(RIKEN), 홍콩성시대학(City University of Hong Kong)과 공동으로 수행하고 KAIST 물리학과 심정민 박사과정 학생이 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처(Nature)’ 3월 12일 자에 게재됐다. (논문명 : Observation of the Kondo screening cloud)
도체나 반도체 내의 잉여 전하는 주위 자유 전자들의 전하 구름에 의해 가려진다. 이와는 근본적으로 원리가 다르지만, 도체나 반도체 내 불순물이 스핀을 가질 때, 이 스핀은 주위의 자유 전자들에 의해 생성된 스핀 구름에 의해 가려진다고 알려져 있다. 콘도 효과 (Kondo effect)라고 불리는 이 현상은 충분히 낮은 온도에서 발현되는 양자역학적 현상으로 대표적 자성 현상이다.
콘도 효과의 여러 특성들은 대부분 규명됐으나 스핀 구름의 존재가 입증되지 않은 채 남아있었다. 지난 50년 동안 다양한 시도들이 꾸준히 있었으나 스핀 구름은 발견되지 않았고, 이에 따라 스핀 구름이 실제로 존재하는 것인가에 대한 논쟁이 있었다. 스핀 구름이 다양한 자성 현상에서 중요한 역할을 할 것으로 예측됐기 때문에, 스핀 구름을 발견하고 제어하는 것은 관련 학계에서 성배를 찾는 것과 같은 정도의 중요성으로 비유됐다.
심 교수 연구팀은 일본 이화학연구소와 홍콩성시대학의 연구진들과 공동 연구를 통해 콘도 스핀 구름을 최초로 발견했다. 발견한 스핀 구름의 크기는 마이크로미터(10-6 미터)에 달한다.
연구팀은 스핀 구름을 전기 신호를 이용해 관측하는 방법을 2013년에 선행연구로 제안한 바 있다. 이 선행연구에서는 전기장을 스핀 구름 내부에 가한 경우와 외부에 가한 경우에 각각 서로 다른 전류가 발생함을 예측했고, 이를 이용해 스핀 구름 공간 분포의 관측을 제안했다.
심 교수 연구팀의 제안에 따라 일본이화학연구소와 홍콩성시대학의 연구팀은 양자점을 이용해 반도체에 불순물 스핀을 인위적으로 생성하고, 생성된 불순물 주변에 서로 다른 여러 곳에 전기장을 인가할 수 있는 양자 소자를 제작하는 실험을 수행했다.
100mK(밀리켈빈)의 낮은 온도에서 관측된 소자의 전기 신호를 심 교수 연구팀에서 분석한 결과, 발견된 스핀 구름의 크기와 공간 분포는 이론 예측과 일치했고 그 크기는 수 마이크로미터(10-6 미터)로 확인됐다.
심흥선 교수는 “스핀 구름의 존재 입증은 학계의 숙원으로, 이번 연구에서 스핀 구름이 발견된 만큼 스핀 구름에 대한 후속 연구들이 활성화될 것으로 기대된다”라며, “스핀 구름을 전기적으로 제어해 미해결 자성 문제들을 이해하는 데에 활용할 수 있을 뿐 아니라, 스핀 구름의 양자 얽힘 특성을 기반으로 해 차세대 양자정보 소자를 개발할 수 있다”라고 말했다.
이 연구는 한국연구재단의 기초과학 선도연구센터 지원사업의 지원을 통해 수행됐다.
2020.03.13
조회수 13865
-
이산화탄소 환원 나노구조 촉매 개발
신소재공학과 전석우 교수와 오지훈 교수 연구팀이 이산화탄소의 전기화학 환원 반응 시 발생하는 물질이동의 한계를 극복해 값 비싼 금 촉매의 사용을 효과적으로 줄일 수 있는 3차원 나노구조 촉매를 개발했다.
연구팀은 두 가지 크기의 기공 네트워크를 지닌 계층 다공성 나노 구조를 이용해 이산화탄소에서 일산화탄소로의 전환율을 기존 나노 구조 촉매 대비 최대 3.96 배 높일 수 있는 촉매 디자인을 제시했다.
