-
스마트폰 위 인공지능(AI) 연합학습 속도 4.5배 획기적 향상기법 개발
우리 대학 전기및전자공학부 이성주 교수 연구팀이 국제공동연구를 통해 다수의 모바일 기기 위에서 인공지능(AI) 모델을 학습할 수 있는 연합학습 기술의 학습 속도를 4.5배 가속할 수 있는 방법론을 개발했다고 2일 밝혔다.
이성주 교수 연구팀은 지난 6/27~7/1에 열린 세계컴퓨터연합회(ACM) 주최로 진행된 제20회 모바일 시스템, 어플리케이션, 및 서비스 국제학술대회(MobiSys, International Conference on Mobile Systems, Applications, and Services)에서 연합학습(Federated Learning)의 학습 속도 향상(4.5배 가속)을 위한 데이터 샘플 최적 선택 및 데드라인 조절 방법론을 발표했다. 이 학회는 2003년에 시작됐으며 모바일 시스템, 소프트웨어, 어플리케이션, 서비스를 위한 최신 연구를 소개하는 데 초점을 맞추고 있으며, 모바일 컴퓨팅 및 시스템 분야의 최우수 학회 중 하나로 오랫동안 주목받고 있다.
이번 논문(FedBalancer: Data and Pace Control for Efficient Federated Learning on Heterogeneous Clients)은 KAIST 전산학부 신재민 박사과정이 제1 저자로 참여했으며, 중국 칭화대학과의 국제협력으로 이루어진 성과다 (칭화대학교 위안춘 리(Yuanchun Li) 교수, 윤신 리우(Yunxin Liu) 교수 참여).
최근 구글에 의해 제안된 연합학습은 새로운 기계학습 기술로, 개인정보의 유출 없이 방대한 사용자 기기 위 데이터를 활용할 수 있게 하여 의료 인공지능 기술 등 새로운 인공지능 서비스를 개발할 수 있게 해 각광받고 있다. 연합학습은 구글을 비롯해 애플, 타오바오 등 세계적 빅테크 기업들이 널리 도입하고 있으나, 실제로는 인공지능 모델 학습이 사용자의 스마트폰 위에서 이뤄져, 기기에 과부하를 일으켜 배터리 소모, 성능 저하 등이 발생할 수 있는 우려를 안고 있다.
이성주 교수 연구팀은 연합학습에 참여하는 사용자 기기 위 데이터 샘플 각각의 학습 기여도 측정을 기반으로 최적의 샘플을 선택함으로써 연합학습 속도 향상을 달성했다. 또한, 샘플 선택으로 줄어든 학습 시간에 대응해, 연합학습 라운드의 데드라인 또한 최적으로 조절하는 기법을 제안해 모델 정확도의 저하 없이 학습 속도를 무려 4.5배 높였다. 이러한 방법론의 적용을 통해 연합학습으로 인한 사용자 스마트폰 과부하 문제를 최소화할 수 있을 것으로 기대된다.
이성주 교수는 "연합학습은 많은 세계적 기업들이 사용하는 중요한 기술이다ˮ며 "이번 연구 결과는 연합학습의 학습 속도를 향상하고 활용도를 높여 의미가 있으며, 컴퓨터 비전, 자연어 처리, 모바일 센서 데이터 등 다양한 응용에서 모두 좋은 성능을 보여, 빠른 파급효과를 기대한다ˮ라고 소감을 밝혔다.
한편 이 연구는 과학기술정보통신부의 재원으로 한국연구재단과 정보통신기술진흥센터의 지원을 받아 수행됐다.
2022.08.02
조회수 8216
-
스스로 진화하는 흉부 엑스선 인공지능 진단기술 개발
우리 대학 김재철AI대학원 예종철 교수 연구팀이 서울대학교 병원, 서울 아산병원, 충남대학교 병원, 영남대학교 병원, 경북대학교 병원과의 공동연구를 통해 결핵, 기흉, 코로나-19 등의 흉부 엑스선 영상을 이용한 폐 질환의 자동 판독 능력을 스스로 향상할 수 있는 자기 진화형 인공지능 기술을 개발했다고 27일 밝혔다.
