본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%A4%91%EA%B2%AC%EC%97%B0%EA%B5%AC%EC%9E%90
최신순
조회순
김신현 교수, 풍뎅이 외피 본뜬 머리카락 굵기 레이저 공진기 개발
〈 이상석 박사과정, 김신현 교수, 김종빈 박사과정 〉 우리 대학 생명화학공학과 김신현 교수 연구팀이 한국화학연구원 김윤호 박사와의 공동 연구를 통해 머리카락 굵기 수준의 캡슐형 레이저 공진기를 개발했다. 연구팀의 캡슐형 레이저 공진기는 크리슈나 글로리오사 풍뎅이(Chrysina gloriosa, 이하 글로리오사 풍뎅이)의 외피와 동일한 구조를 미세 캡슐에 탑재한 기술로 치료용 레이저 등 광범위한 분야에 적용 가능할 것으로 기대된다. 이상석 박사과정이 1저자로 참여한 이번 연구 결과는 사이언스 자매지 ‘사이언스 어드밴시스(Science Advances)’ 6월 22일자 온라인 판에 게재됐다. (논문명 : Wavelength-tunable and shape-reconfigurable photonic capsule resonators containing cholesteric liquid crystals , 파장 가변성과 모양 재구성성을 갖는 콜레스테릭 액정 기반의 캡슐형 레이저 공진기) 글로리오사 풍뎅이는 좌측으로 원편광된 빛을 비추면 나뭇잎과 비슷한 초록색을 띠고, 우측으로 원편광된 빛을 비추면 아무 색도 보이지 않는다. 이러한 독특한 광학 특성은 포식자들을 피해 글로리오사 풍뎅이 간의 통신 수단으로 활용된다고 알려져 있다. 글로리오사 풍뎅이가 편광 방향에 따라 다른 색을 보이는 이유는 외피에 왼쪽 방향으로 휘감아 도는 나선구조가 존재하기 때문이다. 이러한 나선구조는 동일한 방향의 원편광 빛만을 선택적으로 반사해 반사색을 보인다. 글로리오사 풍뎅이가 가진 나선구조를 활용하면 인공적으로 액정을 구현하는 것이 가능하다. 이러한 액정 나선구조는 글로리오사 풍뎅이의 외피처럼 편광 방향에 따른 반사 특성을 보이며 특정 파장의 빛을 제어할 수 있기 때문에 보통의 레이저와 달리 거울 없이도 레이저 공진기를 구현할 수 있다. 이러한 액정을 활용한 레이저 공진기는 필름 형태로 구현되곤 했는데 필름 형태의 공진기는 레이저의 발광 방향이 고정돼 있고 크기가 커 미세한 부분에 사용하기에는 한계가 있었다. 연구팀은 액정 레이저 공진기를 머리카락 크기 수준의 캡슐 내부에 제작해 목표 지점에 주사하거나 이식할 수 있는 새로운 형태의 레이저 공진기를 개발했다. 캡슐형 레이저 공진기는 삼중 구조로 구성된다. 코어의 액정 분자와 발광 분자의 혼합물을 액체 상태의 배향층과 고체 상태의 탄성층이 겹으로 감싸는 형태이다. 배향층은 코어의 액정 분자가 높은 배향 수준을 갖게 하는 역할을 통해 레이저 공진기의 성능을 향상시키고, 탄성층은 캡슐의 기계적 안정성을 높인다. 연구팀은 미세유체기술을 이용해 복잡한 삼중 구조를 제어된 방식으로 설계했다. 캡슐형 레이저 공진기는 공기 중에서도 안정적으로 구형을 유지하며 레이저 발광이 캡슐 표면을 따라 수직 발생해 3차원의 전방향(omnidirectional) 레이저 발광이 가능하다. 또한 캡슐형 공진기를 기계적으로 변형시켜 발광 방향과 레이저의 세기를 조절할 수 있고 온도 조절을 통해 액정의 나선구조 간격을 변화시키면 레이저 발광의 파장도 조절이 가능하다. 김 교수는 “개발한 새로운 형태의 캡슐형 레이저는 작은 크기와 높은 기계적 안정성을 가져 주사 및 이식이 가능하며 국부적인 영역에만 조사할 수 있는 치료용 레이저로 사용 가능하다”며 “자연에 존재하는 C.글로리오사 풍뎅이의 외피 구조를 모방해 발전시킨 것으로 인간은 자연에서부터 배우고 공학적으로 창조하게 됨을 증명한 연구이다”고 말했다. 이번 연구는 한국연구재단의 중견연구자지원사업과 X-project 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 좌원편광 빛과 우원편광 빛에 노출된 C. gloriosa 풍뎅이의 사진 그림2. 캡슐형 레이저 공진기의 구성 (좌) 및 광학 현미경 사진 (우)
2018.07.03
조회수 10226
서민호 박사, 윤준보 교수, 완벽 정렬된 나노와이어 옮기는 기술 개발
〈 서 민 호 박사, 윤 준 보 교수 〉 우리 대학 전기및전자공학부 서민호 박사, 윤준보 교수 연구팀이 완벽하게 정렬된 나노와이어 다발을 대면적의 유연 기판에 옮기는 데 성공했다. 이 나노와이어 전사(transfer) 기술은 기존 화학 반응 기반의 나노와이어 제작 기술이 갖고 있던 낮은 응용성과 생산성을 높였다는 의의를 갖는다. 서민호 박사가 1저자로 참여한 이번 연구는 나노 과학 및 공학 분야 국제 학술지 ‘에이씨에스 나노(ACS Nano)’ 5월 24일자에 게재됐다. (논문명 : Material-Independent Nano-Transfer onto a Flexible Substrate Using Mechanical-Interlocking Structure, 기계식 연동 구조를 활용하는 재료 선택폭 넓은 나노와이어 전사 방법) 대표적 나노 물질인 나노와이어는 작고 가볍다는 구조적 장점과 우수한 물리적, 화학적 특성 덕분에 소형 및 유연 전자 소자에 사용될 수 있다. 기존 나노와이어 전자 소자 제작은 화학적 합성법으로 제조된 나노와이어를 용액에 섞어 유연 기판에 무작위로 뿌리는 방식을 활용했다. 