본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%97%B0%EA%B5%AC%EB%8B%A8
최신순
조회순
김일두 교수, 호흡으로 폐암, 당뇨 조기 진단하는 초소형 센서 개발
혈액 체취나 영상촬영을 하지 않고도 사람의 호흡만으로 폐암, 당뇨 등 각종 질병을 실시간으로 파악할 수 있는 초소형 감지 센서 기술이 개발됐다. 우리 대학 신소재공학과 김일두 교수신소재공학과 연구팀은 사람의 호흡 내에 질병과 관련된 극미량의 특정 가스의 농도를 실시간으로 정확하게 분석할 수 있는 세계 최고 수준의 고감도·초소형 센서를 개발하였다고 밝혔다. 이를 통해, 현재 병원에서 혈액 체취나 조직 검사, MRI 등을 통해 고비용으로 진단하고 있는 폐암이나 당뇨 등의 질병을 개인 스마트폰이나 웨어러블 장치를 통해 수시로 저렴하게 진단할 수 있는 길을 열었다. 사람이 숨을 쉬면서 내뱉는 호흡 속 가스 성분 중에는 다양한 휘발성 유기화합물 가스들이 포함되어 있으며, 이중 일부 가스는 질병과 밀접한 연관이 있는 것으로 알려져 있다. 대표적으로 아세톤, 톨루엔, 황화수소 가스는 각각 당뇨병, 폐암, 구취 환자에서 더 높은 농도로 배출되며, 이러한 호흡 속 특정 가스의 농도를 정확하게 분석할 수 있다면 여러 질병들을 간편한 방법으로 조기에 진단할 수 있다. 그러나, 입안에는 수분을 포함하여 수백 종의 가스들이 존재하기 때문에, 그간 개발된 센서는 사람 호흡 속에 포함되어 있는 극미량(10 – 2,000ppb)의 특정 가스를 선택적으로 검출하는데 한계가 있었다. 연구팀은 수백 종의 가스 중 질병과 관련된 특정 가스만 선택적으로 탁월하게 검출할 수 있는 고성능 촉매를 개발하였으며, 이를 나노 섬유 형상의 센서 소재에 적용하여 개인 스마트폰과 연동이 가능한 초소형·고감도 질병 진단 센서를 구현하는데 성공하였다. 김일두 교수는 “질병 진단 센서는 차량이나 모바일 기기 등에 활용하여 개인 질병을 지속적으로 모니터링 할 수 있을 뿐만 아니라, 향후 대기 오염 분석, 실내 공기질 분석 등 가스 센서와 관련된 산업분야에서 사물인터넷(IoT) 제품과 융합되어 새로운 시장을 창출할 것으로 기대된다.”라고 연구의의를 밝혔다. 이번 연구는 김일두 교수 외 최선진·김상준 연구원이 주도하였고, 미래창조과학부 글로벌프런티어사업(스마트 IT 융합시스템 연구단)의 지원으로 수행되었다. 연구 결과는 재료과학분야 세계적 국제학술지인 ‘스몰(small)’ 표지논문에 2월 17일(수) 게제 되었으며, 관련 특허는 국내기업에 기술이전 되어 향후 조기 상용화가 이뤄질 것으로 기대된다. □ 그림 설명 그림1. 스마트폰과 연결된 호기가스 분석 센서 및 호흡지문 패턴 인식을 통한 질병 진단 그림2. 동글 타입(Dongle-type), 패치 타입(Patch-type), 및 시계 타입(Watch-type) 센서 모듈을 이용한 휴대형, 실시간 호기가스 분석 센서 그림3. 'small' 표지에 게재된 논문
2016.03.07
조회수 17880
그래핀, 원하는 모양대로 오려낸다
〈 김 상 욱 교수 〉 우리 대학 신소재공학과 김상욱 교수 연구팀이 손상 없이 나노 그래핀을 원하는 모양대로 오려낼 수 있는 기술을 개발했다. 이번 연구 결과는 ‘네이처 커뮤니케이션즈(Nature Communications)’ 1월 22일자 온라인 판에 게재됐다. 그래핀은 탄소가 육각형의 벌집모양 형태로 화학결합을 한 상태이다. 이 결합을 원하는 대로 오려낼 수 있다면 나노형태를 갖는 탄소소재를 만들 수 있다. 따라서 그래핀을 응용하기 위해 탄소를 잘 오려내는 것은 많은 연구자들의 과제였다. 그러나 탄소와 탄소 간의 매우 강한 결합을 끊어내기 위해서는 그에 걸 맞는 강한 화학 반응을 사용해야 한다. 이로 인해 그래핀을 오려낼 때 원하는 그래핀의 부위 뿐 아니라 그 주변이 함께 찢어지고 손상됐다. 기존의 그래핀을 한꺼번에 찢는 기술들은 예외 없이 탄소의 물성이 손상되는 한계가 있었다. 종이를 잘 오려내지 못하면 너덜너덜해지는 것과 같은 원리이다. 연구팀은 문제 해결을 위해 흔히 사용하는 이종원소 도핑 기술을 활용했다. 종이에 홈을 깊게 파거나 작은 구멍을 내면 그 부분을 따라서 종이가 찢어지는 것과 같은 원리이다. 탄소와 탄소가 결합한 평면에 질소나 다른 원소를 심어 구조적 불안정성을 유도한 뒤 전기화학적 자극을 주면 탄소 이외의 부분이 쉽게 찢어진다. 여기서 질소 등의 다른 원소가 종이의 홈 역할을 하게 된다. 연구팀은 도핑되는 이종원소의 양을 조절해 그래핀이 오려지는 정도가 매우 정밀하게 제어되고, 그래핀의 2차원적 결정성이 전혀 손상되지 않는 고품질의 나노그래핀을 제작했다. 그리고 이 기술을 활용해 최고 수준의 에너지 전달 속도를 갖는 슈퍼캐패시터(고용량 축전기)를 구현했다. 