-
최인성 교수, 농산물 장기보존 가능한 나노코팅기술 개발
〈 최 인 성 교수 〉
우리 대학 화학과 최인성 교수 연구팀이 친환경 나노코팅 기법을 이용해 과일의 부패 기간을 늦출 수 있는 기술을 개발했다.
이 기술은 식물 기반의 폴리페놀 물질을 이용해 코팅 시료의 종류에 관계없이 사용할 수 있는 범용 스프레이 나노코팅기술이다.
이번 연구결과는 국제학술지 ‘사이언티픽 리포트(Scientific Reports)’ 8월 1일자 온라인 판에 게재됐다.
폴리페놀 물질은 다량의 수산기(-OH)를 갖는 식물의 광합성 대사산물 중 하나로 뛰어난 항산화 작용을 수행하는 식물 기반의 천연물질이다. 잠재적 항암효과와 높은 항균성을 가져 식품 첨가물 등에 사용되고 있다.
폴리페놀은 철 이온과 화학적으로 강하게 결합해 복합체를 형성한다는 특성도 갖는다. 연구팀은 폴리페놀-철이온 복합체의 형성반응과 분사 기술을 접목해 나노코팅기술을 개발했다.
이 스프레이 코팅 기술은 코팅물질을 코팅용액에 담가 코팅하는 침지법에 비해 코팅 시간이 짧고(5초 이내) 원하는 영역에만 선택적 코팅이 가능하다. 또한 침지법에서 발생하는 시료의 변형과 코팅용액의 상호 오염을 막을 수 있다.
연구팀은 개발된 기술을 과일 표면에 적용해 가식성(edible) 항균 코팅으로의 응용이 가능함을 입증했다.
코팅된 귤과 딸기를 각각 28일, 58시간 이후에 상태를 측정했고 코팅되지 않은 과일에 비해 상당수가 모양과 품질을 유지했다.
반면 코딩되지 않은 귤과 딸기는 박테리아 및 곰팡이 균의 번식으로 부패 및 변형이 발생했다.
연구팀은 과일 뿐 아니라 금속표면, 플라스틱, 유리, 섬유시료에도 손쉽게 코팅할 수 있음을 확인했다. 특히 안경알, 신발 밑창 등 생활용품 표면에도 코팅이 가능해 각각 흐림방지, 무좀균 생장을 억제하는 항균 기능도 가능함을 증명했다.
개발된 나노코팅기술은 국내 특허로 등록됐고 현재 과일 신선도 유지 코팅법의 상용화를 진행 중이다.
최 교수는 “나노코팅기술은 큰 잠재력과 응용성을 가진 첨단기술이다”며 “개발된 나노코팅기술은 다양한 목적으로 쉽게 적용가능하고 기존 코팅 기술 및 나노물질과 결합돼 더 큰 시너지를 일으킬 것이다”고 말했다.
이번 연구는 미래창조과학부와 한국연구재단이 추진하는 리더연구자지원사업의 일환으로 수행됐다.
□ 그림 설명
그림1. (a-I, II) 나노코팅된 귤과 코팅되지 않은 귤을 14일, 28일 동안 상온에서 보관하였을 때 비교사진. (b-I, b-II) 나노코팅된 딸기와 코팅되지 않은 딸기를 58시간 동안 상온에서 보관하였을 때 비교사진 및 식품 변질 검사결과
2017.08.10
조회수 16242
-
방효충 교수 연구팀, 지구 저궤도 관측 큐브위성 궤도진입 및 교신 성공
우리 대학 항공우주공학과 방효충 교수 연구팀이 큐브위성 궤도진입 및 첫 교신을 성공적으로 수행했다.
방 교수 연구팀에서 개발한 LINK(Little Intelligent Nanosatellite of KAIST)는 4월 18일에 발사돼 국제우주정거장으로 배송된 바 있다.
궤도진입은 5월 18일 오전 10시에 NRCSD(NanoRacks CubeSat Deployer)를 통해 이뤄졌으며 한국 시각으로 같은 날 23시 5분 첫 교신에 성공했다. 지상국에서 확인한 큐브위성의 상태는 양호하다.
LINK는 벨기에 Von Karman Institute에서 주관하는 QB50 프로젝트의 일환으로 개발됐다.
QB50는 큰 대기항력 때문에 관측이 덜 이루어진 200~400km 구간의 지구 저궤도 대기를 개발비용이 저렴한 큐브위성을 다수 발사해 관측하고자 하는 국제 공동 프로젝트로 전 세계 23개 이상의 국가에서 참여하고 있다.
LINK는 2unit(20x10x10cm3) 크기로 무게가 약 2kg이며 지구관측을 위해 이온-중성자 질량 분광기 및 랑뮈어 탐침을 탑재하고 있다. 랑뮈어 탐침은 우리 대학 물리학과 민경욱 교수 연구팀이 개발했다.