이로 인해 같은 방법을 사용해도 제작된 전자 소자들의 특성이 매우 다르다는 불균일성 문제가 있었다. 이러한 문제 때문에 화학적 표면 처리를 이용한 나노와이어 전사 공정이 개발돼 유연 기판 위 정렬된 나노와이어를 균일하게 제작하는 방법이 개발되기도 했다. 그러나 이 기술은 화학적인 접촉력의 조절이 가능한 일부 나노와이어만 제작 가능하기 때문에 사용 범위가 극히 제한적이다. 연구팀은 문제 해결을 위해 기계식 접촉력 조절 원리를 활용하는 새로운 나노와이어 전사 기술을 개발했다. 이 기술은 전사의 모체(master mold)가 되는 나노그레이팅 기판(nanograting substrate)에 나노희생 층(nanosacrificial layer)과 나노와이어를 순차적으로 형성한 후, 나노희생 층을 건식 식각 공정을 통해 구조적으로 약하게 만든다. 나노희생 층은 나노와이어와 모체를 매우 약하게 연결하고 있기 때문에 이후 유연 기판이 되는 재료를 이용하면 마치 테이프를 이용해 바닥의 먼지를 떼어내듯 나노와이어를 쉽게 모체에서 유연 기판으로 옮길 수 있다.이 기술은 일반적인 물리적 증착법을 기반으로 제작되고 재료 의존성이 낮기 때문에 손쉽게 나노와이어를 유연 기판에 제작할 수 있다. 연구팀은 개발한 기술을 이용해 금, 백금, 구리 등 다양한 금속 나노와이어와 결정화된 금속 산화물을 유연 기판 위에 완벽하게 정렬해 제작했다. 또한 이를 유연 히터와 가스 센서 소자에 응용함으로써 실제 생활에 사용될 수 있는 안정적인 응용 소자를 구현할 수 있음을 증명했다. 서민호 박사는 “우수한 물성의 다양한 금속, 반도체 나노와이어를 웨이퍼 수준으로 완벽 정렬해 유연 기판에 옮기고 이를 소자 제작에 응용했다”며 “다양한 나노와이어 재료의 유연 기판 위 제작을 위한 플랫폼 기술로 고성능 유연 전자 소자의 안정적 개발에 기여할 것이다”고 말했다. 이번 연구는 한국연구재단의 중견연구자지원사업, 나노종합기술원 오픈 이노베이션 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 연구팀의 기술로 제작된 금 단면
2018.05.29
조회수 10428
이해신 교수, 와인성분 통해 심장에 정맥주사로 약물 전달 기술 개발
〈 이 해 신 교수 〉 우리 대학 화학과 이해신 교수 연구팀이 와인의 떫은맛을 내는 성분인 탄닌산(tannic acid)을 이용해 간단한 정맥주사만으로도 약물을 심장 조직에 전달할 수 있는 기술을 개발했다. 연구팀은 탄닌산을 단백질, 펩타이드 등의 약물과 혼합시켜 입자화 하는 방법을 통해 심장조직을 표적할 수 있음을 규명했다. 연구팀의 심장 질환의 효율적 치료를 위한 표적화 약물전달 기술은 단백질 기반의 다양한 신약에 적용 가능할 것으로 기대된다. 안전성평가연구소의 예측모델 연구센터 김기석 박사 연구팀과 공동으로 수행된 이번 연구는 네이처 자매지 ‘네이처 바이오메디컬 엔지니어링(Nature Biomedical Engineering)’ 4월 30일자 온라인 판에 게재됐다. 심장은 인체 내 가장 중요한 기관으로 분당 60~100회의 박동을 하는 동안 약 5리터의 혈액을 뇌를 포함한 전신에 공급하는 역할을 한다. 심장은 심근이라는 근육을 이용해 끊임없이 박동하는 운동성이 높은 기관이다. 심장 및 관련 혈관 질병을 심혈관계-순환계 질환이라고 하는데 이는 우리나라 사망 원인 2위를 차지한다. 고혈압, 당뇨, 고지혈증, 흡연, 비만 등 현대인의 불규칙한 식습관 및 생활습관으로 인해 나타날 수 있다. 대표적으로 심장으로 가는 관상동맥이나 미세한 혈류들이 좁아져 산소 및 영양분 공급이 원활하지 못해 발생하는 심근경색이 있다. 많은 연구자들이 심혈관계 질환 극복을 위한 화학약물요법이나 치료용 단백질 등을 개발하고 있다. 그러나 여전히 직접적인 수술, 카테터 및 스텐트 삽입 등에 의존하고 있으며 일반 정맥주사로 개발된 약물을 심장에 효율적으로 전달하는 기술은 개발되지 않았다. 심장의 강한 운동성으로 인해 정맥으로 주사된 약물이 순환하는 동안 심장으로의 전달 효율이 급격하게 저하되기 때문이다. 문제 해결을 위해 연구팀은 과일 껍질, 견과류, 카카오, 와인 등에 다량으로 존재하는 탄닌산이라는 물질을 이용했다. 탄닌산은 와인의 떫은맛을 내는 폴리페놀 분자의 일종으로 혀에 존재하는 점막 단백질과 결합해 떫은맛을 낸다고 알려져 있다. 연구팀은 탄닌산과 단백질 사이의 강한 분자 간 결합력을 이용해 치료용 단백질, 유전자 전달체인 바이러스 또는 기능성 펩타이드 약물 등을 간단하게 섞어주는 방법으로 입자화에 성공했다. 그리고 이를 주사했을 때 심장을 표적화할 수 있다는 사실을 발견했다. 탄닌산을 이용한 단백질 입자화 기술의 원리는 일종의 ‘분자 수준에서의 코팅’ 기술이다. 입자화된 단백질 복합체 표면에 코팅된 탄닌산이 심장의 기능을 유지하기 위해 밀집돼 있는 엘라스틴 및 콜라겐 단백질과 부가적으로 강한 상호작용을 하며 심장 조직에 부착된 상태로 오랜 시간 머무는 심장 표적화 기술이다. 이러한 탄닌산-단백질 복합체는 단백질만을 주사했을 때와 비교하면 5일 이상 장기적으로 혈관 내에서 순환됨을 확인했다. 이 교수 연구팀은 예전부터 탄닌산을 비롯한 접착성, 코팅성을 갖는 다양한 폴리페놀 재료를 응용해 의료용 생체 재료를 개발해 왔다. 