현재 사용되는 대부분의 의료 인공지능 기법은 지도학습 방식 (Supervised learning)으로서 인공지능 모델을 학습하기 위해서는 전문가에 의한 다량의 라벨이 필수적이나, 실제 임상 현장에서 전문가에 의해 라벨링 된 대규모의 데이터를 지속해서 얻는 것이 비용과 시간이 많이 들어 이러한 문제가 의료 인공지능 발전의 걸림돌이 돼왔다.
이러한 문제를 해결하기 위해, 예종철 교수팀은 병원 현장에서 영상의학과 전문의들이 영상 판독을 학습하는 과정과 유사하게, 자기 학습과 선생-학생 간의 지식전달 기법을 묘사한 지식 증류 기법을 활용한 자기 지도학습 및 자기 훈련 방식(Distillation for self-supervised and self-train learning, 이하 DISTL) 인공지능 알고리즘을 개발했다. 제안하는 인공지능 알고리즘은 적은 수의 라벨데이터만 갖고 초기 모델을 학습시키면 시간이 지남에 따라 축적되는 라벨 없는 데이터 자체만을 가지고 해당 모델이 스스로 성능을 향상해 나갈 수 있는 것을 보였다.
실제 의료 영상 분야에서 전문가들이 판독한 정제된 라벨 획득의 어려움은 영상 양식이나 작업과 관계없이 빈번하게 발생하는 문제점이고, 이러한 영상 전문의의 부족 현상은 저소득 국가들과 개발도상국과 같이 결핵과 같은 다양한 전염성 질환이 많이 발생하는 지역에 많다는 점을 고려할 때, 예 교수팀에서 개발한 인공지능 알고리즘은 해당 지역에서 인공지능 모델을 자기 진화시키는 방식으로 진단 정확도를 향상하는 데 큰 도움을 줄 것으로 기대된다.
예종철 교수는 “지도학습 방식으로 성능을 향상하기 위해서는 전문가 라벨을 지속해서 획득해야 하고, 비 지도학습 방식으로는 성능이 낮다는 문제점을 극복한 DISTL 모델은 영상 전문의들의 인공지능 학습을 위한 레이블 생성 비용과 수고를 줄이면서도 지도학습 성능을 뛰어넘었다는 점에서 의미가 있고, 다양한 영상 양식 및 작업에 활용할 수 있을 것으로 기대된다”라고 말했다.
예종철 교수 연구팀의 박상준 박사과정이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `네이처 커뮤니케이션스(Nature Communications)'에 7월 4일 자로 게재됐다.
한편 이번 연구는 중견연구자지원사업, 범부처전주기의료기기연구개발사업 및 한국과학기술원 중점연구소 사업등의 지원을 받아 수행됐다.
*논문명: Self-evolving vision transformer for chest X-ray diagnosis through knowledge distillation
논문 링크: https://www.nature.com/articles/s41467-022-31514-x
2022.07.27
조회수 6541
-
고정확도 실시간 학습 가능한 모바일 인공지능 반도체 칩 세계 최초 개발
우리 대학 전기및전자공학부 유회준 교수 연구팀이 인공지능의 실시간 학습을 모바일 기기에서 구현, 고정확도 인공지능(AI: Artificial Intelligent) 반도체*를 세계 최초로 개발했다고 23일 밝혔다.
* 인공지능 반도체 : 인식·추론·학습·판단 등 인공지능 처리 기능을 탑재하고, 초지능·초저전력·초신뢰 기반의 최적화된 기술로 구현한 반도체
연구팀이 개발한 인공지능 반도체는 저비트 학습과 저지연 학습 방식을 적용해, 모바일 기기에서도 학습할 수 있다. 특히 이번 반도체 칩은 인공지능의 예상치 못한 성능 저하를 막을 수 있는 실시간 학습 기술을 성공적으로 구현했다.