궤도진입을 마친 큐브위성은 초기 한 달 동안 지상국을 통해 시스템 점검을 수행한 뒤 두 달에 걸쳐 저궤도 대기관측 데이터를 수집할 예정이다.
LINK 큐브위성의 개발은 항공우주연구원 '2012년 큐브위성대회'의 지원을 받아 이뤄졌다.
□ 그림 설명
그림1. NRCSD(NanoRacks CubeSat Deployer) 큐브위성 사출 장면
그림2. LINK 비콘신호 수신
2017.05.24
조회수 12161
-
방효충 교수, 지구 저궤도의 관측 위한 큐브위성 발사
우리 대학 항공우주공학과 방효충 교수 연구팀이 지구 저궤도 관측을 위한 초소형 큐브위성을 발사했다.
방 교수 연구팀에서 개발한 큐브위성인 LINK(Little Intelligent Nanosatellite of KAIST)를 포함한 총 28개의 큐브위성이 아틀라스 V(Atlas V) 발사체(NASA CRS-7 미션)에 탑재돼 미 동부시간 4월 18일 오전 11시 11분에 미국 Space Launch Complex 41에서 성공적으로 발사됐다.
큐브위성들은 국제우주정거장에서 보관 후 약 한 달 뒤에 궤도 진입 예정이며 이후 약 3달 동안 과학임무를 수행한다.
LINK는 벨기에의 Von Karman Institute에서 주관하는 QB50 프로젝트의 일환으로 개발됐다.
QB50 프로젝트는 큰 대기항력 때문에 관측이 덜 이뤄진 200~400km 구간의 지구 저궤도 대기를 개발비용이 저렴한 큐브위성을 다수 발사해 관측하는 국제 공동 프로젝트이다. 2012년에 시작된 이 프로젝트는 전 세계 23개 이상의 국가가 참여하고 있다.
LINK는 2유닛(20x10x10㎤) 크기로 무게는 2kg 정도이며 지구 관측을 위해 이온-중성자 질량 분광기 및 랑뮈어 탐침을 탑재했다. 랑뮈어 탐침은 우리 대학 물리학과 민경욱 교수 연구팀이 개발했다.
방 교수는 “QB50 프로젝트는 교육용으로만 쓰이던 큐브위성이 의미있는 과학임무를 수행하기 위한 도구로 도약하는 계기가 될 것이다”며 “다수의 큐브위성을 이용해 저궤도 대기 관측을 한 첫 사례로 의미있는 데이터를 얻을 것으로 기대한다”고 말했다.
또한 “이 노하우를 이용해 앞으로 위성을 추가 개발해 연구 내용을 우주에서 직접 검증할 수 있을 것이다”고 말했다.
현재 큐브위성을 실은 Cygnus 모듈이 궤도에서 대기 중이며 미 동부시간 4월 22일 오전 8시 39분 국제우주정거장과 도킹을 완료했다.
2017.04.24
조회수 14264
-
박현규 교수, DNA 통한 나노 꽃 구조체 제작 기술 개발
〈 박 현 규 교수 〉
우리 대학 생명화학공학과 박현규 교수 연구팀이 가천대학교 김문일 교수와의 공동 연구를 통해 DNA를 이용해 상온에서 꽃 모양의 나노입자를 합성하는 기술을 개발했다.
이 기술은 아민과 아마이드 구조를 포함한 DNA와 구리 이온의 상호작용을 기반으로 개발됐으며, 이를 이용해 환경 친화적 조건에서 DNA를 고농도로 포집한 꽃 모양의 나노 구조체를 합성하는데 성공했다.
생명화학공학과 출신의 박기수 박사(현 건국대 교수)가 제1저자로 참여한 이번 연구는 영국왕립화학회(Royal Society of Chemistry)에서 발간하는 국제 학술지 ‘저널 오브 머티리얼즈 케미스트리 B(Journal of Materials Chemistry B) 2017년 12호 표지논문으로 선정됐다.
나노 꽃(nanoflowers)이라 불리는 꽃 모양의 나노 물질은 표면이 거칠고 넓은 표면적으로 인해 촉매, 전자기술 및 분석 화학을 비롯해 여러 분야에서 주목받고 있다.
최근에는 단백질을 이용한 유, 무기 복합 나노 꽃 제작이 이뤄지고 있으며 이는 일반적인 효소에 비해 높은 활성, 안정성 및 내구성을 지닌다는 것이 증명되고 있다.
그러나 일반적인 단백질 나노 꽃 합성은 고온에서 열수 처리를 통해야만 가능했기 때문에 DNA를 효과적으로 포집하지 못한다는 한계를 갖는다.