현가예 박사과정과 송준태 교수가 공동 1저자로 참여한 이번 연구는 국제 학술지 ‘미국 국립과학원회보(PNAS)’ 3월 4일 자 온라인판에 게재됐다. (논문명: Hierarchically Porous Au Nanostructures with Interconnected Channels for Efficient Mass Transport in Electrocatalytic CO2 Reduction)
최근 이산화탄소의 배출과 화석 연료 고갈이 심화됨에 따라 이산화탄소를 재활용해 유용한 화합물로 전기 화학적 전환하는 연구가 주목받고 있다. 이산화탄소 환원 반응은 유사한 산화환원 전위를 갖는 수소 생산 반응과 경쟁적으로 일어나는 문제점이 있어, 원하는 화합물로 선택도를 높이고 활성 부위를 극대화해 높은 전환율을 얻기 위한 금속 나노 구조 촉매 개발이 활발히 진행 중이다.
이산화탄소에서 일산화탄소로의 전환 반응 촉매 중 금은 가장 우수한 성능을 보이지만 값이 매우 비싸 실제 적용을 위해서는 나노 구조를 형성하는 등의 방법을 통해 적은 양의 금을 활용하는 것이 이상적이다.
하지만 기존 연구에서 보고된 나노 구조는 복잡하게 엉킨 촉매 구조로 인해 수계 반응을 통해 생성되는 일산화탄소 기포가 반응 도중 쉽게 구조를 막아 활성 부위를 차단하고, 전해질을 통한 반응물의 이동도 어렵게 해 촉매의 생산성을 떨어뜨린다.
연구팀은 문제 해결을 위해 정렬된 3차원 나노 구조 제작에 효과적인 근접장 나노패터닝(PnP, Proximity-field nanopatterning)과 전기 도금 기술을 이용해, 약 10나노미터 크기의 나노 기공과 200~300나노미터 크기의 매크로 기공이 주기적으로 연결된 채널을 포함하는 3차원 계층 다공성 금 나노 구조를 대면적으로 제작했다.
그 결과, 계층 나노 구조 촉매는 나노 기공을 통해 높은 일산화탄소 생산 선택도를 달성함과 동시에 주기적으로 배열된 매크로 기공 채널을 통해 효율적인 물질이동을 유도함으로써, 높은 질량당 전환율을 달성해 값 비싼 금의 사용을 효과적으로 줄일 수 있는 해결 방안을 제시했다.
또한, 3차원 나노 구조 금 촉매의 기공 크기와 분포가 조절 된 서로 다른 세 가지 나노 구조 촉매를 통해 기공 네트워크와 반응물, 생성물의 확산에 미치는 영향을 구조적 관점에서 조사했다.
이 기술은 이산화탄소 환원 촉매 연구 뿐 아니라 유사 전기화학 분야에서 발생하는 물질이동 문제를 해결하고 효율적인 촉매활용을 위한 폭넓은 응용이 가능할 것으로 기대된다.
이번 연구는 한국연구재단 원천기술개발사업의 미래소재디스커버리 사업과 나노소재원천기술개발사업, 그리고 이공분야기초개발사업의 지원을 통해 수행됐다.
2020.03.10
조회수 14395
-
산소 이용해 알츠하이머 유발 단백질 독성 개선
화학과 임미희 교수 연구팀이 공기 중의 산소를 이용해 알츠하이머 유발에 관여하는 단백질의 독성을 개선할 수 있는 화학적 도구를 설계하는 데 성공했다.
연구팀은 알츠하이머 발병에 관여한다고 알려진 구리-아밀로이드 베타 복합체의 응집과 이에 의한 발생한 세포 독성을 개선할 수 있는 화학적 도구를 설계하고, 구리 배위권 이중 변형을 통한 작용 원리를 분자적 수준에서 밝혀냈다.