또한 이 오려내기 기술로 만들어진 나노그래핀에 특정 화학기능기가 다량 존재하는 것으로 밝혀졌다. 이 화학기능기는 고분자, 금속 및 반도체 나노입자 등 다양한 이종물질과 쉽게 융합해 고성능의 탄소복합소재 구현이 가능할 것으로 기대된다. 연구팀은 “2차원적 결정성의 손상 없는 나노구조 조절 원리가 보고된 바 없어 그래핀 분야의 큰 숙제로 남았었다”며 “품질의 저하 없이 그래핀 면을 나노크기로 오려낼 수 있음을 최초로 증명한 성과이다”고 말했다. 김 교수는 “이 기술의 실용화를 위해선 이종원소의 도핑 위치 제어 기술이 선행돼야 한다”며 “이번 연구로 얻은 나노그래핀을 활용해 기계적, 전기적 특성이 우수한 섬유 형태의 탄소소재를 개발할 것이다”고 밝혔다. 나노과학기술대학원 김용현 교수, 화학과 김현우 교수와 공동연구로 진행된 이번 연구는 임준원 박사과정 학생이 1저자로 참여했으며, 미래창조과학부 리더연구자지원사업인 다차원 나노조립제어 창의연구단의 지원을 받아 수행됐다. □ 그림 설명 그림1. 절개된 산소나노튜브 그림2. 도핑된 이종원소부터 탄소나노튜브의 벽이 오려진 후 장축 방향으로 길게 잘라져 나노그래핀이 만들어지는 과정
2016.01.25
조회수 12291
효모 사용해 종양에 항암제 전달한다
〈 전 상 용 교수 〉 우리 대학 생명과학과 전상용 교수 연구팀과 GIST 생명과학부 전영수 교수 공동연구팀이 효모 기반의 바이오소재를 이용해 항암제를 표적 암에 효과적으로 전달할 수 있는 원천기술을 개발했다. 이번 연구결과는 지난해 12월 28일 미국학술원회보인 PNAS 온라인 판에 게재됐다. 이번 기술은 효모(yeast)에 존재하는 천연 소포체(vesicle)인 액포(vacuole)를 항암제를 전달하는 약물전달체로 이용했다. 동물 실험에서 높은 생체 적합성과 항암효능을 보여 기존 치료법의 대안이 될 것으로 기대된다. 약물전달시스템은 기존의 합성의약품 기반 항암 치료에 비해 독성을 크게 낮출 수 있다. 현재 美 식약청의 허가를 받아 치료에 사용되는 약물전달시스템은 리포좀(liposome) 제제와 알부민 나노입자(Abraxane)가 있다. 이러한 나노입자 기반 약물전달시스템은 특정 암을 표적해 치료하는 기술은 아니다. 따라서 최근에는 특정 암을 표적해 부작용을 낮추고 치료 효능은 개선시키는 표적형 약물전달시스템에 대한 연구가 활발히 진행 중이다. 그러나 대부분의 표적형 약물전달시스템은 고분자, 무기 나노입자같은 인공소재 기반이다. 인공소재들은 생체 적합성이 낮고 몸속에 장기간 남아 잠재적 독성을 유발할 수 있다는 한계를 갖는다. 연구팀은 문제 해결을 위해 빵, 맥주의 발효에 사용되는 효모를 이용했다. 효모 안의 소포체인 액포를 항암제 전달 소재로 사용했다. 연구팀은 기존 효모를 유전자변형 시켰다. 유방암에 결합가능한 표적 리간드(ligand)가 도입된 표적형 효모액포로 제조한 것이다. 여기에 항암제로 사용되는 독소루비신(Doxorubicin)을 표적형 효모액포에 선적해 약 100나노미터 직경을 갖는 암 치료용 표적형 약물전달시스템을 구축했다. 이 액포의 구성성분은 인간의 세포막에 존재하는 지질 성분들과 비슷해 암 세포와의 막융합이 수월하게 이뤄진다. 따라서 항암제를 암 세포 안으로 효과적으로 전달할 수 있고, 생체 적합성이 높아 안전한 약물전달시스템이 될 수 있다. 실제로 유방암 동물실험에서 표적형 효모액포 약물전달시스템은 기존 독소루비신 치료 그룹에 비해 약 3배 이상의 항암제를 암 조직에 전달해 우수한 치료 효능을 보였다. 이 기술을 통해 다른 생물체 기반의 나노 소포체를 이용한 약물전달시스템 개발에도 활용 가능할 것으로 기대된다. 전 교수는 “이 기술을 통해 생물체 유래 천연 나노 소포체가 약물전달시스템으로 개발될 것으로 보인다”며 “전임상 연구 및 임상 적용 가능성을 평가해 궁극적인 암 치료 방안 중 하나가 되기를 기대한다”고 말했다. 이번 연구는 한국연구재단의 글로벌프론티어 사업인 지능형바이오시스템 및 합성연구단과 광주과학기술원 실버헬스바이오연구센터의 실버헬스바이오기술개발사업의 지원으로 수행됐다. □ 그림 설명 그림1. 표적형 효모액포를 정맥주사 한 후 6시간 뒤 암 조직으로의 약물분포 결과 그림2. 유방암 생쥐모델에서 독소루비신 항암제가 선적된 표적형 효모액포 약물전달시스템의 항암 결과 그림3. 최종 항암 치료용 표적형 약물전달시스템을 제조하는 모식도
2016.01.12
조회수 19033
이희승 교수, 펩타이드 자기 나침반 개발