전기및전자공학부 한동현 박사과정이 제1 저자로 참여한 이번 연구는 지난 6월 12일부터 15일까지 인천 연수구 송도 컨벤시아에서 개최된 국제 인공지능 회로 및 시스템 학술대회(AICAS)에서 발표됐으며 응용 예시를 현장에서 시연했고, 최우수 논문상과 최우수 데모상을 모두 석권해 그 우수성을 널리 알렸다. (논문명 : A 0.95 mJ/frame DNN Training Processor for Robust Object Detection with Real-World Environmental Adaptation (저자: 한동현, 임동석, 박광태, 김영우, 송석찬, 이주형, 유회준))
인공지능 (AI) 반도체 기술을 망라하는 국제 학술 대회 ‘AICAS 2022’는 인공지능 반도체 분야 세계 최고 권위를 가진 IEEE(미국 전기 전자 기술자 협회)학회로 평가받으며, 삼성, SK를 필두로, 한국전자통신연구원(ETRI), 엔비디아(NVIDIA), 케이던스(Cadence) 등 국내외 저명한 기업과 기관 등이 참석해 인공지능 반도체 회로와 시스템 전 분야, 인공지능 반도체와 관련된 연구성과를 공유하는 행사다.
기존 인공지능은 사전에 학습된 지능만으로 추론을 진행했기 때문에 학습하지 않은 새로운 환경 혹은 물체에 대해서는 물체 검출이 어려웠다. 하지만 유회준 교수 연구팀이 개발한 실시간 학습은 추론만 수행하던 기존 모바일 인공지능 반도체에 학습 기능을 부여함으로써, 인공지능의 지능 수준을 크게 끌어올렸다.
유 교수팀의 새로운 인공지능 반도체는 사전에 학습한 지식과 애플리케이션 수행 중에 학습한 지식을 함께 활용해 고정확도 물체검출 성능을 보였다. 특히 유회준 교수 연구팀은 렌즈가 깨지거나, 기계 오류로 인한 인공지능의 예상치 못한 정확도 감소도 자동으로 인지하고 이를 실시간 학습을 통해 보정, 기존 인공지능의 문제점을 해결했다.
유 교수팀은 실시간 학습 기능에 더해, 모바일 기기에서 저전력으로 학습이 가능할 수 있도록, 저비트 인공지능 학습 방법, 직접 오류 전사 기반 저지연 학습 방식을 제안, 이를 최적화할 수 있는 반도체(HNPU) 와 응용 시스템을 모두 개발했다.
저전력, 실시간 학습을 수행할 수 있는 모바일 인공지능 전용 반도체, HNPU는 다음과 같이 6가지 핵심 기술이 도입됐다.
○ 확률적 동적 고정 소수점 활용 저비트 학습 방식 (SDFXP: Stochastic Dynamic Fixed-point Representation)
- 동적 고정 소수점에 확률적 표현을 결합하고 확률적 반올림을 도입하여 인공지능 학습에 필요한 비트 정밀도를 최소화 할 수 있는 방법
○ 레이어별 자동 정밀도 검색 알고리즘 및 하드웨어 (LAPS: Layer-wise Adaptive Precision Scaling)
- 학습의 난이도를 자동으로 파악하고 심층신경망의 레이어별로 최적의 비트수를 자동으로 찾아주는 알고리즘 및 이를 가속하는 하드웨어
○ 입력 비트 슬라이스 희소성 활용* (ISS: Input Slice Skipping or Bit-slice Level Sparsity Exploitation)
- 데이터를 이진수로 표현했을 때 중간중간 나타나는 ‘0’ 비트를 활용하여, 데이터 처리량을 높이는 방식
○ 내재적 순수 난수 생성기 (iTRNG: Intrinsic True Random Number Generator)
인공지능 연산을 활용한 순수 난수 생성기를 설계, 데이터의 암호화 및 확률적 반올림을 구현
○ 다중 학습 단계 할당을 통한 고속 학습 알고리즘 및 하드웨어 (MLTA: Multi Learning Task Allocation & Backward Unlocking)
기존 역전파 (Back-propagation) 알고리즘에서 탈피해, 직접 오류 전사를 통한 저지연 학습 구현
○ 실시간 인공지능 학습 기반 자동 오류 검출 기능 저하 보정 시스템 개발 (Real-time DNN Training based Automatic Performance Monitor and Performance Recovery System)
평상시 물체 검출 결과를 주기적으로 모니터링하면서, 갑작스러운 확률 변화를 자동으로 인식, 정확도 저하를 보정하기 위해 실시간 학습을 적용
* 희소성 활용 (Sparsity Exploitation) : 심층 신경망 모델의 연산은 수많은 곱셈누적(MAC: Multiply-And-Accumulate)연산의 연속이다. 연산자에 0이 존재할 시, 굳이 연산을 해보지 않아도 결과는 0임을 알기에 이를 뛰어넘는 방식으로 연산 속도를 높이는 방식.