실제로 심근경색 동물 모델에 탄닌산과 섬유아세포 증식인자를 섞어서 만든 약품을 주입하고 4주가 지난 뒤 심근경색이 일어난 크기가 감소했을 뿐 아니라 좌심실 압력 및 심박출량 등이 정상에 가깝게 호전되는 것을 확인했다. 이해신 교수는 “지금까지 심장질환 관련한 많은 약물들이 개발됐음에도 불구하고 상대적으로 약물을 심장에 효율적으로 전달하는 방법은 개발되지 않았다”며 “이번 기술은 기존 약물들을 새롭게 공식화해 개량신약으로 만들 수 있는 원천기술이다”고 말했다. 이번 연구는 연구재단 중견연구자 도약연구, 보건복지부 암정복프로그램, 산업통상자원부의 바이오산업핵심기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 탄닌산으로 제조한 단백질 복합체가 심장 조직에 전달되는 모식도 그림2. 바이러스 유전자 발현 효율 및 치료기능성을 보여주는 연구결과
2018.05.16
조회수 16649
예종철 교수, 인공지능 블랙박스의 원리 밝혀
〈 예종철 교수, 한요섭 연구원, 차은주 연구원 〉 우리 대학 바이오및뇌공학과 예종철 석좌교수 연구팀이 인공지능의 기하학적인 구조를 규명하고 이를 통해 의료영상 및 정밀분야에 활용 가능한 고성능 인공신경망 제작의 수학적인 원리를 밝혔다. 연구팀의 ‘심층 합성곱 프레임렛(Deep Convolutional Framelets)’이라는 새로운 조화분석학적 기술은 인공지능의 블랙박스로 알려진 심층 신경망의 수학적 원리를 밝혀 기존 심층 신경망 구조의 단점을 보완하고 이를 다양하게 응용 가능할 것으로 기대된다. 예종철 석좌교수가 주도하고 한요섭, 차은주 박사과정이 참여한 이번 연구는 응용수학 분야 국제 학술지 ‘사이암 저널 온 이매징 사이언스(SIAM Journal on Imaging Sciences)’ 4월 26일자 온라인 판에 게재됐다. 심층신경망은 최근 폭발적으로 성장하는 인공지능의 핵심을 이루는 딥 러닝의 대표적인 구현 방법이다. 이를 이용한 영상, 음성 인식 및 영상처리 기법, 바둑, 체스 등은 이미 사람의 능력을 뛰어넘고 있으며 현재 4차 산업혁명의 핵심기술로 알려져 있다. 그러나 이러한 심층신경망은 그 뛰어난 성능에도 불구하고 정확한 동작원리가 밝혀지지 않아 예상하지 못한 결과가 나오거나 오류가 발생하는 문제가 있다. 이로 인해 ‘설명 가능한 인공지능(explainable AI: XAI)’에 대한 사회적, 기술적 요구가 커지고 있다. 연구팀은 심층신경망의 구조가 얻어지는 고차원 공간에서의 기하학적 구조를 찾기 위해 노력했다. 그 결과 기존의 신호처리 분야에서 집중 연구된 고차원 구조인 행켈구조 행렬(Hankel matrix)을 기저함수로 분해하는 과정에서 심층신경망 구조가 나오는 것을 발견했다. 행켈 행렬이 분해되는 과정에서 기저함수는 국지기저함수(local basis)와 광역기저함수(non-local basis)로 나눠진다. 연구팀은 광역기저함수와 국지기저함수가 각각 인공지능의 풀링(pooling)과 필터링(filtering) 역할을 한다는 것을 밝혔다. 기존에는 인공지능을 구현하기 위한 심층신경망을 구성할 때 구체적인 작동 원리를 모른 채 실험적으로 구현했다면, 연구팀은 신호를 효과적으로 나타내는 고차원 공간인 행켈 행렬를 찾고 이를 분리하는 방식을 통해 필터링, 풀링 구조를 얻는 이론적인 구조를 제시한 것이다. 이러한 성질을 이용하면 입력신호의 복잡성에 따라 기저함수의 개수와 심층신경망의 깊이를 정해 원하는 심층신경망의 구조를 제시할 수 있다. 연구팀은 수학적 원리를 통해 제안된 인공신경망 구조를 영상잡음제거, 영상 화소복원 및 의료영상 복원 문제에 적용했고 매우 우수한 성능을 보임을 확인했다. 예종철 교수는 “시행착오를 반복해 설계하는 기존의 심층신경망과는 달리 원하는 응용에 따라 최적화된 심층신경망구조를 수학적 원리로 디자인하고 그 영향을 예측할 수 있다”며 “이 결과를 통해 의료 영상 등 설명 가능한 인공지능이 필요한 다양한 분야에 응용될 수 있다”고 말했다. 이번 연구는 과학기술정보통신부의 중견연구자지원사업(도약연구) 및 뇌과학원천기술사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 수학적인 원리를 이용한 심층신경망의 설계 예시 그림2. 영상잡음제거 결과 그림3. 영상에서 80% 화소가 사라진 경우 인공신경망을 통해 복원한 결과
2018.05.10
조회수 17453
김용훈 교수, 차세대 탄소섬유 개발 위한 이론 규명
우리 대학 EEWS대학원 김용훈 교수 연구팀이 고품질 탄소섬유 개발에 필요한 고분자 전구체와 저차원 탄소 나노소재 간 계면의 원자구조 및 전자구조적 특성을 규명했다. 이번 연구로 차세대 탄소섬유 개발의 이론적 청사진을 제시할 것으로 기대된다. 이주호 박사과정이 1저자로 참여한 이번 연구 성과는 국제 과학 학술지인 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 4월 11일자에 속표지(Inside Back Cover) 논문으로 게재됐다. 탄소섬유는 매우 가벼우면서도 뛰어난 기계적, 열적 특성을 갖고 있기 때문에 초경량 자전거, 골프 클럽 등 스포츠 용품부터 자동차, 항공우주, 원자력 등 다양한 첨단 기술 분야에 활발히 활용되고 있는 신소재이다. 