〈이 희 승 교수〉 우리 대학 화학과 이희승(47) 교수 생체모방 유기분자 연구팀이 순수 유기화합물만으로 구성된 펩타이드 자기 나침반을 개발했다. 이번 성과는 네이처(Nature) 자매지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 10월 29일자 온라인 판에 게재됐다. 금속화합물, 산화금속과 같은 강자성(ferromagnetic) 및 상자성(paramagnetic)을 갖는 자성물질은 이들의 자기적 특성을 이용해 다양하게 응용되고 있다. 반면, 펩타이드와 같은 반자성(diamagnetic) 유기분자들은 금속성 물질에 비해 자기민감성(magnetic susceptibility)이 현저히 낮아 수 테슬라(Tesla) 이상의 강한 자기장에도 반응하지 않기 때문에 비 자성(non-magnetic) 물질로 취급됐다. 또한 반자성 특성은 분자수준에서 관찰이 어렵고 효율성이 낮아 한계가 있는 것으로 여겨졌다. 물론 이론적으로는 반자성 분자라도 열에너지를 극복할 수 있는 다수의 분자가 일정한 규칙으로 정렬된 집합체가 되면 반자성 정렬(diamagnetic alignment)이 가능하다. 따라서 외부자기장의 변화에 실시간으로 반응하는 분자기계의 개발이 가능하지만, 이를 실험적으로 증명한 예는 없었다. 문제 해결을 위해 연구팀은 폴덱쳐(foldecture)라고 이름 지은 독창적인 나선형 펩타이드 분자 자기조립체를 개발했다. 이는 독특한 3차원 모양의 일정한 크기를 갖는 비금속 유기물질이고, 반자성 특성을 갖지만 이를 구성하는 펩타이드 분자들이 높은 결정성과 일정한 규칙성을 갖도록 설계됐다. 이러한 규칙성과 결정성 등의 특징은 펩타이드 자기조립체가 외부 자기장 방향을 따라 정렬할 수 있게 만들었다. 또한 MRI 장비의 자기장 세기보다 낮은 1 테슬라 이하의 회전자기장에서도 폴덱쳐들이 실시간으로 감응하며 정렬해 수용액상에서 실시간 회전운동도 가능함을 최초로 증명했다. 연구팀은 체내에 마그네토좀이라는 자기나침반을 지닌 주자성 박테리아(magnetotactic bacteria)의 행동 양식에 착안해, 순수 유기화합물질인 폴덱쳐를 이용해서 외부 자기장의 방향 변화를 민감하게 가리킬 수 있는 수 밀리미터 크기의 하이드로겔 나침반을 구현하는데 성공했다. 이번 연구에서 밝혀진 펩타이드 자기조립체의 반자성 정렬 현상은 반자성 물질 연구에 대한 새로운 시각을 제시했을 뿐 아니라 폴대머 및 펩타이드 자기조립 연구와 자극반응성 분자기계, 유기나노물질의 움직임 제어 등 다양한 관련 응용연구 분야에 영향을 끼칠 것으로 기대된다. 이 교수는“이번 성과를 통해 자기제어가 가능한 생체 친화적 유기 나노/마이크로소재 연구개발이 활성화될 것으로 기대된다”고 말했다. KAIST 화학과 권선범 박사가 제 1 저자로 참여한 이번 연구는 삼성미래기술육성재단의 지원을 받아 수행됐고, KAIST EEWS 대학원 김형준 교수팀, 화학과 최인성 교수의 세포피포화 연구단과의 공동연구를 통해 진행됐다. □ 그림 설명 그림 1. 주사전자현미경을 통해 관찰된 폴덱쳐의 자기정렬 현상 그림2. 펩타이드 1 및 2 의 분자구조식과 이들의 자기조립을 통해 합성된 폴덱쳐의 전자현미경 사진
2015.12.02
조회수 11873
5단 수직 적층 반도체 트랜지스터 개발
우리 대학 전기 및 전자공학부 이병현 연구원(지도교수 최양규)과 나노종합기술원(원장 이재영) 강민호 박사가 실리콘 기반의 5단 수직 적층 반도체 트랜지스터를 개발했다. 그리고 반도체 트랜지스터를 이용한 비휘발성 메모리 개발에 성공했다. 이번 연구는 나노 분야 학술지 ‘나노 레터스(Nano letters)’ 11월 6일자 온라인판에 게재됐다. 반도체 트랜지스터 분야는 모든 전자기기의 핵심 구성요소로 국내 산업과 경제 발전에 큰 영향을 끼쳤다. 세계적 추세에 따라 치열한 소형화를 통해 생산성과 성능의 향상을 거듭했으나 최근 10나노미터 시대에 접어들며 제작 공정의 한계 및 누설전류로 인한 전력소모 문제가 커지고 있다. 학계 및 산업계는 문제 해결을 위해 전면-게이트 실리콘 나노선 구조를 개발했다. 이는 누설전류 제어에 가장 효과적인 구조로 저전력 트랜지스터 개발에 이용됐다. 그러나 이 역시 소형화에 따른 나노선 면적 감소로 성능 저하의 한계가 있었다. 연구팀은 전면-게이트 실리콘 나노선을 수직으로 5단으로 쌓아 문제를 해결했다. 이 5단 적층 실리콘 나노선 채널을 보유한 반도체 트랜지스터는 단일 나노선 기반의 트랜지스터보다 5배의 향상된 성능을 보였다. 또한 수직 적층 나노선 구조는 말 그대로 위로 쌓기 때문에 단일 구조와 달리 면적이 증가되지 않아 집적도 향상에도 기여할 수 있다. 나노선 수직 적층은 개발된 ‘일괄 플라즈마 건식 식각 공정’ 방식을 통해 이뤄졌다. 이 공정은 고분자 중합체를 이용해 패턴이 형성될 영역에 미리 보호막을 친 뒤 등방성 건식 식각을 통해 나노선 구조를 형성하는 기술이다. 수직 적층 나노선 구조는 이 기술의 연속 작용을 통해 확보한 결과물이다. 이 기술은 지속적 소형화로 인해 기술적 한계에 부딪힌 반도체 트랜지스터 분야에 새로운 돌파구를 제시할 것으로 기대된다. 