이러한 기술을 사용해 HNPU는 저전력 물체검출을 구현하여, 다른 모바일 물체검출 시스템과 비교해 75% 높은 속도, 44% 낮은 에너지 소모를 달성하면서도, 실시간 학습으로 고정확도 물체검출을 개발해 주목을 받았다.
연구팀은 HNPU의 활용 예시로 카메라 렌즈가 깨지거나, 기계 오류, 조명, 밝기 변화로 인공지능의 추론 능력이 떨어졌을 때, 실시간 학습을 통해 다시 정확도를 높이는 고정확도 물체검출 시스템을 개발했다. 이는 이후 자율 주행, 로봇 등 다양한 곳에 활용될 것으로 기대된다.
특히 연구팀의 HNPU 연구는 2022 국제인공지능회로및시스템학술대회(AICAS 2022)에서 발표돼, 최우수 논문상과 최우수 데모상을 모두 석권하여 그 우수성을 널리 알렸다.
연구를 주도한 KAIST 전기및전자공학부 유회준 교수는 “현재 인공지능은 사전에 학습한 지식만으로 주어진 문제를 해결하고 있으며, 이는 변화하는 환경과 상황에 맞춰 계속 학습하는 인간의 지능과 뚜렷한 차이를 보인다”라며 “이번 연구는 실시간 학습 인공지능 반도체를 통해 인공지능의 지능 수준을 사람 수준으로 한층 더 끌어올리는 연구”라고 본 연구의 의의를 밝혔다.
2022.06.23
조회수 6682
-
인공지능 엔진으로 영상 위변조 탐지 기술 개발
우리 연구진이 영상 내 변형 영역을 더욱 정밀하게 탐지하기 위해 영상내 색상 정보와 주파수 정보를 함께 활용하는 인공지능 엔진 기술을 학계 처음으로 개발했다. 이번 개발 기술은 기존 기술보다 정밀도와 정확도를 크게 높여 위변조 탐지 기술의 기술 유용성을 일정 수준 확보할 수 있는 기반을 제공한다는 점에서 그 의미가 크다. KAIST에서 각종 위변조 영상들을 잡아낸다는 의미를 지닌 `카이캐치(KaiCatch)' 소프트웨어는 이미지, 영상뿐만 아니라 CCTV 비디오 변형 여부도 분석할 수 있다.
우리 대학 전산학부 이흥규 교수 연구팀이 새로운 인공지능 구조와학습 방법론, 그리고 실험실 환경에서는 구하기 힘든 고급 변형 이미지 영상들을 사용해 영상 이미지 위변조 탐지 소프트웨어인 `카이캐치(KaiCatch)'의 영상 이미지 정밀도와 정확도를 크게 높일 뿐만 아니라 비디오 편집 변형도 탐지할 수 있는 카이캐치 2.1 버전을 개발했다고 13일 밝혔다.
카이캐치 소프트웨어는 `이상(異常) 유형 분석 엔진'과 `이상(異常) 영역 추정 엔진' 두 개의 인공지능 엔진으로 구성된다. `이상 유형 분석 엔진'은 블러링, 노이즈, 크기 변화, 명암 대비 변화, 모핑, 리샘플링 등을 필수 변이로 정의해 이를 탐지하며 `이상 영역 추정 엔진'은 이미지 짜깁기, 잘라 붙이기, 복사 붙이기, 복사 이동 등을 탐지한다. 이번에 새로 개발한 기술은 `이상 영역 추정 엔진'으로 기존 기술에서는 이상 영역 탐지 시 그레이 스케일(회색조)로 이상 유무를 탐지하였으나 분석 신호의 표현력이 낮고 탐지 오류가 많아 위변조 여부 판정에 어려움이 많았다. 이번에 개발된 기술은 색상 정보와 주파수 정보를 함께 활용해 정밀도(precision)와 재현율(recall)이 크게 향상되고 변형 영역을 컬러 스케일로 표현함으로써 해당 영역의 이상 유무뿐만 아니라 위변조 여부도 더욱 명확하게 판별이 가능해졌다.