탄소섬유는 전구체(precursor) 고분자를 방사, 안정화 및 탄화 등의 작업을 통해 얻어지며 현재 폴리아크릴로나이트릴(polyacrylonitrile, PAN)이 탄소섬유의 주 전구체로 사용되고 있다. 고품질 차세대 탄소섬유를 얻는 방법으로 탄소나노튜브(carbon nanotube, CNT)를 탄소섬유 전구체 고분자 매트릭스에 분산시켜 고분자의 결정성을 높이는 연구가 대표적이다. 탄소나노튜브와 전구체 고분자의 조합이 탄소섬유의 물성을 향상시킬 수 있다는 것도 실험을 통해 확인된 바 있다. 그러나 20년 이상의 연구에도 탄소나노튜브와 전구체 고분자 간 상호작용에 대한 이해는 실험적 접근법의 어려움으로 인해 부족한 상황이다. 따라서 탄소나노튜브를 활용한 고품질 탄소섬유 제작 기술은 한계가 있었다. 김 교수 연구팀은 슈퍼컴퓨터를 활용해 양자역학적 제1원리 기반 멀티스케일 시뮬레이션을 수행해 대표적인 탄소섬유 전구체인 폴리아크릴로나이트릴 고분자가 탄소나노튜브 계면에서 배열되는 과정을 원자 수준에서 체계적으로 재현했다. 또한 탄소나노튜브-폴리아크릴로나이트릴 고분자 계면이 특히 좋은 특성을 보일 수 있는 이유를 연구했다. 폴리아크릴로나이트릴 고분자의 단위체가 누워있는 형태의 특정 원자구조를 선호하고, 이 때 양전하와 음전하가 균형 있게 이동하는 계면 특유의 특성이 발현되므로 이 계면 구조를 최대화 시키는 것이 최적의 대규모 폴리아크릴로나이트릴 고분자 정렬을 유도할 수 있음을 밝혔다. 또한 폴리아크릴로나이트릴 고분자의 정렬도가 그래핀 나노리본과의 계면에서 극대화되는 것을 확인해 최근 각광을 받고 있는 그래핀을 이용해 탄소 섬유의 품질을 더욱 향상시킬 수 있다는 가능성도 제시했다. “김 교수는 양자역학에 기반한 전산모사가 첨단 소재·소자의 개발을 위한 기본원리를 제공해 줄 수 있음을 보여준 연구의 예다”며 “이러한 전산모사 연구의 중요성은 컴퓨터 성능 및 전산모사 이론체계의 비약적인 발전과 더불어 더욱 커질 것이다”라고 말했다. 이번 연구는 미래창조과학부 중견연구자지원사업, 나노소재원천기술개발사업, 기초연구실지원사업, 글로벌프론티어사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 어드밴스드 펑셔널 머티리얼즈 표지 그림2. 연구 개요 모식도
2018.04.26
조회수 20264
김유천 교수, 부작용 낮춘 레이저 치료제 개발
〈 노 일 구 박사과정, 김 유 천 교수 〉 우리 대학 생명화학공학과 김유천 교수 연구팀이 기존 광역학 치료제(PhotoDynamic Therapy, 이하 PDT)의 단점을 보완한 근적외선 형광물질 기반의 PDT를 개발했다. 노일구 박사과정이 1저자로 참여하고 바이오및뇌공학과 박지호 교수 연구팀이 공동으로 참여한 이번 연구 결과는 국제 학술지 ‘어드밴스드 사이언스(Advanced Science)’ 2018년도 3월 25일자 표지논문에 게재됐다. PDT는 약물이나 유전자가 아닌 빛을 이용하는 치료법으로 레이저를 특정부위에 쬐어 산소를 독성을 갖는 활성산소로 변화시켜 세포를 자가 사멸(apoptosis)로 유도할 수 있는 기술이다. 이 기술은 피부병 치료 등 일상에서도 많이 활용되는 치료법이다. 그러나 기존에 이용하는 PDT 조영제의 경우 낮은 효율을 가질 때 오히려 암세포의 유전변형이 발생해 치료효과 감소 등의 부작용이 나올 수 있다. 따라서 치료효과를 극대화하기 위해선 원하는 위치에 많은 물질을 전달하는 것이 중요하며 이를 위해 세포 소기관인 미토콘드리아에 치료효과를 집중시키는 연구가 진행 중이다. PDT 조영제로 인해 만들어진 활성산소는 미토콘드리아의 막을 공격해 세포 사멸을 일으킨다. 암세포의 미토콘드리아는 일반 세포와 비교했을 때 미토콘드리아 막의 전위 차이가 높아 양전하의 소수성 물질이 더 잘 투입되는 특성이 있다. 연구팀은 이러한 PDT 조영제 효과를 극대화하기 위해 미토콘드리아 타겟팅 그룹인 트리페닐포스포늄, PDT 증강제인 브롬화물, 그리고 용해도 증가를 위한 아민 그룹으로 구성된 물질을 개발했다. 연구팀은 이 기술을 종양이 이식된 실험용 쥐에 주입한 후 종양 부위에 빛을 조사해 항암효과를 유도했고 이를 분석했을 때 효과적으로 표적 치료가 이뤄지는 것을 확인했다. 이 물질은 근적외선 영역에서의 흡광 및 발광을 통한 662 나노미터(nm) 영역 레이저를 사용한다. 이를 통해 기존 가시광선 조영제가 마이크로미터 수준의 깊이를 보였다면 연구팀의 기술은 밀리미터까지 투과성을 가지며 진단 시 가시광역 조영제 보다 100배 이상 감도가 우수한 특성을 갖고 있다고 밝혔다. 연구를 주도한 노일구 박사과정은 “암세포 미토콘드리아에 오래 머물러 있어 레이저를 조사했을 때 원하는 부분에만 부작용 없이 효과적인 치료가 가능하다는 장점이 있다”며 “치료 후 독성이 없이 분해돼 기존 조영제의 단점을 극복할 수 있을 것이다”고 말했다. 김유천 교수는 “기존에 이용되는 진단 및 치료제를 한 단계 더 발전시킨 새로운 플랫폼의 개발을 통해 부작용을 최소화하고 다양한 질병을 치료하는 데 유용하게 사용될 것으로 기대한다”고 말했다. 이번 연구는 글로벌프론티어 지원사업 ABC 바이오매스 사업단 및 한국연구재단의 중견연구자지원사업, 바이오의료기술개발지원사업을 통해 수행됐다. □ 그림 설명 그림1. Advanced science 3월 25일자 3호 표지 그림2. 완성된 물질의 화학구조, 미토콘드리아 타겟팅 효과 및 레이저에 따른 ROS 생성 그래프