연구팀은 문제 해결을 위해 생체 고분자 물질인 핵산이 아마이드 결합 및 아민 그룹을 갖고 있다는 사실에 주목했다. 이를 통해 단백질 기반의 나노 꽃 제작 원리를 바탕으로 핵산을 이용한 유, 무기 복합 나노 꽃 구조물 제작이 상온의 친환경적 조건에서 가능함을 증명했다.
연구팀은 다양한 염기서열의 DNA를 이용해 이 기술을 범용적으로 적용 가능함을 확인했다. 이번에 개발된 DNA 기반 나노 꽃 구조물은 기존 기술에 비해 여러 장점을 갖는다. 유해한 화학물질 없이 친환경 제작이 가능하고 낮은 세포독성을 갖는다.
또한 고효율의 DNA 포집이 가능하고 나노 꽃 내부에 포집된 DNA는 핵산 분해효소에 대해 높은 저항성을 보임을 증명했다.
특히 연구팀은 합성된 나노 꽃 입자의 넓은 표면적이 입자 내부 구리의 과산화효소 활성을 크게 향상시킴을 발견했고, 이를 과산화수소를 검출하는 센싱 분야에도 활용 가능할 것으로 예상하고 있다.
연구팀은 향후 다양한 핵산을 이용해 나노 꽃 입자를 합성하고 이를 유전자 치료 및 바이오센서 개발에 응용할 예정이다.
박 교수는 “이번 연구에서 개발된 DNA를 이용해 상온에서 합성된 나노 꽃 입자는 낮은 세포독성 특성을 띠면서 DNA를 핵산 절단효소로부터 효과적으로 보호하는 특성이 있다”며 “이를 통해 향후 유전자 치료용 전달체 등에 응용 가능하다”고 말했다.
이번 연구는 한국연구재단의 중견연구자지원사업과 글로벌프론티어 지원사업의 일환으로 수행됐다.
□ 그림 설명
그림1. journal of Materials Chemistry B 표지
그림2. 다양한 염기서열 및 길이를 가지는 DNA를 이용한 유, 무기 복합 나노 꽃 구조물의 제작 결과를 나타내는 SEM 사진
그림3. DNA를 이용한 유, 무기 복합 나노 꽃 구조물의 제작 과정을 나타내는 모식도
2017.04.14
조회수 16872
-
박현규 교수 DNA 활성 조절 가능한 스위치 개발
〈 박 현 규 교수 〉
우리 대학 생명화학공학과 박현규 교수 연구팀이 스위치를 켜고 끄듯이 DNA 내부의 핵산중합효소 활성을 조절하는 기술을 개발했다.
이 기술은 수은, 은 등의 금속이온을 스위치로 사용해 DNA 압타머를 조절함으로써 DNA 압타머와 결합돼 있는 핵산중합효소의 활성을 조절하는 원리이다.
이번 연구는 영국왕립화학회가 발행하는 ‘케미컬커뮤니케이션(Chemical communications)’ 4월호에 게재됐고, 중요성을 인정받아 표지 논문으로 선정됐다.
핵산과 금속이온의 상호작용을 이용해 효소 활성을 조절하는 여러 연구들이 수행되고 있다. 하지만 이 연구들은 금속이온에 의해 반응이 진행되고 나면 다시 반응을 되돌릴 수 없어 가역적으로 시스템을 구현해야 하는 분자스위치, 논리게이트 등에 사용이 어렵다는 한계를 갖는다.
핵산중합효소는 핵산의 복제를 돕는 효소로 DNA 압타머와 결합해 있는 상태로는 별다른 역할을 수행할 수 없다. 따라서 특정 외부적 자극을 통해 DNA 압타머를 조절해 핵산중합효소를 활성화시켜야 한다.
연구팀은 문제 해결을 위해 핵산중합효소와 상호작용을 하는 DNA 압타머가 특정 금속이온에 반응하도록 염기서열을 조작했다. 그리고 수은 및 은 등의 금속이온을 도입해 핵산중합효소와 DNA 압타머의 결합을 조절함으로써 중합효소의 활성을 조절 가능하게 만들었다.
연구팀은 이 기술을 기반으로 금속이온에 의해 시스템을 조절할 수 있는 분자 수준의 스위치를 개발했다. 기존 기술의 한계였던 비가역성 문제를 해결해 핵산중합효소의 활성을 가역적으로 조절할 수 있는 것이다.
연구팀은 이를 통해 향후 DNA기반의 분자회로 및 신호전달체계의 원천기술이 될 수 있을 것으로 기대된다고 밝혔다.
박 교수는 “이번 연구에서 개발된 기술은 중합효소 외에 다양한 효소 활성의 가역적 조절에 응용될 수 있다”며 “이를 통해 다양한 분자 스위치의 개발이 가능해질 것으로 기대된다”고 말했다.