연구팀은 이번 연구에서 영상 생성 시 발생하는 흔적과 압축 시 발생하는 흔적 신호들을 함께 분석하기 위해 색상 정보와 주파수 정보를 모두 활용하는 접근 방법을 학계 처음으로 제시했다. 또 이러한 방법론을 설계 구현하기 위해 주파수 정보를 하나의 분할 네트워크에서 직접 입력으로 받아들이는 방식의 ‘압축 왜곡신호 탐지 네트워크(Compression Artifact Tracing Network, 이하 CAT-Net)’을 학계 최초로 개발하고 기존 기법들과 비교해 탐지 성능이 크게 뛰어남을 입증했다. 개발한 기술은 기존에 제시된 기법들과 비교할 때 특히 원본과 변형본을 판별하는 평가 척도인 F1 점수, 평균 정밀도(average precision)에서 대단히 뛰어나 실환경 위변조 탐지 능력이 크게 강화됐다.
비디오 편집 변형의 경우도, 프레임 삭제, 추가 등에 의한 편집 변형이 흔히 CCTV 비디오 등에서 발생한다는데 착안해 이러한 비디오 편집 변형을 탐지하는 기능 역시 이번 카이캐치 2.1 버전에 탑재됐다.
이번에 카이캐치 2.1 소프트웨어를 연구 개발한 이흥규 교수는 "영상 이미지 위변조 소프트웨어인 카이캐치를 휴대폰에 탑재되는 안드로이드 앱 형태로 일반에 소개한 2021년 3월 이후 현재까지 카이캐치 앱을 통한 900여 건의 위변조 분석 의뢰와 개별적으로 60건이 넘는 정밀 위변조 분석 의뢰를 받았다. KAIST 발표 논문 수준이나 실험 결과 등을 감안할 때 위변조 분야 최고 기술로 만든 소프트웨어인데, 오탐지율이 높아 실제 탐지 정밀도가 이론치보다 매우 낮았다. 많은 경우 위변조나 변형 여부에 대한 명확한 기술 판정이 불가능했으나 이번에 개발한 카이캐치 2.1 은 CAT-Net이라는 새로운 네트워크 구조와 학습 방법론, 그리고 ‘색상 및 주파수 영역 왜곡 흔적 동시 분석’이라는 첨단 기술을 사용해 정밀도를 높여, 보다 명확한 판별이 가능하도록 개발됐다. 앞으로 영상 위변조 판단 여부가 어려운 경우가 많이 줄어들기를 기대한다”고 말했다.
이 교수는 이어 "비디오는 MP4 파일 포맷이, 그리고 영상 이미지는 JPEG 이미지들이 일반인들이 널리 사용한다는 점에서 해당 포맷을 주 개발 대상으로 삼았다. 영상 이미지의 경우 영상 편집 변형 시 영상에 남겨지는 인위적으로 발생하는 JPEG 압축 미세 신호 탐지에 주안점을 두어, 위변조 여부와 위변조 영역을 잡아내는 것에 집중했다. 비디오의 경우 특정 프레임들을 삭제하거나 삽입하는 경우, 프레임 부분 편집 후 재압축 하는 경우 등을 탐지한다. 최근 CCTV 비디오 편집 여부에 대한 분쟁이 많아 크게 도움을 줄 수 있을 것으로 기대하며 향후에도 지속적으로 연구 개발해 취약점들을 보완해 나갈 계획이다ˮ 고 덧붙였다.
현재 카이캐치 소프트웨어는 안드로이드 기반 휴대폰의 구글 플레이스토어에서 ‘카이캐치’를 검색하여 앱을 다운로드 받아 설치한 후, 영상 이미지들을 카이캐치에 업로드하면 위변조 여부를 간단하게 테스트해 볼 수 있다.