한지연 박사과정이 1 저자로 참여한 이번 연구 결과는 국제 학술지인 미국 국립과학원회보(PNAS)에 2월 27일 자로 게재됐다.(논문명 : Mechanistic approaches for chemically modifying the coordination sphere of copper-amyloid-β complexes)
전이 금속 중 구리 이온은 항산화 작용과 신경전달물질 생성 등 신체에 필수적인 생리적 기능에 관여한다. 건강한 사람의 뇌와 달리 알츠하이머병 같은 퇴행성 뇌 질환 환자의 뇌에서는 이러한 구리 이온의 항상성이 완전히 무너져있다고 알려져 있다.
알츠하이머 발병에 밀접하게 관계가 있다고 알려진 아밀로이드 베타 펩타이드는 구리 이온과 강하게 결합할 수 있다. 구리 이온은 아밀로이드 베타의 응집을 촉진할 뿐만 아니라, 활성산소를 과다하게 생성해 신경독성을 일으킨다. 따라서 구리-아밀로이드 베타 복합체를 표적하고 그 배위 결합을 효과적으로 막을 수 있는 화학적 접근 기법이 최근 주목받고 있다.
연구팀은 알츠하이머 발병 원리에 직간접적으로 관여하는 구리 이온이 공기 중 산소와 반응할 수 있다는 점을 이용했다. 이에 구리-아밀로이드 베타 복합체와 상호작용할 수 있도록 화합물을 합리적으로 설계하고, 해당분자가 산소가 존재하는 환경에서 구리 배위권에 위치한 특정 아미노산에 결합 및 산화에 의한 이중 변형을 일으킨 것을 확인했다.
연구팀은 연구팀이 개발한 배위권 이중 변형 기법에 따라 구리-아밀로이드 베타의 응집 과정 및 섬유 형성 정도가 확연히 달라짐을 확인했다. 이 기법을 통해 구리 이온의 병리학적 특성 중 하나인 활성산소 생성 정도 또한 두드러지게 개선된 것을 관찰했다.
나아가 기존의 기법과 비교했을 때 구리-아밀로이드 베타 복합체에 의한 세포 독성을 더욱 효과적으로 회복시키는 것으로 나타났다.
이번 연구는 산소의 유무, 전이 금속의 종류, 산화 활성 금속의 산화수, 아밀로이드성 단백질의 종류 등 다양한 변수의 통제를 통해 해당 화합물이 아밀로이드 베타의 구리 배위권을 어떻게 변형시켰는지에 대한 작용 원리를 분자적 수준에서 제안했다는 의의가 있다.
임미희 교수는 “알츠하이머 발병에 관여한다고 알려진 구리 이온이 산소와 반응할 수 있다는 점을 역으로 이용했다”라며 “이번 연구에서 최초로 발표한 단백질 내 구리 배위권 이중 변형 기법을 바탕으로, 다른 퇴행성 뇌질환의 치료제 개발에도 더욱 박차를 가할 수 있을 것이다”라고 말했다.
이번 연구는 한국연구재단과 KAIST의 지원으로 수행됐다.
2020.03.03
조회수 14705
-
고성능 완전 분산 금속 앙상블 촉매 개발
생명화학공학과 이현주 교수 연구팀이 자동차 촉매로 활용할 수 있는 고성능의 완전 분산 금속 앙상블 촉매를 개발했다.
연구팀의 금속 앙상블 촉매는 휘발유 차량 배기가스 정화 반응인 삼원 촉매 반응에서(three-way catalysis, TWC) 기존의 단일원자 촉매, 상용 삼원 촉매 대비 월등한 저온 촉매 성능을 보였다. 또한, 노화 및 장기 반응 등의 내구성 평가에서 탁월한 성능을 보였다. 연구팀의 금속 앙상블 촉매는 불균일계 촉매 분야에서 기존의 단일원자 촉매를 뛰어넘어 그 가치가 높을 것으로 기대된다.