2018.04.17
조회수 17388
김도경 교수, 모세관현상 이용한 리튬-황 전지 소재 개발
우리 대학 신소재공학과 김도경 교수 연구팀이 종이가 물을 흡수하는 모세관 현상처럼 탄소나노섬유 사이에 황을 잡아두는 방식을 통해 리튬-황 기반 이차전지 전극 소재를 개발했다. 연구팀이 개발한 면적당 용량(mAh/㎠)이 우수한 저중량, 고용량 리튬-황 기반 이차전지 전극소재를 통해 리튬-황 전지의 상용화를 앞당길 수 있을 것으로 기대된다. 윤종혁 박사과정이 1저자로 참여하고 김도경 교수, UNIST 이현욱 교수가 교신저자로 참여한 이번 연구는 국제 학술지 ‘나노 레터스(Nano Letters)’ 2018년도 18호에 게재됐다. 최근 전기자동차, 대용량 에너지 저장장치의 수요가 급증함에 따라 기존 리튬이온 전지를 뛰어넘는 높은 에너지 밀도의 이차전지 개발 필요성이 커지고 있다. 리튬-황 전지는 차세대 고용량 리튬이차전지로 각광받고 있으며 이론적으로 리튬이온 전지보다 약 6배 이상 높은 에너지 밀도를 갖는다. 하지만 황의 낮은 전기전도도, 충전과 방전으로 인해 발생하는 부피 변화, 리튬 폴리설파이드 중간상이 전해질로 녹아 배출되는 현상은 리튬-황 전지 상용화의 걸림돌이다. 이를 해결하기 위해 다공성 탄소 분말로 황을 감싸 전기전도도를 향상시키고 부피변화를 완화시키며 폴리설파이드가 녹는 것을 방지하는 황-탄소 전극 개발에 대한 연구가 주로 진행돼 왔다. 그러나 이러한 구형의 0차원 탄소 분말들은 입자 간 무수한 접촉 저항이 발생하고 황을 감싸는 합성 과정이 까다로울 뿐 아니라 입자들을 연결하기 위해 고분자 바인더를 사용해야한다는 단점이 있다. 연구팀은 기존 탄소 재료의 단점을 극복하기 위해 전기방사를 통해 대량으로 1차원 형태의 탄소나노섬유를 제작하고 고체 황 분말이 분산된 슬러리(slurry, 고체와 액체 혼합물 또는 미세 고체입자가 물 속에 현탁된 현탁액)에 적신 뒤 건조하는 간단한 방법을 통해 접촉 저항을 대폭 줄인 황-탄소 전극을 개발했다. 연구팀은 주사전자현미경(SEM)을 통해 현상을 관찰했다. 종이가 물을 흡수하듯 고체 황이 전기화학 반응 중 중간 산물인 액체 리튬 폴리설파이드로 변화하고 이들이 탄소나노섬유들 사이에 일정한 모양으로 맺힌 후 충전과 방전 과정에서 그 형태를 유지하며 밖으로 녹아나가지 않음을 확인했다. 이는 복잡하게 황을 감싸지 않고도 황이 탄소 섬유들 사이에 효과적으로 가둬지는 것을 발견한 것이다. 또한 기존 연구 결과가 단위 면적당 황 함량이 2mg/㎠ 이내인 것에 비해 이번 연구에서는 10mg/㎠이 넘는 황 함량을 달성했고 이를 기반으로 7mAh/㎠의 높은 면적당용량을 기록했다. 이는 기존 리튬이온전지의 면적당용량인 1~3mAh/㎠를 능가하는 값이다. 1저자인 윤종혁 박사과정은 “금속집전체 위에 전극물질을 도포하는 기존의 전극 제조 방법과는 전혀 다른 전극 구조 및 제조 방식을 적용한 연구로 향후 리튬 이차전지의 연구 범위를 넓히는 데에 기여할 수 있을 것이다”고 말했다. 김도경 교수는 “고용량 리튬-황 상용화에 한 단계 다가선 연구성과로 전기자동차뿐만 아니라 무인항공기(UAV) 및 드론 등에도 폭넓게 적용될 수 있을 것으로 기대된다”고 말했다. 이번 연구는 EEWS 연구센터의 기후변화연구허브사업과 한국연구재단의 중견연구자 지원사업을 통해 수행됐다. □ 그림 설명 그림1. 전기화학 반응을 통해 탄소나노섬유에 황이 맺히는 현상과 그로 인한 전지의 안정적인 수명 특성 그림2. 탄소나노섬유들 사이에 흡수되어 맺힌 형태 그대로 고체화 된 황의 미세구조와 모식도 그림3. 액상의 리튬 폴리설파이드를 효과적으로 흡수하는 탄소나노섬유 구조체
2018.03.22
조회수 17267
남윤기 교수, 뇌질환 치료용 나노입자 프린팅 기술 개발
우리 대학 바이오및뇌공학과 남윤기 교수 연구팀이 잉크젯 프린팅으로 마이크로미터 수준의 열 패턴을 마음대로 찍어내고, 이를 이용해 원격으로 신경세포의 전기적 활성을 제어할 수 있는 기술을 개발했다. 선택적 나노 광열 신경자극이라 할 수 있는 이 기술은 잉크젯 프린팅 기술과 나노입자 기술을 융합한 것으로 뇌전증 등의 뇌질환 환자들에게 맞춤형 정밀 광열 자극을 도입할 수 있는 기반기술이 될 것으로 기대된다. 강홍기 박사가 주도하고 이구행, 정현준, 이지웅 박사과정이 참여한 이번 연구는 국제 학술지 ‘에이씨에스 나노(ACS Nano)’ 2월 5일자에 게재됐다. 나노 광열자극 기술은 금속 나노 입자의 열-플라즈모닉 현상을 이용해 신경 세포의 활성을 조절한다. 연구팀은 지난 4년간 연구를 통해 나노 광열효과에 의한 신경세포 활성 억제 현상을 발견했고, 이를 이용해 뇌전증 등의 뇌질환에서 발생하는 신경세포의 비정상적 활동을 조절하기 위한 기술을 연구했다. 연구팀은 기존의 나노 광열자극 기술이 갖는 공간적인 선택성의 한계와 해상도의 제약을 극복하기 위해 잉크젯 프린팅 기술을 이용한 나노 입자의 미세 패턴 작업을 통해 나노 광열자극 기술을 선택적인 부분에만 가할 수 있는 기술을 개발했다. 정밀 잉크젯 프린팅과 고분자전해질 적층 코팅법을 결합해 고해상도의 선택적 광열 자극 기술을 구현했다. 이 기술은 정밀 잉크젯 프린팅 기술은 금속 나노 입자를 잉크로 사용해 수십 마이크로미터 크기의 나노입자 패턴을 만들 수 있다. 