관련 연구가 이전부터 진행됐지만 더 간단한 공정기술을 이용해 가장 많은 나노선 채널의 적층에 성공했기 때문에 비용절감 및 제작 시간 단축, 반도체 트랜지스터의 성능 향상으로 인한 상용화 등에 크게 기여할 것으로 예상된다. 연구팀은 건식 식각 공정 기술이 기존 방법보다 간단하고 안정적으로 수직 적층 실리콘나노선 구조 제작을 가능하게 함으로써 고성능 트랜지스터 개발에 응용 가능할 것이라고 밝혔다. 이병현 연구원과 강민호 박사는 “이번 기술 개발은 미래창조 국가 나노기술 인프라 기관 나노종합기술원의 훌륭한 반도체 연구 기반과 김진수 부장 포함 관련 연구진들의 우수한 공정 능력이 뒷받침돼 가능했다”고 소감을 말했다. 이번 연구는 글로벌프론티어사업 스마트IT융합시스템 연구단의 지원을 받아 수행됐다. 연구를 주도한 이병현 연구원은 우리 대학 최양규 교수 지도하에 박사과정을 수행 중이며, 삼성전자 메모리 사업부의 책임 연구원으로 재직 중이다. □ 그림 설명 그림1. 일괄 플라즈마 건식 식각 공정 과정의 모식도. 그림2. 서로 다른 방향에서 단면을 관찰한 주사 전자 현미경 사진 및 투과 전자 현미경 사진
2015.11.24
조회수 12794
화합물의 광학 활성 분석 기술 개발
〈 김 현 우 교수〉 우리 대학 화학과 김현우 교수 연구팀이 핵자기공명 분광분석기(NMR)를 통해 전하를 띠는 화합물의 광학 활성을 간단히 분석할 수 있는 기술을 개발했다. 연구 결과는 화학분야 학술지 ‘미국화학회지(Journal of the American Chemical Society)’ 10월 19일자 온라인 판에 게재됐다. 오른손과 왼손처럼 같은 물질이지만 거울상 대칭이 되는 화합물을 광학 이성질체라고 한다. 지구상의 생명체를 이루는 아미노산과 당은 하나의 광학 이성질체로 이뤄져 있어 새로운 화합물이 생체에 들어갈 때 광학 활성에 따라 서로 다른 생리학적 특징을 나타낸다. 따라서 신약을 개발할 때 광학 활성을 조절하고 분석하는 연구는 필수적이다. 광학 활성의 분석 방법으로 고성능 액체 크로마토그래피(HPLC)가 주로 사용되는데, 고가의 부품을 구비해야 하고 30분에서 1시간 정도의 시간이 소요되는 단점이 있다. 또한 신호의 감도 및 분해 기능이 떨어지고 사용할 수 있는 용매가 무극성에 한정되는 점 때문에 활용에 한계가 있었다. 반면 화합물의 분자 구조 분석에 활용되는 핵자기공명(NMR) 분광분석기는 1~5분 정도의 빠른 분석속도를 갖고 있다. 또한 화학 분야에서 분자의 구조를 확인하기 위한 필수 장비이기 때문에 대부분의 연구실에서 구비된 상태다. 하지만 이 핵자기공명 분광분석기를 통해 광학 활성 화합물의 신호를 분리하는 효과적인 방법은 보고되지 않았다. 연구팀은 기존에 알려지지 않은 음전하를 띠는 금속 화합물과 핵자기공명 분광분석기를 이용해 분석 방법을 개발했다. 음전하를 띤 금속 화합물이 양전하 및 음전하를 갖는 광학활성 화합물과 이온성 결합을 하면 핵자기공명 분광분석기를 통해 신호가 구별돼 광학 활성을 분석할 수 있는 원리이다. 이 방법을 사용하면 구조적 제약 없이 다양한 화합물을 분석할 수 있고, 비극성 및 극성 용매에 모두 적용 가능하다는 장점을 갖는다. 연구팀은 다양한 신약 및 신약후보 물질들은 전하를 띨 수 있는 작용기를 포함한 경우가 많아 연구팀의 새로운 분석 방법이 신약 개발에 직접적으로 활용 가능할 것으로 기대된다고 밝혔다. 김 교수는 “간단한 화학적 원리를 통해 기존의 틀을 깨는 혁신적 분석방법을 만들었다”며 “이 방법이 신약개발에 많이 활용되길 기대한다”고 말했다. 화학과 서민섭 박사과정(1저자)의 참여로 이루어진 이번 연구는 기초과학연구원(IBS) 나노물질 및 화학반응 연구단과 슈퍼컴퓨팅연구지원사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 금속 화합물과 이온성 상호작용으로 광학활성을 가진 화합물의 NMR 신호가 분리되는 현상 그림2. 다양한 광학활성 물질이 분리되는 그림
2015.11.10
조회수 14925
휘어지는 10나노미터 고분자 절연막 개발
10나노미터 이하의 얇고, 유연하게 휘어지면서도 균일한 두께를 유지하는 고분자 절연막의 개발로 사물인터넷의 실현을 앞당길 수 있을 것으로 보인다. 우리 대학 생명화학공학과 임성갑 교수, 전기 및 전자공학과 유승협, 조병진 교수 공동 연구팀은 ‘개시제를 이용한 화학 기상 증착법(initiated chemical vapor deposition, 이하 iCVD)’을 이용한 고분자 절연막을 개발했다고 밝혔다. 이번 연구는 재료분야 국제 학술지인 ‘네이처 머티리얼스(Nature Materials)’ 3월 10일자 온라인 속보판에 게재됐다. 사물인터넷 시대의 핵심인 웨어러블, 플렉서블 기술 촉진을 위해서는 가볍고 전력 소모가 적으면서도 유연성을 가진 소자 제작 기술이 필수적이다. 