이번 연구는 미래창조과학부가 시행하는 글로벌프론티어사업(바이오나노헬스가드연구단)과 중견연구자지원사업(도약연구)의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 압타머와 금속이온의 상호작용에 의하 가역적으로 조절되는 중합효소 활성 모식도
2016.05.03
조회수 9768
-
신용카드 두께 플렉서블 리튬이온 배터리 개발
최장욱 교수
우리 대학 EEWS 대학원 최장욱(40) 교수와 한국표준과학연구원 송재용(44) 박사 공동 연구팀은 신용카드보다 얇고 무선 충전이 가능한 플렉서블 리튬이온 배터리를 개발했다고 밝혔다.
연구 성과는 나노과학분야 학술지 ‘나노 레터스(Nano Letters)’ 3월 6일자 온라인 판에 게재됐다.
이번 연구는 모바일 전자기기, 전기 자동차 등 폭넓은 분야의 전원으로 사용되는 리튬이온 배터리가 플렉서블 전자기기에도 적합한 전원으로 개발됐다는 의의를 갖는다.
기존 리튬이온 배터리는 양극, 분리막, 음극을 샌드위치처럼 층층이 쌓는 적층방식이기 때문에 두께를 줄이기 어려웠다. 또한 층 사이에 발생하는 마찰로 인해 구부리기 어렵고, 전극 필름이 벗겨져 성능 유지에 한계가 있었다.
연구팀은 적층이라는 고정관념에서 벗어나 분리막을 없애고 양극과 음극을 평면으로 동일선상에 배열한 뒤, 양극 간 격벽을 둬 리튬이온 배터리에서 발생할 수 있는 합선, 전압강하 등의 현상을 없애는 데 주력했다.
이후 5천 번 이상의 연속 굽힘 실험을 통해 배터리 성능 유지와 더불어 더 유연한 새로운 개념의 전극 구조가 가능함을 확인했다.
플렉서블 배터리는 통합형 스마트 카드, 미용 및 의료용 패치, 영화 ‘아이언 맨’처럼 목소리와 몸짓으로 컴퓨터에 명령할 수 있는 피부 부착형 센서 등에 적용될 수 있다.
더 나아가 연구팀은 이 배터리에 전자기 유도 및 태양전지를 적용해 무선 충전 기술도 함께 개발하는 데 성공했다.
현재는 이 동일 평면상 배터리 기술을 프린팅 기술과 접목해 대량 생산 공정을 개발 중이며, 궁극적으로 반도체, 배터리 등의 전자제품을 3D 프린터로 생산할 수 있는 새 패러다임을 목표로 하고 있다.
최장욱 교수는 “현재 개발된 기술은 피부 부착형 의료용 패치의 전원 역할을 해 패치 기능의 다양화에 기여할 것”이라고 말했다.
이번 연구는 한국연구재단의 중견연구자사업과 국가과학기술연구회 융합실용화 연구사업의 지원을 받아 수행됐다.
□ 사진설명
사진 1. 약물 전달 패치와 일체화된 플렉서블 이차전지
사진 2. 플렉서블 배터리 구성도
사진 3. 플렉서블 배터리를 이용해 제작한 스마트카드
2015.03.17
조회수 14840
-
오래가는 리튬황 이차전지 개발
- 리튬이온전지 보다 에너지밀도가 5배 이상 높은‘리튬황 전지’개발 -
우리 학교 신소재공학과 김도경 교수는 EEWS 최장욱 교수와 공동으로 현재 상용화중인 리튬이온 배터리의 수명 및 에너지 밀도를 크게 뛰어넘는 리튬황 전지를 개발했다.
연구결과는 나노소재 분야 권위 있는 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 3일자 표지논문(frontispiece)으로 실렸다.
개발된 리튬황 전지는 △단위 무게당 에너지 밀도가 최대 2100Wh/kg로 상용화 중인 리튬이온전지(최대 387Wh/kg)의 5.4배에 달하고 △기존에 개발된 리튬황 전지가 갖는 충·방전에 따른 급격한 용량감소 문제를 해결해 수 백 번 충·방전이 가능하다.
김 교수 연구팀은 나노 전극 재료합성기술을 활용, 두께 75nm(나노미터) 길이 15㎛(마이크로미터)의 황 나노와이어를 수직으로 정렬해 전극 재료를 제작했다.
제작된 황 나노와이어 정렬 구조는 1차원 구조체로 빠른 전자의 이동이 가능해 전극의 전도도를 극대화시켰다.
이와 함께 황 나노와이어 표면에 균일하게 탄소를 코팅함으로써 황과 전해액의 직접적인 접촉을 막아 충·방전 중 황이 녹아나는 것을 방지, 리튬황 전지가 갖는 수명저하 문제를 해결했다.