이 기술과 고분자전해질 적층 코팅법을 결합하면 원하는 모양을 보다 정밀하게 인쇄할 수 있고 안정성이 높아 다양한 기판에 적용할 수 있다. 또한 고분자전해질 코팅법은 세포 친화적이기 때문에 세포실험 및 생체 기술에 적용 가능하다. 연구팀은 이 기술을 통해 금 나노막대 입자를 수십 마이크로미터 해상도로 인쇄해 수 센티미터 이상의 정밀한 나노입자 패턴을 손쉽게 제작했다. 이 패턴에 빛을 조사하면 인쇄한 모양대로 정밀한 열 패턴을 형성할 수 있다. 또한 이 기술로 배양된 뇌신경세포의 활동을 선택적, 일시적으로 빛 조사를 통해 억제할 수 있음을 실험을 통해 확인했다. 이 열 패턴 기술을 이용하면 신경세포의 전기적 활성을 열 발생 부분에만 일시적으로 억제할 수 있어 선택적으로 광열 신경자극을 줄 수 있다. 이를 통해 원하는 세포 영역만 구분해 활동을 억제시켜 환자에게 맞춤형 광열 신경자극 치료를 제공할 수 있다. 연구팀의 기술은 얇고 유연한 기판에도 적용 가능해 체내 이식용 뇌질환 치료 장치나 웨어러블 의료 장치에 응용 가능할 것으로 기대된다. 남 교수는 “원하는 형태의 열 모양을 손쉽게 어디든지 인쇄할 수 있다는 점에서 공학적으로 폭넓게 활용 가능하다”며 “바이오공학 분야에서 생체기능 조절을 위해 빛과 열을 이용한 다양한 인터페이스 제작에 적용할 수 있고 새로운 위조 방지 기술 등에도 적용 가능할 것이다”고 말했다. 이번 연구는 과학기술정보통신부의 중견연구자지원사업(도약연구)의 지원을 받아 수행됐다. □ 그림 설명 그림1. 기술을 통해 제작한 사례들 그림2. 잉크젯 프린팅을 이용한 광열 효과 패턴 방식 및 이를 이용한 뇌신경세포의 선택적 활동 조절 기술
2018.02.27
조회수 15921
조영호 교수, 손목시계형 개인별 열적 쾌적감 측정기 개발
〈 조 영 호 교수, 윤 성 현 연구원 〉 우리 대학 바이오및뇌공학과 조영호 교수 연구팀이 손목의 땀을 측정해 인간의 개인별 열적 쾌적감을 측정할 수 있는 손목시계형 쾌적감 측정기를 개발했다. 심재경, 윤성현 연구원의 주도로 개발한 이번 연구 성과는 융합, 과학 분야의 네이처 자매지 ‘사이언티픽 리포트(Scientific Reports)’ 1월 19일자에 게재됐다. 인간이라면 누구나 더위를 느끼면 땀 발생률이 증가하며 추위를 느끼면 땀 발생률이 감소한다. 따라서 동일한 환경에서도 개인별 땀 발생률을 측정하면 개인마다 느끼는 더위와 추위 상태를 판별해 열적 쾌적감을 측정할 수 있다. 일반적인 냉, 난방기는 공기의 습도와 온도를 일정하게 유지하도록 동작하고 있기 때문에 동일한 온도와 습도여도 개인별 체질과 기후환경에 따라 개인마다 느끼는 추위와 더위 상태는 모두 다르다. 기존의 땀 발생률 측정기는 생리학 실험용으로 사용돼 펌프 및 냉각기 등의 큰 크기를 갖는 외부 장치가 필요하다. 피부 미용 용도는 크기가 작지만 장시간의 회복 시간을 필요로 하는 문제점이 있다. 연구팀은 작은 크기를 가지며 인간의 피부에 착용 가능하면서 환기구동기를 집적해 연속적으로 땀 발생률 측정이 가능한 손목시계형 쾌적감 측정기를 개발했다. 연구팀이 개발한 손목시계형 쾌적감 측정기는 인간이 느끼는 더위나 추위의 정도에 따라 땀 발생률이 변화하는 점에 착안해 땀 발생률을 측정해 주어진 환경 내에서 인간의 체감 더위와 추위를 파악할 수 있는 기술이다. 연구팀은 밀폐된 챔버가 피부에 부착됐을 때 습도가 증가하는 비율을 통해 땀 발생률을 측정하는 방식을 이용했다. 이 측정기는 피부에 챔버가 완전히 부착된 후 측정하기 때문에 외부 공기나 인간의 움직임에도 안정적인 땀 발생률 측정이 가능하다. 또한 소형 열공압 구동기를 집적해 챔버를 피부 위로 들어올려 자동 환기가 가능하다. 연구팀의 손목시계형 쾌적감 측정기는 주위의 온도나 습도에 관계없이 인간의 인지기능에 따라 변화하는 땀 발생률을 측정할 수 있어 개인별 맞춤형 냉난방을 실현할 수 있다. 연구팀의 측정기는 직경 35mm, 두께 25mm, 배터리 포함 무게 30g으로 자동 환기기능을 갖추고 있으며 기존 측정기 대비 무게는 절반 이하(47.6%) 47.6%, 소비전력은 12.8%에 불과하다. 6V 소형 손목시계용 배터리로 4시간 동작이 가능하며 사람의 걸음에 해당하는 공기흐름인 0~1.5m/s에서 안정적으로 작동하기 때문에 움직이는 상태에서 성능을 유지하여야 하는 포터블, 웨어러블 기기로 사용가능하다는 장점이 있다. 이를 이용해 연구팀은 실내 또는 자동차 내에서 기존의 냉, 난방기에 비해 훨씬 더 인간과 교감 기능이 뛰어난 새로운 개념의 인지형 냉, 난방기를 제작할 예정이다. 조영호 교수는 “기존 냉난방기는 주변의 온, 습도 기준으로 쾌적감을 판단해 개인적으로 느끼는 쾌적감과 무관하지만 우리가 개발한 쾌적감 측정기는 개인적 쾌적감을 판단할 수 있어 새 개념의 개인맞춤형 지능형 냉, 난방기로 활용 가능하다”며 “나아가 미래사회에서는 인간의 신체적 건강 뿐 아니라 정신적 건강과 감정 상태의 관리가 필요하기에 향후 인간과 기계의 감성 교감을 이룰 수 있을 것이다”고 말했다. 이번 연구는 과학기술정보통신부의 중견연구자지원사업을 통해 수행됐으며 국내특허로 등록을 완료했다. □ 그림 설명 그림1. 인간 열적 쾌적감 측정이 가능한 손목시계형 쾌적감 측정기 그림2. 손목시계형 쾌적감 측정기 그림3. 손목시계형 쾌적감 측정기의 동작 원리
2018.02.01