하지만 무기물 소재를 기반으로 한 절연막을 포함한 전자소자 재료들은 유연성이 부족하고, 고온에서만 공정이 가능해 열에 약한 다른 재료들과의 조합이 좋지 않다. 또한 용액을 이용해 만든 기존 고분자 소재 절연막은 표면장력에 의한 뭉침 현상으로 균일도에 한계가 있었고, 잔류 불순물로 인해 절연 특성도 좋지 못한 경우가 많았다. 공동 연구팀은 이러한 문제점을 해결할 수 있도록 기체 상태의 반응물을 이용해 고분자를 박막 형태로 합성하는 방법인 iCVD를 사용했다. 액체 대신 기체 상태의 반응물을 이용해 균일도를 높이고 불순물을 최소화함으로써, 10nm 이하의 매우 얇은 두께에서도 무기물 기반 소재에 필적하는 절연성을 가지게 됐다. 공동 연구팀은 개발한 절연막을 유기반도체, 그래핀, 산화물반도체와 같은 차세대 반도체를 기반으로 한 트랜지스터에도 적용해 우수한 이동도를 갖는 저전압 트랜지스터를 개발했다. 그 외에도 우수한 유연성을 바탕으로 스티커 필름 형태의 전자 소자를 시연했고, 동국대 노용영 교수 연구팀과 협력해 iCVD 고분자 절연막이 대면적 유연 전자소자 기술에 적용할 수 있음을 확인했다. 이 기술은 향후 다양한 미래형 전자기기 제작에 핵심 요소소재로 활용되고, 이 분야의 기술경쟁력 우위 확보에도 역할을 할 것으로 기대된다. 임성갑 교수는 “이번에 iCVD로 구현된 박막의 절연특성은 고분자 박막으로는 구현할 수 없었던 매우 높은 수준”이며 “이번에 개발된 iCVD 고분자 절연막은 플렉서블 전자 소자 등 차세대 전자 기술에 핵심적인 역할을 할 수 있을 것”이라고 말했다. 문한얼, 신우철 박사(전기 및 전자공학과), 성혜정 학생(생명화학공학과)이 참여한 이번 연구는 미래창조과학부의 한국연구재단 신진연구자 지원사업 및 중견연구자 지원사업, 글로벌프론티어사업 나노기반 소프트일렉스토닉스 연구단의 지원을 받아 수행됐다. □ 그림 설명 그림 1. iCVD 공정의 모식도 (i) 재료물질 (initiator, monomer) 주입, (ii) 개시제의 활성화, (iii), (iv): 활성화된 개시제에 의한 고분자(polymer) 합성 그림 2. 연구진이 개발한 고분자 절연막을 이용하여 제작한 대면적, 고유연성 전자소자 그림 3. 스티커처럼 붙이고 뗄 수 있는 전자소자 이미지
2015.03.10
조회수 17080
도장 찍듯이 자유롭게 그래핀 옮기는 기술 개발
우리 학교 전기및전자공학과 최성율 교수 연구팀이 단원자층 그래핀을 금속촉매기판에서 직접 떼어내는 동시에 원하는 기판에 도장을 찍듯 자유롭게 옮길 수 있는 기술을 개발하는데 성공했다. 이 기술을 활용하면 기존의 직접박리 기반 전사공정으로 달성하기 어려웠던 그래핀 박막 적층, 구조물 표면이나 유연한 기판으로 전사, 4인치 웨이퍼 크기의 대면적 전사 등이 가능해진다. 향후 웨어러블 스마트기기 등 다양한 분야에 사용되는 그래핀 전자소자 상용화에 활용될 전망이다. 그래핀을 원하는 기판으로 옮기기 위해 현재 가장 널리 사용하는 방법인 습식전사법은 전사과정 중에 그래핀이 물리적으로 손상되고 표면이 오염 될 수 있어 전사된 그래핀의 전기적 특성이 심각하게 훼손될 수 있다는 단점이 있다. 최 교수 연구팀은 금속촉매기판 위에 성장된 그래핀을 수용성 고분자 용액으로 처리한 후 동일한 수용성 고분자 지지층을 그 위에 형성시켰다. 이 과정을 통해 지지층과 그래핀 사이에 강한 결합력이 형성되고 그 후 지지층을 탄성체 스탬프로 떼어내면 지지층과 함께 그래핀이 금속촉매기판으로부터 분리된다. 이렇게 분리된 그래핀은 탄성체 스탬프에 고립상태로 존재하기 때문에 원하는 기판 어디에든 도장 찍어내듯 자유롭게 옮길 수 있다. 또 금속촉매기판을 재활용 할 수 있고 유해한 화학물질을 전혀 사용하지 않기 때문에 친환경적인 전사법 이라는 장점도 가지고 있다. 최 교수는 이번 연구에 대해 “개발된 그래핀 전사방법은 그 공정이 범용적이고 대면적 전사도 가능하므로 그래핀 전자소자 상용화에 기여할 수 있을 것”이라며 “이 방법이 가지고 있는 높은 전사 자유도로 인해 향후 그래핀과 2차원 소재 접합 나노소자 구현에도 다양하게 활용될 것으로 기대된다”고 연구의의를 밝혔다. 이번 연구는 KAIST 전기및전자공학과 최성율 교수와 양상윤 연구교수가 주도하고 같은 과 조병진 교수, 한국전자통신연구원 최춘기 박사가 참여했으며, 미래창조과학부가 추진하는 글로벌 프론티어 사업인 ‘나노기반 소프트일렉트로닉스 연구단’의 지원으로 수행됐다. 연구 결과는 나노 및 마이크로 과학 분야의 국제 학술지 스몰(small) 1월 14일자 표지논문으로 게재됐다. 끝. 그림1. 본 연구결과를 설명하는 Small紙의 2015년 1월 14일자 표지 사진 그림2. 본 연구에서 개발된 ‘높은 자유도를 갖는 그래핀 직접박리/전사법’ 그림3. 개발된 전사법으로 전사된 그래핀: (좌) 단원자층 그래핀을 3번 반복 전사하여 얻은 3층 그래핀 (3-layerd graphene), (우) 그래핀 트랜지스터 제작을 위해 금속 전극 구조물 표면에 전사한 그래핀 그림4. 대면적 전사된 그래핀: (좌) 4인치 실리콘 웨이퍼에 전사된 그래핀, (우) 플라스틱 (polyethersulfone, PES) 유연기판에 전사된 그래핀 (크기 7cm x 7cm)