한편 이번 연구는 제1 저자로 참여한 우리 대학 전기및전자공학부 권명준 박사, 그리고 김창익 교수, 남승훈 박사, 유인재 박사 등과 공동으로 수행됐으며, `스프링거 네이처(Springer Nature)'에서 발간하는 컴퓨터 비전 분야 톱 국제저널인 `국제 컴퓨터 비전 저널(International Journal of Computer Vision, IF 7.410)'에 2022년 5월 25일 字 온라인판에 게재됐다. (논문명 : Learning JPEG Compression Artifacts for Image Manipulation Detection and Localization)
이번 연구는 한국연구재단 창의도전연구기반지원사업지원과 KAIST 창업기업인 ㈜디지탈이노텍(http://www.kaicatch.com/) 과의 산학협력 연구로 수행됐다.
2022.06.13
조회수 7700
-
인공지능의 오랜 난제를 뇌 기반 인공지능으로 풀다
우리 대학 바이오및뇌공학과 이상완 교수(신경과학 인공지능 융합연구센터장) 연구팀이 뇌 기반 인공지능 기술을 이용해 인공지능의 난제 중 하나인 과적합-과소적합 상충 문제를 해결하는 원리를 풀어내는 데 성공했다고 5일 밝혔다.
이상완 교수와 김동재 박사(現 뉴욕대학교 박사후 연구원)가 주도하고 우리 대학 정재승 교수가 참여한 이번 연구는 `강화학습 중 편향-분산 상충 문제에 대한 전두엽의 해법'이라는 제목으로 국제 학술지 셀(Cell)의 오픈 액세스 저널인 `셀 리포트(Cell Reports)'에 지난해 12월 28일 字 온라인판에 게재됐다. (논문명: Prefrontal solution to the bias-variance tradeoff during reinforcement learning)
최근 인공지능 모델들은 다양한 실제 문제들에 대해 최적의 해법을 제시하지만, 상황 변화에 유동적으로 대응하는 부분에 있어서는 여전히 어려움을 겪고 있다. 기계학습에서는 이를 과소적합-과적합의 위험성 (underfitting-overfitting risk) 또는 편향-분산 상충 문제(bias-variance tradeoff)라 하며 오랫동안 연구됐지만, 실제 세계와 같이 상충 조건이 계속 변하는 상황에서의 명확한 해법은 아직 제안된 바가 없다.
반면 인간은 현재 주어진 문제에 집중하면서도(과소적합 문제 해결), 당면 문제에 과하게 집착하지 않고(과적합 문제 해결) 변하는 상황에 맞게 유동적으로 대처한다. 연구팀은 뇌 데이터, 확률과정 추론 모형, 강화학습 알고리즘을 이용해 인간의 뇌가 이 문제를 어떻게 해결하는지에 대한 이론적 틀을 마련하고 이로부터 유동적인 메타 강화학습 모델을 도출해냈다.
놀랍게도 인간의 뇌는 중뇌 도파민 회로와 전두엽에서 처리되는 `예측 오차'의 하한선(prediction error lower bound)이라는 단 한 가지 정보를 이용해 이 문제를 해결한다. 우리의 전두엽, 특히 복외측전전두피질은 현재 내가 사용하고 있는 문제 해결 방식으로 주어진 문제를 얼마나 잘 풀 수 있을지에 대한 기대치의 한계를 추정하고(예: `이렇게 풀면 90점까지는 받을 수 있어'), 변화하는 상황에 맞춰 최적인 문제 해결전략을 유동적으로 선택하는 과정 (예: `이렇게 풀면 기껏해야 70점이니 다르게 풀어보자')을 통해 과소적합-과적합의 위험을 최소화하게 된다.
이상완 교수 연구팀은 2014년 해당 전두엽 영역이 환경의 불확실성을 바탕으로 강화학습전략을 유동적으로 조절하는 데 관여한다는 사실을 처음 발견했고(`뉴런(Neuron)' 학술지에 발표), 2015년에는 인과관계 추론 과정에도 관여한다는 사실을 발견했다(`PLOS Biology' 학술지에 발표). 이어 2019년에는 해당 뇌 영역이 문제의 복잡도까지 고려할 수 있다는 사실을 발견했다(`네이처 커뮤니케이션즈(Nature Communications)' 학술지에 발표).