조회수 12830
김정원 교수, 초저잡음 마이크로파 주파수 합성기 개발
우리 대학 기계항공공학부 김정원 교수 연구팀이 광섬유 광학 기술을 이용해 X-밴드 레이더에 활용할 수 있는 초저잡음 마이크로파 주파수 합성기를 개발했다. 이번 기술은 레이더 뿐 아니라 통신, 센서, 정밀계측 등 다양한 분야에서 활용 가능하고 기술이전을 통한 국산화도 가능할 것으로 기대된다. 권도현 박사과정이 1저자로 참여한 이번 연구 성과는 ‘포토닉스 리서치(Photonics Research)’ 2018년도 1월호에 게재됐다. 레이더는 자율주행 자동차, 기상관측, 천문연구, 항공관제, 군용탐지 등 민간 및 군용 분야에서 다양하게 활용된다. 고성능 레이더 내에서의 속도 탐지 및 이미지 분해능 개선, 통신 및 신호처리 능력 향상을 위해서는 레이더 송신신호의 위상잡음(phase noise)을 낮추는 것이 필수적이다. 또한 우수한 주파수 스위칭과 변조 성능 역시 레이더 신호원의 중요한 요구 조건이다. 하지만 위상잡음이 낮은 마이크로파 주파수 합성기는 고가일 뿐더러 수출승인(EL) 품목으로 자국 밖 수출이 금지되거나 특별 허가를 받아야 하는 경우가 많다. 김 교수 연구팀은 고가의 재료나 실험실 밖 환경에서 사용이 어려운 기술 없이도 부품의 신뢰성과 가격경쟁력이 확보된 광섬유광학 기술과 상용 디지털신디사이저(DDS) 부품만을 이용했다. 이를 통해 매우 우수한 위상잡음 수준을 가지며 주파수 스위칭 및 다양한 변조가 가능한 마이크로파 주파수 합성기를 개발했다. 이 주파수 합성기는 광섬유 레이저 기술을 이용해 펄스(pulse) 형태의 빛을 생성한다. 이 때 빛 펄스 간의 시간 간격을 매우 일정하게 만들어 1초 동안 1 펨토초(1천조분의 1초)라는 아주 작은 시간의 오차를 갖는 빛 펄스들을 생성했다. 그리고 이 빛 펄스들을 전기 신호로 변환하는데 이 때 펄스 간 시간 간격에 의해 정해지는 반복률(repetition-rate)의 정수배에 해당하는 임의의 사인파(sinusoidal) 형태의 전기 신호를 생성할 수 있다. 이번 연구에서는 여러 가능한 주파수 대역들 중에서 최근 이슈가 된 사드(THAAD) 레이더를 비롯한 고성능 레이더와 우주 통신 분야에서 그 중요성이 커지는 X-밴드(8-12 GHz) 마이크로파 주파수 대역에서 동작하는 주파수 합성기를 구현했다. 이번 기술은 기존의 최고 성능 오븐제어 수정발진기(OCXO) 기반 주파수 합성기들의 위상잡음보다 월등하게 우수한 성능을 보였다. 또한 전자전(electronic warfare) 및 레이더 시스템에서 중요하게 여겨지는 빠른 주파수 변환 속도와 다양한 주파수 변조 기능 역시 가능함을 선보였다. 이 시스템의 또 다른 장점은 기존 마이크로파 주파수 합성기와 달리 매우 낮은 잡음의 광신호 또한 함께 생성할 수 있다는 것이다. 이러한 저잡음 광신호를 이용하면 레이더 수신기에서 이전에는 없던 새로운 신호 분석 기능도 제공할 수 있다. 김 교수는 “이 연구에서는 X-밴드 신호원을 선보였지만 같은 원리를 활용해서 보다 고주파 대역의 초저잡음 신호도 생성할 수 있다”며 “드론처럼 소형, 저속 물체들에 대한 민감한 탐지에도 활용 가능할 것이다”고 말했다. 이번 연구는 한국연구재단 중견연구자지원사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 광섬유광학 기반 X-밴드 레이더 신호원의 개념도 그림2. 10-GHz에서의 위상잡음 측정 결과와 기존의 최고성능 주파수 합성기들과의 성능 비교
2018.01.18
조회수 15259
조용훈 교수, 금속나노구조 이용해 효율 높인 퀀텀닷 LED 개발
우리 대학 물리학과 조용훈 교수 연구팀이 금속나노 배열 구조를 이용해 퀀텀닷(Quantum Dot) 발광다이오드(LED)의 효율을 향상시킬 수 있는 기술을 개발했다. 이 기술을 통해 차세대 디스플레이 기술이 한 단계 발전하는 데 기여할 것으로 기대된다. 현재 사용되는 퀀텀닷 기반의 디스플레이는 청색 LED를 광원으로 사용해 녹색과 적색 퀀텀닷을 여기(勵起, 광자 에너지가 분자로 옮아가 높은 에너지상태로 방출되는 상태)해 색 변환을 하는 방식이다. 이러한 방식은 높은 가격의 퀀텀닷을 이용하기 때문에 디스플레이 소자의 단가가 높아진다. 또한 액체 상태인 퀀텀닷을 소재에 적용하기 위해 공기 중에 말리면 발광 효율이 급격히 저하된다. 연구팀은 문제 해결을 위해 금속 나노구조가 청색 LED의 빛을 받으며 발생하는 국소 표면 플라즈몬 효과를 이용해 퀀텀닷의 발광효율을 증가시켰다. 더불어 발광 휘도를 높일 수 있는 LED 구조를 이론적으로 제시하고 구현하는 데 성공했다. 이 구조는 기본 청색 LED를 여기 광원으로 이용한다. 알루미늄 금속 나노구조와 녹색 퀀텀닷을 여기해 녹색 발광 휘도를 증가시키고, 은 금속 나노구조와 적색 퀀텀닷을 여기해 적색 발광 휘도를 증가시키는 방식이다. 이는 금속 나노구조를 통해 특정 휘도를 얻기 위해 필요한 퀀텀닷의 양을 많이 줄일 수 있다는 의미이고 결과적으로 소재의 단가를 낮출 수 있다. 이번 연구는 소재의 구조를 이론적으로 모델링했기 때문에 목적에 따라 금속 나노구조를 간단하게 새로 디자인해 조절할 수 있다. 조 교수는 “향후 퀀텀닷 디스플레이에 금속 나노구조를 도입하는 기술이 적절히 도입된다면 소재에 필요한 퀀텀닷의 양을 줄이고 효율적인 색 변환을 통해 단가를 줄일 수 있을 것으로 기대된다”고 말했다. 박현철 박사과정이 1저자로 참여한 이번 연구는 나노과학 분야 국제 학술지 ‘스몰(Small)’ 12월 27일자 표지 논문에 선정되었으며, 한국연구재단의 중견연구자 지원사업과 KAIST 기후변화연구 허브사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 스몰(Small)저널의 12월 27일자 표지 논문 그림 . 그림2. 금속 나노구조가 있을 경우와 없을 경우의 발광 세기 차이를 보인 스펙트럼