2015.01.19
조회수 15214
대장균 이용한 페놀 생산 성공
- 세계 최초로 대장균 이용해 리터당 3.8g의 페놀을 24시간 내 생산 성공 - 우리 학교 이상엽 특훈교수팀은 대장균을 이용해 재생 가능한 바이오매스로부터 페놀(phenol)을 생산하는 원천기술을 개발해 바이오테크놀로지(Biotechnology) 11일자 온라인판에 게재됐다. 이 기술은 친환경적인 미생물 발효 공정을 통해 화학물질을 생산하는 대사공학·공정 기술을 기반으로 개발돼 국내·외 생명공학 및 산업기술 발전에 크게 기여할 것으로 기대된다. 페놀은 석유화학공정을 통해 연간 800만 톤 이상 생산돼 폴리카보네이트, 에폭시, 제초제 등 다양한 산업에 폭넓게 사용되는 화학물질이다. 페놀이 갖고 있는 미생물에 대한 독성으로 인해 미생물을 이용한 페놀의 생산에 대한 연구는 그동안 어려움이 많아 생산량이 리터당 1g 미만 수준으로 더 이상의 향상이 이루어지지 못하고 있는 실정이었다. 최근 다양한 대장균들의 유전적, 생리·대사적 차이점이 보고되고 있는데 이 교수 연구팀은 이에 주목해 18종의 다양한 대장균 균주에 대해 동시에 대사공학을 적용해 그 중 ‘BL21’ 이라는 대장균 균주가 페놀생산에 가장 적합하다는 것을 발견했다. 연구팀이 적용한 기술 중 ‘합성 조절 RNA 기술’은 기존의 유전자 결실 방법보다 월등히 빠른 시간에 대사흐름의 조절을 가능하게 하는 기술로써 이번 연구에서도 18종의 대장균에 대한 대사공학을 동시에 진행하는데 중요한 역할을 했다. 또 미생물을 이용한 페놀의 생산에 있어 가장 큰 걸림돌이 페놀의 독성인데 연구팀은 발효공정에서 페놀의 대장균에 대한 독성을 최소화 할 수 있는 이상발효 공정(biphasic fermentation)을 이용해 페놀의 생산량을 증가시킬 수 있었다. 이렇게 개발된 대장균 균주는 기존 균주에 비해 월등히 높은 생산량과 생산능력을 보였으며 이상 유가식 발효(biphasic fed-batch fermentation)에서 리터당 3.8g의 페놀을 24시간 내에 생산할 수 있었다. 즉, 대장균을 이용해 재생 가능한 바이오매스로부터 쉽게 얻어질 수 있는 포도당을 이용해 페놀을 생산할 수 있는 균주를 개발해 세계 최고의 페놀 생산능력을 보이는 균주를 개발했다. 김병진 박사는 “다양한 합성생물학 기술들을 기반으로 대장균을 개량해 페놀을 처음으로 생산했으며 가장 높은 농도와 생산성을 기록했다”며 “발효 공정의 개량을 통해 미생물에 독성을 지니는 화합물의 생산가능성을 보여줬다는데 커다란 의미가 있다”고 말했다. KAIST 생명화학공학과 이상엽 특훈교수 지도하에 김병진 박사, 박혜권 연구원이 공동 1저자로 참여한 이번 연구는 미래창조과학부와 한국연구재단의 글로벌 프론티어사업 지능형 바이오시스템설계 및 합성연구단의 지원을 받아 수행됐다.
2013.10.30
조회수 17262
세계 최초로 미생물 이용 가솔린 생산
- 대장균의 지방산 대사회로를 대사공학적으로 개량하여 알코올, 디젤, 가솔린 생산 - 우리 학교 연구진이 세계 최초로 대사공학적으로 개발된 미생물을 이용하여 바이오매스로부터 가솔린(휘발유)을 생산하는 원천기술을 개발했다. 이 신기술은 나무 찌꺼기, 잡초 등 풍부한 비식용 바이오매스를 이용하여 가솔린, 디젤과 같은 바이오연료, 플라스틱과 같은 기존 석유화학제품을 생산할 수 있어 생명공학 등 관련 산업기술 발전에 크게 기여할 것으로 기대된다. 이번 연구는 미래창조과학부(장관 최문기) 글로벌프론티어사업의 차세대 바이오매스 연구단(양지원 단장)과 기후변화대응 기술개발사업의 지원으로 이상엽 특훈 교수팀이 진행하였으며, 연구결과는 네이처(Nature) 9월 30일(온라인판)에 게재되었다. * 논문명 : Microbial production of short-chain alkanes 연구팀은 세포의 유전자를 조작하여 원하는 형태의 화합물을 대량으로 생산하도록 하는 기술인 대사공학을 이용하여 크래킹(cracking) 없이 세계 최초로 미생물에서 직접 사용가능한 가솔린을 생산하는데 성공했다. * 크래킹 : 끓는점이 높은 중질유를 분해하여 원료유보다 끓는점이 낮은 경질유로 전환하는 방법 가솔린은 탄소수가 4~12개로 이루어진 사슬모양의 탄화수소 화합물로 그 동안 미생물을 이용하여 ‘짧은 사슬길이의 Bio-Alkane(가솔린)’을 생산하는 방법은 개발되지 않았다. 