정호진 박사과정이 1 저자로 참여한 이번 연구결과는 화학 분야 국제학술지 ‘네이처 카탈리시스(Nature Catalysis)’ 2월 17일 자 온라인판에 게재됐다. (논문명 : 단일원자 촉매를 뛰어넘는 완전분산된 고내구성 자동차 촉매용 금속 앙상블 촉매, Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts)
다양한 불균일계 촉매 중 귀금속(백금, 팔라듐, 로듐) 촉매는 높은 활성을 보여 널리 사용되지만, 귀금속의 희소성과 비싼 가격으로 인해 제약이 많다. 이에 사용 효율을 극대화하는 것이 매우 중요한 과제로 남아있다. 단일원자 촉매는 모든 금속 원자가 촉매 반응에 참여할 수 있어 널리 사용되지만, 금속 원자가 독립적으로 존재하기 때문에 앙상블 자리가 필요한 촉매 반응에서 촉매 성능을 발휘하지 못한다.
한편 일산화탄소(CO), 프로필렌(C3H6), 프로판(C3H8), 일산화질소(NO)는 대표적인 휘발유 차량 배기가스 오염물질로 반드시 삼원 촉매 반응을 통해 이산화탄소(CO2), 물(H2O), 질소(N2)로 전환한 뒤 배출돼야 한다. 이때 탄화수소(프로필렌, 프로판) 산화 반응은 탄소-탄소, 탄소-수소 결합을 깨뜨려야만 반응이 진행되기 때문에 촉매 반응을 위해서는 금속 앙상블 자리를 확보하는 것이 필수이다.
연구팀은 문제 해결을 위해 100%의 분산도를 갖는 금속(백금, 팔라듐, 로듐) 앙상블 촉매를 개발해 삼원 촉매 반응에 적용했다. 100%의 분산도를 갖는다는 것은 모든 금속 원자가 표면에 드러나 있어 모든 원자가 반응에 참여할 수 있다는 의미이다. 이는 단일원자 촉매도 갖는 특징이지만 앙상블 촉매는 100% 분산도와 더불어 두 개 이상의 원자가 붙어있는 앙상블 자리가 존재한다는 장점을 갖고 있다.
그 결과 금속 앙상블 촉매는 일산화탄소, 프로필렌, 프로판, 일산화질소를 동시에 제거하는 삼원 촉매 반응에서 매우 우수한 저온 촉매 성능을 보였다. 이는 탄화수소 산화 반응 성능이 없어서 삼원 촉매 성능이 저하되는 단일원자 촉매의 문제점을 해결한 것이다. 특히 연구팀이 개발한 분산도 100%의 금속 앙상블 촉매는 수열 노화, 장기 반응, 재사용 반응 등의 내구성 평가에서도 탁월한 성능을 보여 실제 휘발유 차량 배기가스 정화에 적용 가능할 것으로 기대된다.
이현주 교수는 “이번에 개발한 금속 앙상블 촉매는 기존의 단일원자 촉매의 한계를 극복하는 새로운 금속 촉매로써 학술적으로 기여하는 바가 크다”라며 “휘발유 차량 배기가스 정화 촉매 분야에도 산업적으로 적용 가능해 연구의 가치가 매우 크다”라고 말했다.
이번 연구는 선도연구센터사업의 초저에너지 자동차 초저배출 사업단과 한국연구재단 중견연구사업의 지원을 받아 수행됐다.
2020.02.27
조회수 11579
-
초음파를 내비게이션으로 사용하는 광학현미경 개발
생체 내부를 꿰뚫어볼 수 있는 새로운 현미경이 나왔다. 바이오 및 뇌공학과 장무석 교수 연구팀이 기초과학연구원 분자 분광학 및 동력학 연구단 최원식 부연구단장 연구팀과의 공동 연구를 통해 초음파를 이용해 기존 현미경으로 볼 수 없었던 생체 내부의 미세구조를 관찰하는 기법을 개발했다.
연구결과는 국제학술지 네이처 커뮤니케이션즈(Nature Communications)2월 5일자 온라인 판에 게재됐다.
사람의 눈은 250㎜ 떨어진 거리에 70㎜의 간격을 두고 놓인 물체를 구분할 수 있다. 이보다 작은 미세구조를 관찰하기 위해서는 광학현미경이 필요하다. 광학현미경은 눈으로 볼 수 없는 작은 미세구조를 확대해서 보여준다. 하지만 생체조직을 관찰할 때는 이야기가 달라진다.