2018.01.15
조회수 13511
조광현 교수, 암세포 유형별 최적 약물표적 발굴기술 개발
〈 최민수 박사, 조광현 교수 〉 우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 암세포의 유형에 따라 최적의 약물 표적을 찾는 기술을 개발했다. 이는 시스템생물학을 이용해 암세포의 유전자변이가 반영된 분자네트워크의 다이나믹스(동역학)를 분석해 약물의 반응을 예측하는 기술로 향후 암 관련 신약 개발에 크게 기여할 것으로 기대된다. 최민수, 시 주 (Shi Jue), 주 양팅 (Zhu Yanting), 양 루젠 (Yang Ruizhen)이 참여한 이번 연구는 ‘네이처 커뮤니케이션즈(Nature Communications)’ 12월 5일자 온라인 판에 게재됐다. 인간의 암세포는 유전자 돌연변이, 유전체 단위의 반복적 변이 등 여러 형태의 유전자 변이가 있다. 이러한 변이는 같은 암종에서도 암세포에 따라 많은 차이를 보이기 때문에 약물에 대한 반응도 다양하다. 암 연구자들은 암 환자에게서 빈번하게 발견되는 유전자변이를 파악하고 이 중 특정 약물의 지표로 사용될 수 있는 유전자변이를 찾기 위해 노력해 왔다. 이러한 연구는 단일 유전자변이의 발견 또는 유전자네트워크의 구조적 특징 분석에 초점이 맞춰져 있다. 하지만 이러한 접근 방법은 암세포 내 다양한 유전자 및 단백질의 상호작용에 의해 유발되는 암의 생물학적 특성과 이로 인한 약물반응의 차이를 설명하지 못하는 한계가 있다. 암세포의 유전자변이는 해당 유전자 기능 뿐 아니라 이 유전자와 상호작용하는 다른 유전자, 단백질에 영향을 미치기 때문에 결과적으로 분자네트워크의 다이나믹스(동역학) 특성에 변화를 일으킨다. 이로 인해 항암제에 대한 암세포의 반응이 변화하게 된다. 따라서 분자네트워크의 다이나믹스(동역학) 특성을 무시하고 소수의 암 관련 유전자를 표적으로 하는 현재의 치료법은 일부 환자에게만 유용하고 약물저항성을 갖는 대다수 환자에게는 효과적으로 적용되지 못한다. 조 교수 연구팀은 문제 해결을 위해 슈퍼컴퓨팅을 이용한 대규모 컴퓨터시뮬레이션과 세포 실험을 융합해 암세포 분자네트워크의 다이나믹스(동역학) 변화를 분석했다. 이를 통해 약물반응을 예측해 유형별 암세포의 최적 약물 표적을 발굴하는 기술을 개발했다. 이 기술은 대다수 암 발생에 관여하는 것으로 알려진 암 억제 유전자 p53의 분자조절네트워크에 시범적으로 적용됐다. 연구팀은 국제 컨소시엄인 암 세포주 백과사전(CCLE : The Cancer Cell Line Encyclopedia)에 공개된 대규모 암세포 유전체 데이터를 분자네트워크에 반영해 구축했으며 유전변이의 특성에 따라 서로 다른 분자네트워크를 생성했다. 각 분자네트워크에 대해 약물반응을 모사한 섭동분석을 수행해 약물반응을 나타내는 암세포의 변화를 정량화하고 군집화했다. 그 후 컴퓨터시뮬레이션 분석을 통해 효능, 조합에 따른 시너지효과 등 약물반응정도를 예측했다. 이러한 컴퓨터시뮬레이션 결과를 토대로 폐암, 유방암, 골종양, 피부암, 신장암, 난소암 등 다양한 암세포주를 대상으로 약물반응 실험을 수행해 비교 검증했다. 이 기술은 임의의 분자네트워크에 대해서 동일한 방식으로 적용할 수 있고 최적의 약물 표적을 발굴해 개인 맞춤치료에 활용가능하다. 연구팀은 암세포의 이질성에 따른 다양한 약물반응의 원인을 특정 유전자나 단백질뿐만 아니라 상호조절작용을 종합적으로 고려해 분석할 수 있게 됐다고 밝혔다. 또한 약물저항성의 원인을 사전에 예측하고 이를 억제할 수 있는 최적의 약물 표적을 발굴할 수 있게 됐고 기존 약물의 새로운 적용대상을 찾는 약물재창출에 활용될 수 있는 핵심 원천기술을 확보하게 됐다고 말했다. 조 교수는 “암세포별 유전변이는 약물반응 다양성의 원인이지만 지금까지 이에 대한 총체적 분석이 이뤄지지 못했다”며 “시스템생물학을 통해 암세포 유형별 분자네트워크의 약물반응을 시뮬레이션으로 분석해 약물 반응의 근본적 원리를 파악하고 새로운 개념의 최적 약물 타겟을 발굴할 수 있게 됐다”고 말했다. 이번 연구는 과학기술정보통신부와 한국연구재단의 중견연구자지원사업과 바이오의료기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 컴퓨터시뮬레이션을 통한 암세포 유형별 약물반응 예측 및 세포실험 비교 검증 그림2. 암세포별 분자네트워크의 동역학 분석에 기반한 약물반응 예측 및 군집화 그림3. 세포 분자네트워크 분석에 따른 암세포 유형별 약물타겟 발굴 및 암환자별 맞춤치료 전략 수립
2017.12.07
조회수 18501
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
>
다음 페이지
>>
마지막 페이지 8