이러한 일련의 연구 결과들은 자신의 학습 및 추론 능력을 스스로 평가하는 인간의 메타 인지 능력을 보여주는 증거로, 이 능력을 바탕으로 인공지능이 풀기 어려워하는 현실 세계의 다양한 상충적 상황들을 풀어낼 수 있다는 `전두엽 메타 학습 이론'을 정립한 바 있다(`사이언스 로보틱스(Science Robotics)' 학술지에 발표). 이번 연구는 이 이론에 기반해 인공지능의 오랜 난제 중 하나인 과소적합-과적합 상충 문제를 실제로 풀어낸 최초의 사례로 평가된다.
연구를 통해 개발된 메타 강화학습 모델을 이용하면 간단한 게임을 통해 인간의 유동적 문제 해결 능력을 간접적으로 측정할 수 있다. 더 나아가 스마트 교육이나 중독과 관련된 인지 행동치료에 적용할 경우 상황 변화에 유동적으로 대처하는 인간의 문제 해결 능력 자체를 향상할 수 있을 것으로 기대된다. 차세대 인공지능, 스마트 교육, 인지 행동치료 등 다양한 분야에 파급력이 큰 원천 기술로 최근 국내 및 해외 특허 출원이 완료된 상태다.
연구를 주도한 제1 저자 김동재 박사는 "인간 지능의 특장점에 대한 이해가 얼마나 중요한지 보여주는 연구 중 하나ˮ라고 말했다. 연구 책임자인 이상완 교수는 "인공지능이 우리보다 잘 푸는 문제가 많지만, 반대로 인공지능으로 풀기 어려운 문제들이 우리에게는 정말 쉽게 느껴지는 경우들이 많다. 인간의 다양한 고위 수준 능력을 인공지능 이론 관점에서 형식화하는 연구를 통해 인간 지능의 비밀을 하나씩 풀어나갈 수 있을 것으로 기대된다ˮ라며 "이러한 뇌 기반 인공지능 연구는 인간의 지능을 공학적으로 탐구하는 과정으로 볼 수 있으며, 인간과 인공지능이 서로 도우며 함께 성장해 나갈 수 있는 명확한 기준점을 마련할 수 있을 것ˮ이라고 말했다. 이상완 교수는 뇌 기반 인공지능 연구의 독창성과 도전성을 인정받아 구글 교수 연구상과 IBM 학술상을 받은 바 있다.
연구팀은 과학기술정보통신부의 재원으로 정보통신기획평가원의 지원을 받아 설립한 KAIST 신경과학-인공지능 융합연구센터에서 기반 기술을 활용해 인간 지능을 모사한 차세대 인공지능 모델을 개발하고, 아울러 딥마인드, IBM 인공지능 연구소, MIT, 옥스퍼드 대학 등 국제 공동연구 협약 기관과 공동연구를 통해 기술의 파급력을 높여나갈 계획이라고 말했다.
한편 이번 연구는 삼성전자 미래기술육성센터, 과학기술정보통신부 정보통신기획평가원 및 한국연구재단의 지원을 받아 수행됐다.
2022.01.05
조회수 9401
-
형광 염색 없이 분자 정보를 보는 AI 현미경 개발
우리 대학 물리학과 박용근 석좌교수 연구팀이 형광 염색 없이 세포의 분자 정보를 볼 수 있는 인공지능 현미경 기술을 개발했다고 20일 밝혔다.
광학 현미경은 수백 년 전부터 현재에 이르기까지 생물학 및 의학에서 가장 중요하게 쓰이는 기술 중 하나로, 이미지 형성 원리에 따라 여러 형태로 발전해왔다. 최근 수십 년간 분자생물학이 눈부시게 발전하면서 세포 내의 특정 구조를 형광(fluorescence) 으로 표지하는 것이 가능해졌고, 이처럼 높은 생화학적 특이성(biochemical specificity) 덕분에 형광 현미경은 현재 가장 폭넓게 쓰이는 광학 현미경 기술이 됐다.