빛이 생체 조직을 투과할 때 직진광과 산란광이라는 두 종류의 빛이 생겨난다. 직진광은 말 그대로 생체 조직의 영향 없이 직진하는 빛이며, 산란광은 생체 조직 내 세포나 세포 내 구조의 영향에 의해 진행 방향이 무작위로 굴절된 빛이다. 광학 현미경으로 생체 조직 깊은 곳을 관찰하려면 직진광에 비해 산란광이 강해져 이미지 정보가 흐려진다는 치명적인 단점이 있다. 안개 속을 볼 수 없듯, 생체 조직의 수많은 세포와 구조들이 빛을 산란시켜 이미지를 흐리게 만들기 때문이다. 반면, 초음파 영상은 태아를 감별할 수 있을 정도로 생체 내부 깊은 곳까지 이미징할 수 있지만, 해상도가 낮아 미세한 구조를 볼 수 없다는 단점이 있다.
연구진은 광학 현미경과 초음파 영상의 장점을 결합하여, 생체 내부 깊은 곳을 높은 해상도로 관찰할 수 있는 초음파 결합 광학 현미경을 개발했다. 초음파 결합 현미경은 생체 조직 내부를 잘 침투하는 초음파를 집속시킨 후, 초음파의 초점을 지나는 빛만 측정하는 방식으로 산란광의 세기를 크게 감쇄시킬 수 있다. 초음파가 광학현미경에게 관찰 경로를 알려주는 일종의 내비게이션 역할을 하는 셈이다.
초음파는 생체 조직을 응축, 팽창시켜 굴절률을 변조하는 방식으로 빛의 진행에 영향을 준다. 연구진은 이런 초음파의 특성을 응용해 초음파의 초점을 통과하는 빛만을 선택적으로 측정하는 기술을 개발하고, 이 기술을 공간 게이팅(space-gating)이라 명명했다. 초음파는 생체 내부의 ‘빛 거름망’ 역할을 하며 무작위로 산란되던 빛을 차폐한다. 공간 게이팅 기술을 통해 연구진은 산란광을 100배 이상 감쇄시키며 생체 조직 내에서 광학 이미지가 흐려지는 문제를 극복할 수 있었다.
장무석 교수는 “촘촘한 거름망을 사용하면 더 고운 가루만 남는 것처럼 초음파의 초점을 작게 할수록 산란광을 더 많이 감쇄시킬 수 있다”며 “향후 산란광을 1000~1만 배 수준까지 감쇄시켜 더 선명한 이미지를 얻게 될 것으로 기대한다”고 말했다.
연구진은 개발한 현미경을 이용해 별도의 형광 표지 없이 부화한지 30일 된 성체 제브라피시의 척추 안쪽 근육 조직 이미지를 얻는데 성공했다. 기존 기술은 제브라피시의 장기, 척추 등 내부 구조에서 산란 현상이 일어나 절단을 통해서만 내부 근육 결을 관찰할 수 있었다. 이와 달리 개발된 현미경은 자연 상태 그대로 살아있는 제브라피쉬 내부 조직을 꿰뚫어볼 수 있다.
연구진은 인체 조직에도 사용할 수 있는 공간 게이팅 기술을 구현해나갈 계획이다. 향후 현미경을 소형화하고 이미징 속도를 증가시키면, 실시간 질병 진단에도 응용할 수 있을 것으로 기대된다. 이번 연구를 이끈 최원식 부연구단장은 “초음파 결합 광학 현미경은 기존 광학 현미경의 얕은 이미징 깊이 문제를 해결하는 획기적인 기술”이라며 “공간 게이팅 기술을 더욱 발전시켜 빛의 산란 현상을 이해하고, 의생명 광학 기술 분야 활용 범위를 넓혀나갈 것”이라고 말했다.
2020.02.21
조회수 12261
-
저전력·고속 터널 전계효과 트랜지스터 개발
물리학과 조성재 교수 연구팀이 기존의 금속 산화물 반도체 전계효과 트랜지스터(metal-oxide-semiconductor field-effect transistor, MOSFET) 대비 작동전력 소모량이 10배 이상, 대기전력 소모량이 1만 배 가까이 적은 저전력, 고속 트랜지스터를 개발했다.