기존에 개발된 리튬황 전지용 전극은 초기에 높은 용량을 보임에도 불구하고 충·방전을 반복함에 따라 지속적인 용량감소를 보였다.그러나 개발된 전극은 빠른 방전속도(3분마다 1회 충·방전 조건)에서 300회의 충·방전 후에도 초기 용량의 99.2%를 유지했고 1000회의 충·방전 후에도 70%이상 용량을 나타냈다.
따라서 이차전지에서 가장 중요한 특성인 수명, 에너지 밀도 등에서 기존의 어떠한 전극보다 성능이 우수한 세계 최고 수준으로 평가받고 있다.
김도경 교수는 “개발된 리튬황 전지는 무인기, 전기자동차 및 재생에너지 저장장치 등에 필요한 차세대 고성능 이차전지의 실현을 앞당길 수 있는 기술”이라며 “대표적인 차세대 이차전지인 리튬황 전지의 오랜 난제인 수명저하의 해결방안을 찾아 세계 최고 수준의 성능을 구현해 내 이 분야에서 우리나라가 기술 우위를 선점할 수 있을 것으로 기대된다”고 연구 의의를 밝혔다.
한편, 연구팀은 관련 기술에 대해 국내 특허 1편과 PCT 국제 특허 1편의 출원을 완료했다.
□ 그림설명
그림1. 개발된 리튬황 전지수명특성 그래프, 300회의 충·방전 시에도 초기 용량의 99.2%의 성능을 낸다.(좌측) 1000회 충·방전에도 높은 성능을 유지한다.(우측)
그림2. 탄소 코팅된 황 나노 와이어 정렬 구조(좌측상단 1, 2 프레임), 단일 황 나노와이어(좌측 하단), 황 나노 와이어 정렬 구조 모식도(우측)
2013.12.03
조회수 15636
-
힘세고 오래가는 리튬이온 배터리 개발
최장욱 교수
- 출력 향상으로 전기자동차 가속성능 획기적 향상 기대 -- 결정면 제어해 출력은 5배 이상, 수명은 3배, 고온 수명은 10배 이상 향상 -
나노기술을 이용해 고출력은 물론 수명이 훨씬 길어진 리튬이온 이차전지가 개발됐다.
우리 학교 EEWS 대학원 최장욱 교수 연구팀이 기존의 리튬이온 이차전지보다 출력은 5배 이상 높으면서도 수명은 3배 이상 길어진 리튬이온 이차전지 양극소재를 개발하는 데 성공했다.
그동안 배터리 성능이 모터의 출력을 따라가지 못해 내연기관 보다 가속 시 굼뜨는 단점이 있었던 기존 전기자동차에 이 배터리를 적용할 경우 가속성능이 획기적으로 개선될 것으로 관련업계는 기대하고 있다.
이와 함께, 차세대 지능형 전력망인 스마트 그리드와 전동 공구 등 고출력 배터리를 필요로 하는 분야에도 다양하게 활용될 수 있을 것으로 전망된다.
현재 가장 널리 상용화된 리튬이온 이차전지용 리튬-코발트계 양극소재는 비싼 가격, 강한 독성, 짧은 수명, 긴 충·방전 시간 등의 단점이 있다. 또 충·방전 시 발생하는 열에 취약, 대용량 전류밀도를 요구하는 전기자동차엔 적용이 어려웠다.
반면, 최장욱 교수 연구팀이 이번에 연구한 리튬-망간계 양극소재는 풍부한 원료, 저렴한 가격, 친환경성 등과 같은 장점을 갖고 있으며, 특히 고온 안정성이 뛰어나고, 높은 출력을 낼 수 있기 때문에 전기자동차용 전극 소재로 각광을 받고 있다.
순수 리튬망간계 양극소재는 수명이 평균 1~2년 정도에 불과할 정도로 매우 짧은 단점이 지적돼 왔다. 이는 망간이 전해액으로 녹아나오는 용출 현상에 기인하며, 이를 해결하기 위해 다양한 연구가 진행돼 왔지만 소재의 고유 결정구조로 인해 난제로 남아 있었다.
최 교수 연구팀은 망간산화물이 만들어지기 직전 나노소재를 합성하는 단계에서 반응온도를 조절해 결정면의 구조를 분석한 결과 220℃에서 망간이온의 용출이 억제되는 결정면과 리튬이온 이동을 원활하게 하는 면이 동시에 존재한다는 것을 발견했다.
각각의 결정면은 수명과 출력을 동시에 좋게 해 출력은 5배 이상 향상되면서 수명은 3배 이상 높아졌다. 게다가 기존에 가장 취약하다고 알려진 고온 수명 특성은 10배 이상 좋아지는 것을 확인했다.
최장욱 교수는 “배터리에 10 마이크로미터 수준의 덩어리 입자로 존재했던 리튬망간계 양극소재를 수백 나노 수준에서 결정면을 제어함으로써 출력과 수명을 모두 획기적으로 개선했다”며 “관련 기술에 대해 국내외 특허 출원을 완료했으며, 앞으로 기업과 연계해 2~3년 내 상용화할 계획”이라고 밝혔다.