따라서 기존 기술은 추가적인 크래킹(cracking) 과정을 거치지 않고는 가솔린으로 전환할 수 없어 비용과 시간이 많이 소요되는 한계가 있었다. * 2010년 미국에서 사이언스지에 발표한 미생물 이용 Bio-Alkane(배양액 1리터당 약 300mg)의 경우 탄소 사슬 길이가 13~17개인 바이오 디젤에 해당 연구팀은 대사공학기술을 미생물에 적용하여 지방산 합성을 저해하는 요소를 제거하고, 지방산의 길이를 원하는 목적에 맞게 조절할 수 있는 효소를 새롭게 발견하였으며, 개량된 효소를 도입하여 미생물에서 생산하기 어려운 길이가 짧은 길이의 지방산 생산에 성공하였다. 또한 세포내에 생산된 짧은 길이의 지방산 유도체로부터 가솔린을 생산할 수 있는 추가 대사반응과 생물체 내에 존재하지 않는 식물 유래의 신규 효소를 포함하는 합성대사경로를 도입하여 최종 대장균 생산균주를 개발하였다. 이렇게 개발된 대장균을 배양하여 배양액 1리터당 약 580mg의 가솔린을 생산하는데 성공했다. 개발된 기술은 바이오 연료, 생분해성 플라스틱 등과 같은 다양한 바이오 화합물을 생산할 수 있는 플랫폼 기술이 될 수 있을 것으로 전망된다. 또한 이 기술을 활용하면 재생 가능한 바이오매스를 전환하여 바이오 연료, 계면활성제, 윤활유 등으로 이용할 수 있는 알코올(Fatty alcolols) 및 바이오 디젤(Fatty ester)도 생산이 가능하다는 점에서 기존의 석유기반 화학산업을 바이오기반 화학산업으로 대체하는 기반이 될 수 있을 것으로 기대된다.이상엽 교수는 “비록 생산 효율은 아직 매우 낮지만 미생물을 대사공학적으로 개량하여 가솔린을 처음으로 생산하게 되어 매우 의미있는 결과라고 생각하며, 향후 가솔린의 생산성과 수율을 높이는 연구를 계속할 예정”이라고 밝혔다. 그림 1. 대장균을 이용한 바이오 매스로부터 short-chain alkane(가솔린)을 생산하는 대사회로 a) 지방산 분해 회로 차단, b) 바이오 매스로부터 짧은 길이의 지방산을 대량 생산, c) 지방산을 가솔린 생산의 중간체인 fatty acyl-CoA로의 전환 유도, d) fatty acyl-CoA의 가솔린의 직접적인 전구체인 fatty aldehyde로의 전환 유도, e) 최종 가솔린 생산 (보충설명) 미생물의 세포 내부를 들여다보면, 매우 복잡한 지방산 대사회로 네트워크가 존재 한다. 지방산은 세포 내부에서 합성되어, 미생물이 살아가는데 필요한 세포막을 형성하거나, 분해되어 에너지원으로 사용되기도 한다. 대부분의 미생물에서 지방산은 전체 세포의 1%도 되지 않을 만큼 소량 만들어지고, 지방산의 길이 또한 매우 길기 때문에, 이러한 지방산을 이용해서 우리가 원하는 화합물을 대량으로 만들거나, 새로운 화합물을 생산하는 것은 매우 어려웠다. 이를 극복하기 위하여, 이상엽 특훈교수 연구팀은 시스템 대사공학적 기법을 대장균에 도입하여 효소의 개량 및 지방산 합성을 저해하는 요소를 제거하여 짧은 길이의 지방산 과생산에 성공하였고, 생물체내에 존재 하지 않는 신규 회로를 도입하여 지방산을 가솔린으로 전환하는데 성공하였다. 그림 2. short chain alkane을 생산하는 발효 공정 시스템 (보충 설명) 위와 같은 cooling 장치가 연결된 발효기를 통하여 가솔린을 생산함
2013.10.01
조회수 22975
레이저 이용한 초고속 나노물질 생산 공정 개발
- 레이저를 원하는 위치에 쪼여 나노물질 성장 세계 최초 성공 -- “획기적 공정 단축을 통해 나노소자 상용화에 기여할 것” - 우리 학교 기계공학과 여준엽 박사와 고승환 교수 공동연구팀은 집광된 레이저를 이용해 나노물질을 원하는 위치에 초고속으로 만드는 기술을 개발했다. 연구결과는 신소재 응용분야 세계적 학술지 ‘어드밴스드 펑셔널 머티리얼스(Advanced Functional Materials)" 7월 9일자 표지논문(frontispiece)에 실렸다. 이번에 개발된 기술을 활용하면 기존에 수 시간에 걸쳐 만들었던 나노와이어를 단 5분 만에 성장시킬 수 있어 소요시간이 약 1/10로 단축됐다. 또 이미 발표된 수많은 나노물질 합성법과는 달리 공정이 매우 단순해 나노소자 대량생산과 상용화 가능성을 제시한 것으로 학계와 산업계는 평가하고 있다. 기존에 나노물질을 합성 및 성장시키기 위해서는 900~1000°C의 높은 온도에서 폭발성 혹은 독성이 있는 위험한 기체를 사용해왔다. 이를 전자 소자나 전자기기로 응용하기 위해서는 합성 후 분리, 집적, 패터닝 등 복잡한 공정을 거쳐야하는 단점이 있었다. 따라서 다단계의 공정과 고비용, 비환경적인 특성 때문에 나노소자의 대량생산과 상용화에 커다란 걸림돌이 되고 있었다. 연구팀은 기판위에 나노물질 전구체(어떤 물질이 되기 전단계의 물질)를 올려놓은 후 집광된 녹색파장 대역의 연속파형 레이저를 조명해 원하는 위치에 나노와이어를 합성하는데 세계 최초로 성공했다. 