조 교수 연구팀은 2차원 물질인 흑린(black phosphorus)의 두께에 따라 밴드갭이 변하는 독특한 성질을 이용해 두 물질의 접합이 아닌 단일 물질의 두께 차이에 의한 이종접합 터널을 제작하는 데 성공했다. 이러한 단일 물질의 이종접합을 터널 트랜지스터에 활용하면 서로 다른 물질로 제작한 이종접합 트랜지스터에서 발생했던 격자 불균형, 결함, 계면 산화 등의 문제를 해결할 수 있어 고성능 터널 트랜지스터의 개발이 가능하다.
김성호 연구원이 1 저자로 참여한 이번 연구는 국제 학술지 ‘네이처 나노테크놀로지 (Nature Nanotechnology)’ 1월 27일 자 온라인판에 게재됐다. (논문명 : Thickness-controlled black phosphorus tunnel field-effect transistor fro low-power switches).
무어 법칙에 따른 트랜지스터 소형화 및 집적도 증가는 현대의 정보화 기술을 가능하게 했지만 최근 트랜지스터의 소형화가 양자역학적 한계에 다다르면서 전력 소모가 급격히 증가해 이제는 무어 법칙에 따라 트랜지스터 소형화가 진행되지 못하는 상황이다. 최근에는 자율주행차, 사물인터넷 등의 등장으로 많은 양의 데이터를 저전력, 고속으로 처리할 수 있는 비메모리 반도체의 기술 발달이 시급히 요구되고 있다.
트랜지스터의 전력 소모는 크게 작동 전력 소모와 대기 전력 소모로 나뉜다. 작동 전력과 대기 전력을 같이 낮추기 위해서는 트랜지스터의 작동 전압과 대기 상태 전류를 동시에 낮추는 것이 필수적이다. 이를 위해서는 전류를 10배 증가시키는데 필요한 전압으로 정의되는 SS 값(subthreshold swing, 단위: mV/decade = mV/dec)의 감소가 필요한데, 금속 산화물 반도체 전계효과 트랜지스터에서는 SS 값이 상온에서 60 mV/dec 이하로 낮아질 수 없다. 이를 해결하기 위해서는 상온에서 SS 값을 60 mV/dec 이하로 낮출 수 있는 새로운 트랜지스터의 개발이 필요하다. 이전에 개발되었던 낮은 SS를 가지는 저전력 터널 트랜지스터의 경우 트랜지스터 채널을 구성하는 두 물질의 이종접합 계면에서 산화막 등의 문제가 발생하여 작동 상태에서 낮은 전류를 가지는 문제가 있었다. 작동 상태 전류는 트랜지스터 작동속도에 비례하기 때문에, 낮은 작동 상태 전류는 저전력 트랜지스터의 경쟁력을 떨어뜨린다.
조 교수 연구팀이 적은 전력소모를 위한 낮은 SS 값과 고속 작동을 위한 높은 작동 상태 전류를 단일 트랜지스터에서 동시에 달성한 것은 유례없는 일로 2차원 물질 기반의 저전력 트랜지스터가 기존의 금속 산화물 반도체 전계효과 트랜지스터의 전력 소모 문제를 해결하고, 궁극적으로 기존 트랜지스터를 대체하고 미래의 저전력 대체 트랜지스터가 될 수 있음을 의미한다. 조성재 교수는 “이번 연구는 기존의 어떤 트랜지스터보다 저전력, 고속으로 작동해 실리콘 기반의 CMOS 트랜지스터를 대체할 수 있는 저전력 소자의 필요충분조건을 최초로 만족시킨 개발이다”라며 “대한민국 비메모리 산업뿐 아니라 세계적으로 기초 반도체 물리학 및 산업 응용에 큰 의의를 지닌다”라고 말했다.
이번 연구는 한국연구재단 미래반도체신소자원천기술개발사업의 지원을 받아 수행됐다.
2020.02.20
조회수 16385