이차전지의 세계적인 석학인 스탠포드 대학 추이 교수는 “이번 연구는 나노기술이 이차전지 분야를 획기적으로 발전시킬 수 있는 단적인 예를 보여준 사례”라고 평가했다.
한편, 최장욱 교수가 주도하고 김주성 연구원이 참여한 이번 연구 성과는 나노과학분야 세계적 권위지 ‘나노 레터스(Nano letters’)지 온라인판(11월 27일자)에 발표됐다.
그림1. 잘린 면을 갖는 스피넬 리튬망간산화물의 주사전자현미경 사진(좌)과 이 구조가 다른 구조에 비해 다른 구조와 비교 시 더 우수한 출력 특성을 보여 주는 배터리 데이터(우). 초록색이 잘린 면을 갖는 구조의 데이터이다.
그림2. 결정면 제어를 한 스피넬 리튬망간산화물의 개략도. 파란색 면 방향은 수명특성에 기여하며, 분홍색의 면은 출력 특성에 기여하도록 결정면이 디자인됐다.
2012.11.27
조회수 15128
-
자연계 초고속 현상을 측정할 수 있는 ‘아토과학’ 시대를 열다
- Physical Review Letters지 발표, 원자 의 초고속 시간 변화 측정 및 복원 성공 -
국내 연구진이 아토초 펄스*를 이용해 시간적으로 매우 빠르게 변화하는 헬륨 원자의 상태를 정확히 측정하는데 성공하여, 자연계의 다양한 초고속 현상을 정확히 측정할 수 있는 ‘아토과학’의 시대를 열었다.
※아토초 펄스 : 1 아토초는 10-18초이고, 펄스(pulse)는 맥박처럼 짧은 시간에 생기는 진동현상을 말함. 아토초는 다음의 비율에서 그 짧은 정도를 가늠할 수 있음. 우주나이 : 1 초 = 1 초 : 1 아토초
우리 학교 남창희 교수(55세)가 주도하고 김경택 박사와 금오공대 최낙렬 교수 등이 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 이승종)이 추진하는 중견연구자지원사업(도약연구)의 지원으로 수행되었고, 연구결과는 물리학 분야의 권위 있는 학술지인 ‘Physical Review Letters"지 3월호(108권, 3월 2일자)에 게재되었다. (논문명: Amplitude and Phase Reconstruction of Electron Wave Packets for Probing Ultrafast Photoionization Dynamics)
남창희 교수 연구팀은 아토초 펄스를 이용해 초고속 광이온화*를 계측하는데 성공하였다.
※ 광이온화 : 아토초 영역에서 레이저나 연엑스선(의료용 엑스선보다는 약간 파장이 긴 엑스선)을 광원으로 원자를 이온화한 것.
남 교수팀은 아토초 엑스선 펄스와 펨토초(10-15초) 레이저 펄스를 이용해 헬륨 원자를 광이온화하고, 이 때 발생한 전자의 파속을 측정하여 초고속 광이온화 과정을 명쾌하게 규명하였다.
아토초 펄스를 이용한 원자의 초고속 광이온화 계측은 연구팀이 자체 개발한 고출력 펨토초 레이저와 고성능 광전자 계측장비에 의해 수행된 순수 국내 연구진의 결실이다. 연구팀은 지난 2010년에 고차조화파*를 이용해 세계에서 가장 짧은 60아토초 펄스를 생성한 바 있다.
※ 고차조화파 : 강한 펨토초 레이저를 기체원자에 집속하여 발생된 연엑스선 영역에서 레이저의 특성을 닮은, 매우 짧은 펄스폭을 가지는 우수한 연엑스선 광원
연구팀은 고출력 펨토초 레이저를 이용해 아르곤 기체에서 아토초 고차조화파 펄스를 생성하고, 이를 이용해 헬륨 원자를 광이온화시켜 원자에서 발생하는 초고속 광이온화 현상을 계측하였다. 남창희 교수는 “이번 연구는 아토초 펄스를 이용해 시간적으로 매우 빠르게 변화하는 헬륨 원자의 상태를 정확히 측정한 것으로, 향후 이번 연구결과를 바탕으로 원자와 분자 내부에서 일어나는 초고속 현상을 계측하고 이를 이용해 원자와 분자의 상태를 조절하는 연구를 진행하는 등 자연계의 초고속 현상을 정확히 측정하는데 기여할 계획”이라고 밝혔다.