이 기술을 이용하면 나노물질의 집적 및 패터닝은 물론 단 한 번의 공정으로 기능성 나노소자 제작이 가능하다. 이와 함께 기판의 종류에 상관없이 공정이 가능해 유연한 플라스틱 기판에도 적용 가능하다. 또 3차원 구조물 위에서도 자유롭게 원하는 위치에 단순 레이저 조명만으로도 나노 물질을 합성, 패터닝 할 수 있다. 여준엽 박사는 이번 연구에 대해 “빛에너지를 이용해 나노물질을 합성, 집적, 패턴, 소자제작을 한 번에 가능케 하는 새로운 공정을 세계 최초로 개발했다”며 “향후 기능성 전자 소자 개발에 드는 시간을 기존의 10분의 1도 채 안되는 수준으로 단축할 수 있다”고 말했다. 여 박사는 향후 다양한 나노물질의 조합을 통해 다기능 전자 소자의 개발의 상용화와 대량생산 공정을 개발할 계획이다. 여준엽 박사와 고승환 교수팀이 주도한 이번 연구는 KAIST 기계공학과 성형진 교수, 홍석준 박사과정, 강현욱 박사과정, 미국 UC Berkeley 그리고로폴로스 교수, 이대호 박사가 참여했으며, 한국연구재단 중견도약사업과 지식경제부 협동사업, 글로벌프런티어사업, KAIST EEWS 연구단의 지원을 받았다. 붙임 : 그림설명 그림1. 레이저 조명을 쪼여 원하는 위치에 합성된 나노 물질 그림2. 개발된 공정을 이용해 3차원 구조물 위에 합성된 나노 물질 그림3. 합성된 나노 물질을 통해 제작된 기능성 전자 소자 그림4. 어드밴스트 펑셔널 머티리얼스 프런티스피스 표지 사진
2013.07.17
조회수 18263
호흡 분석해 질병 진단한다!
- 나노섬유 형상 120ppb급 당뇨병 진단센서 개발 -- 음주 측정하듯 후~ 불면 질병 진단할 수 있어 - 우리 학교 신소재공학과 김일두 교수 연구팀이 인간이 호흡하면서 배출하는 아세톤 가스를 분석해 당뇨병 여부를 파악할 수 있는 날숨진단센서를 개발했다. 연구 결과는 신소재 응용분야 세계적 학술지 ‘어드밴스드 펑셔널 머티리얼스(Advanced Functional Materials)’ 5월 20일자 표지논문으로 게재됐다. 인간이 숨을 쉬면서 내뿜는 아세톤, 톨루엔, 일산화질소 및 암모니아와 같은 휘발성 유기화합물 가스는 각각 당뇨병, 폐암, 천식 및 신장병의 생체표식인자(바이오마커)로 알려져 있다. 당뇨병의 경우 일반적으로 정상인은 900ppb(parts per billion), 당뇨환자는 1800ppb의 아세톤 가스를 날숨으로 내뿜는다. 따라서 날숨 속 아세톤 가스의 농도 차이를 정밀하게 분석하면 당뇨병을 조기에 진단할 수 있고 발병 후 관리를 쉽게 할 수 있다. 연구팀은 얇은 껍질이 겹겹이 둘러싸인 다공성 산화주석(SnO2) 센서소재에 백금 나노입자 촉매가 균일하게 도포된 1차원 나노섬유를 대량 제조하는 기술을 개발했다. 이 소재의 표면에 아세톤 가스가 흡착될 때 전기저항 값이 변화하는 120ppb급 아세톤 농도 검출용 센서에 적용해 날숨진단센서를 개발했다. 개발한 나노섬유 센서는 1000ppb급 아세톤 농도에서 소재의 저항 값이 최대 6배 증가해 당뇨병을 진단할 수 있음이 입증됐다. 이와 함께 7.6초의 매우 빠른 아세톤 센서 반응속도를 나타내 실시간 모니터링이 가능해져 상용화에 대한 기대를 높였으며, 전기방사 기술로 제조해 나노섬유형상을 쉽게 빠르게 대량생산할 수 있는 게 큰 장점이다. 연구팀이 개발한 날숨진단센서는 사람의 호흡가스 속에 포함된 다양한 휘발성 유기화합물의 농도를 정밀하게 분석할 수 있다. 따라서 당뇨병은 물론 향후 폐암, 신장병 등의 질병을 조기에 진단하는데 활용될 수 있을 것으로 기대된다. 김일두 교수는 이번 연구에 대해 “ppb급 농도의 날숨 휘발성 유기화합물 가스를 실시간으로 정밀하게 진단하는 나노섬유 센서를 당뇨병 또는 폐암 진단용 감지소재로 이용하면 다양한 질병을 조기에 검출하고 관리하는 일이 가능해질 것”이라고 말했다. 김 교수는 향후 다양한 촉매와 금속산화물 나노섬유의 조합을 통해 많은 종류의 날숨가스를 동시에 정확하게 진단하는 센서 어레이(array)를 개발해 상용화를 앞당길 계획이다. 미래창조과학부 글로벌프린티어사업 스마트 IT 융합시스템 연구단의 지원을 받은 이번 연구는 KAIST 신소재공학과 신정우 학부생(2월 졸업), 최선진 박사과정 학생, 박종욱 교수, 고려대학교 신소재공학과 이종흔 교수가 참여했다. 그림1. 날숨진단센서 어레이(우측)와 날숨진단센서 크기 비교(좌측 상단) 그림2. 나노섬유 센서들이 어레이로 구성된 당뇨진단 센서 이미지 그림3. 날숨 가스들을 분석하는 질병진단 분석기의 소형화 및 실시간 분석 그림4. 주석산화물 나노섬유를 이용한 당뇨진단 센서 이미지
2013.05.30
조회수 20667
<<
첫번째페이지
<
이전 페이지
1
2
3
4
>
다음 페이지
>>
마지막 페이지 4