2012.03.01
조회수 12422
-
홍합모방 리튬이차전지용 분리막의 출력 특성 향상
- 재료분야 저명 국제학술지 ‘어드밴스드 머티어리얼스 (Advanced Materials)’ 인터넷판 (5월25일)에 게재
- 출력 특성 증가해 차세대 자동차용 리튬이온전지용 분리막 개발의 핵심 기술이 될 것
우리학교 EEWS 대학원의 최장욱, 박정기 교수 공동 연구팀은 유명현 박사 과정 연구원과 더불어 홍합의 족사를 모방한 고분자를 소재로 한 출력 특성 향상을 위한 분리막 코팅 기술을 개발했다.
이 연구 결과는 재료 분야 저명 국제 학술지인 어드밴스드 머티리얼스(Advanced Materials)지에 25일 인터넷판으로 게재되었다.
리튬이차전지는 현재 대부분의 휴대용 전자기기의 에너지원으로 사용되고 있으며, 전기자동차(EV)를 필두로 한 차세대 운송수단으로의 에너지원, 더 나아가 신재생 에너지를 저장하는 전력저장 수단으로 주목 받고 있다. 이에 따라 리튬이차전지는 지금보다 더 높은 에너지 밀도와 출력 특성이 절실히 요구되고 있다.
전지의 구성요소인 분리막은 음극 및 양극 사이에 위치하여 두 전극간의 기계적 접촉을 방지할 뿐만 아니라, 리튬이온이 이동할 수 있는 통로의 역할을 수행한다. 지금까지의 리튬이차전지에서는 폴리에틸렌 중심의 폴리올레핀 계열의 다공성 분리막이 사용되어 왔지만, 이들 분리막은 현재 사용중인 전해질과 표면 친화성이 떨어져, 전해질과의 젖음 특성 및 함침 특성의 저하를 초래하였다. 이러한 분리막의 특성은 막 내의 이온이동능력 저하시켜 전지의 출력 특성을 감소시키는 큰 원인이 되어왔다. 출력 특성은 전기자동차의 경우, 가속력과 직결되는 것이다.
이에 연구팀은 홍합의 족사를 모방하여 제조한 고분자를 분리막에 코팅함으로써, 리튬 이차전지의 출력특성을 획기적으로 개선하였다. 홍합은 파도에 쓸려가지 않고 바위나 선박 등에 달라붙어 있기 위해 매우 강한 접착력을 가진 접착물(족사)를 분비하는데, 주로 엠이에프피-5(Mefp-5)라는 특정 단백질로 구성되어 있다. 이번 연구에서는 홍합 족사의 해당 단백질을 모방하여 제조한 폴리도파민이라는 고분자가 핵심적인 역할을 했다. 폴리도파민 고분자 코팅은 분리막의 표면에 매우 효과적으로 친수성을 부여하기 때문에 전해질 함침양을 기존 분리막 대비 30% 정도 증가시킬 수 있었다.
그 결과 폴리도파민으로 표면을 처리한 분리막이 도입된 전지의 출력 특성은 기존의 분리막과 대비하여 방전 조건에 따라 최대 2배 정도까지의 향상을 보였다. 또한 홍합의 단백질과 마찬가지로 매우 강한 접착력을 보유하기 때문에 분리막의 표면으로부터 쉽게 떨어지지 않아, 코팅 이후에도 매우 우수한 기계적 물성을 유지할 수 있다는 것이 기존의 연구와 구별된다. 특히, 처리 과정이 쉽고 환경친화적이어서 바로 산업계의 공정에 적용될 수 있을 것으로 기대된다. 이번 연구는 EEWS Flagship 프로그램의 지원을 받아 수행되었다.
2011.05.31
조회수 17045
-
금속이온 감지 고감도 센서 개발 길 열어
- 카본 나이트라이드에 3차원 입방체형태의 나노구조 유도- 화학분야 세계적 학술지 ‘앙게반테 케미誌’ 12월호 게재
우리학교 생명화학공학과 홍원희 교수팀이 나노구조를 갖는 카본 나이트라이드를 이용해 다른 물질의 도움 없이 금속이온을 손쉽게 감지할 수 있는 고감도 센서 개발을 위한 원천기술을 확보했다고 27일 밝혔다.
금속이온을 측정하기 위해서는 원자 흡수 분광도법과 유도결합 플라즈마 질량분석기를 이용하는 방법 등이 있다. 이들은 거대한 장비를 이용해야 하기 때문에 휴대성이 떨어진다.
이 휴대성 문제를 해결하기 위해 많은 연구들이 진행되고 있는 데, 대부분 양자점(quantum dot)을 이용하거나 형광단(fluorophore)을 이용하는 센서로 금속이온 감지를 위해 복잡한 접합과정을 거쳐야 한다. 또한, 양자점은 그 자체가 중금속으로 이루어져 있어 독성이 있으며, 형광단을 이용한 센서는 수용액에서의 용해도가 낮아 적용하는 데 한계가 있다.
연구팀은 고유의 발광성을 가지는 카본 나이트라이드(graphitic carbon nitride)에 3차원 입방체 형태의 나노구조를 유도해 본연의 광학적 성질을 조절함으로써 독성이 없고 별도의 접합이 필요 없는 효율적인 센서를 개발했다.
특히, 이 센서는 기존의 휴대용 센서를 목적으로 개발된 물질보다 감도가 10배 이상 뛰어나, 장비 휴대가 불가능한 원자 흡수 분광도법과 유도결합 플라즈마 질량분석기를 이용하는 방법과 유사한 감도를 나타낸다.
이번 연구성과를 기반으로 나노구조를 가지는 카본 나이트라이드를 이용해 폐수에 존재하는 금속 이온의 초고감도 감지도 가능하게 됨으로써, 주변 환경이 금속 이온에 의해 얼마나 노출되어 있는지 혹은 오염되어 있는지를 손쉽게 알 수 있다.
또한, 카본 나이트라이드의 생체 적합성을 이용해 몸속의 혈액 내에 존재하는 금속 이온의 농도까지 쉽고 간단하게 감지 가능한 센서를 구현할 수 있으며, 나노 크기의 카본 나이트라이드 입자를 이용해 체내의 질병치료를 위한 약물 전달 시스템에 적용하고자 약물 전달체로의 활용이 가능할 것으로 기대된다.
홍원희 교수는 “이번 연구는 카본 나이트라이드 관련 연구가 한 걸음 더 나아가 나노구조 유도를 통한 다양한 성질을 복합적으로 이용해 이온 또는 생체 분자 등 여러 가지 물질을 감지하는 센서로 널리 활용될 수 있는 원천기술이다”라고 말했다.
한편, 이번 연구는 교육과학기술부에서 시행하는 미래기반기술개발사업의 지원을 받아 수행됐으며, 연구의 중요성을 인정받아 화학 분야의 세계적 학술지인 ‘앙게반테 케미(Angewandte Chemie International Edition)’지 12월호에 게재됐다.
2011.01.27
조회수 17169
-
핵산중합효소의 비정상적인 활성 유도 규명
- 금속이온의 고감도 검출 및 새로운 유전자 분석기술로 적용 가능- 화학분야 세계적 학술지 ‘앙게반테 케미誌’12월호 표지논문 선정
우리학교 생명화학공학과 박현규 교수가 핵산중합효소의 비정상적인 활성을 금속이온을 통해 조절하고 이를 이용해 바이오 컴퓨터를 포함하는 미래 바이오 전자 분야의 핵심기술인 로직 게이트를 구현하는 기술을 개발했다고 23일 밝혔다.
DNA를 새롭게 생성해 증폭시키는 효소인 핵산중합효소는 증폭 대상인 목적 DNA와 프라이머(primer)의 염기쌍이 서로 상보적인 짝(A와 T, C와 G)을 이룰 경우에만 가능하다고 알려져 왔었다.
박 교수는 이러한 기존의 개념을 뛰어넘어 특정 금속이 있을 경우에는 상보적인 염기쌍이 아닌 T-T 및 C-C 염기쌍으로부터도 핵산중합효소의 활성을 유도해 핵산을 증폭할 수 있다는 사실을 규명해냈다.
이는 수은 및 은 이온과의 결합을 통해 안정화 된 비 상보적인 T-T와 C-C 염기쌍을 상보적인 염기쌍으로 인식하는 핵산중합효소의 착각 현상에 기인한 것으로, 박 교수는 이를 ‘중합효소 활성 착오(Illusionary polymerase activity)’로 묘사했다.
연구팀은 이 현상을 기반으로 바이오 컴퓨터 등 초고성능 메모리를 가능하게 하는 미래 바이오전자 구현을 위한 핵심기술인 로직게이트를 구현했다.
박현규 교수는 “이번 연구는 기존에 연구되어온 금속 이온과 핵산의 상호작용연구에서 한 걸음 더 나아가 이를 효소활성 유도와 연관시킨 최초의 시도로써, 금속이온의 초고감도 검출 및 새로운 단일염기다형성(single nucleotide polymorphism) 유전자 분석 기술로 적용될 수 있다”고 말했다.
특히, “기존 핵산 기반 기술들과 비교해 비용이 저렴하고 간단한 시스템 디자인을 통해 정확한 로직 게이트 구현이 가능함으로써 분자 수준의 전자소자 연구에 큰 진보를 가져왔다”고 덧붙였다.
한편, 이번 연구는 한국연구재단(이사장 박찬모)이 시행하는 ‘중견연구자지원사업(도약연구)’의 지원을 받아 수행됐으며, 연구의 중요성을 인정받아 화학 분야의 세계적인 학술지인 ‘앙게반테 케미(Angewandte Chemie International Edition)’ 12월호(12월 10일자) 표지논문으로 선정됐다.
2010.12.23
조회수 14460