그러나 형광 현미경은 형광 표지 자체가 세포를 변형하는 것이기 때문에 세포에 부담을 주게 되고, 밝기와 세포독성, 안정성 문제 때문에 초고속 또는 장기간 측정이 힘들며, 제한된 색깔로 인해 다양한 구조를 동시에 보는 것이 어려운 근본적인 한계가 있다.
이와는 대조적으로, 각 물질과 빛의 상호작용을 결정하는 근본적인 특성인 굴절률(refractive index)을 이용해 아무런 염색을 하지 않아도 되는 현미경 기술 또한 꾸준히 발전해왔다. 굴절률로부터 파생되는 빛의 흡수, 위상차 등을 이용한 전통적인 현미경은 물론, 최근에는 굴절률 자체를 3차원 상에서 정량적으로 측정하는 다양한 홀로그래픽 현미경(holographic microscopy) 기술이 박용근 교수 연구팀에서 개발돼 상용화된 바 있다. 이러한 비표지(label-free) 현미경 기술은 형광 현미경과 비교해 여러 가지 장점을 갖고 있지만, 굴절률과 세포 내 구조들의 관계가 명확하지 않아 분자 특이성이 떨어진다는 단점이 있었다.
박용근 교수 연구팀에서는 2012년 초부터 조영주 졸업생(제1 저자, 물리학과·수리과학과 학사 11학번·KAIST 총장 장학생, 現 스탠퍼드대학교 응용물리학과 박사과정) 주도로 홀로그래픽 현미경 분야에 인공지능을 도입해 특이성 문제를 해결하려는 일련의 연구가 시작됐다.
우선 형태적으로는 비슷하나 생화학적인 구성에 차이가 있는 시료(여러 종의 박테리아, 다양한 분류의 백혈구 등)의 굴절률 영상은 사람 눈에는 비슷하게 보이는데, 흥미롭게도 인공지능은 이를 높은 정확도로 분류할 수 있음을 보였다(2013-2014년 KAIST 학부연구프로그램(URP) 이후, 2015년 Optics Express, 2017년 Science Advances, 2020년 ACS Nano 등 게재). 이러한 결과는 매우 다양한 생체 시료에서 일관되게 관찰됐고, 따라서 연구팀은 생화학적 특이성이 높은 정보가 굴절률의 공간 분포에 숨겨져 있다는 가설을 세웠다.
세포생물학 분야 최고 권위지인 `네이처 셀 바이올로지(Nature Cell Biology, IF 28.82)'에 12월 7일 발표된 이번 연구(논문명: Label-free multiplexed microtomography of endogenous subcellular dynamics using generalizable deep learning)에서, 연구팀은 홀로그래픽 현미경 영상으로부터 형광 현미경 영상을 직접 예측할 수 있음을 보임으로써 이 가설을 증명했다. 인공지능이 찾아낸 굴절률 공간 분포와 세포 내 주요 구조 간의 정량적인 관계를 이용해 굴절률의 공간 분포 해독이 가능해졌고, 놀랍게도 이러한 관계는 세포 종류와 관계없이 보존돼 있음을 확인했다.
이 과정에서 만들어진 `인공지능 현미경'은 홀로그래픽 현미경과 형광 현미경의 장점만을 갖는다. 즉, 형광 표지 없이 형광 현미경의 특이적인 영상을 얻을 수 있다. 따라서 자연 상태 그대로의 세포에서 동시에 수많은 종류의 구조를 3차원으로 볼 수 있으며, 밀리초(ms) 수준의 초고속 측정과 수십 일 수준의 장기간 측정이 가능해졌다. 더욱이 기존 데이터에 포함되지 않은 새로운 종류의 세포에도 즉시 적용이 가능하기에, 다양한 생물학 및 의학 연구에 응용이 가능할 것으로 기대된다.
이번 연구는 조영주 박사과정과 박용근 교수가 지난 10여 년간 발전시켜온 광학 및 인공지능 기술력 이외에도, 다학제적 접근과 KAIST 기술을 바탕으로 한 창업 덕분에 가능했다. 생명과학과 허원도 교수(공동 교신저자)와 박외선 박사(공동 제1 저자)가 오랜 기간 발전시켜온 분자생물학 및 형광 현미경 기술 덕분에 인공지능 학습에 필요한 데이터를 얻을 수 있었으며, 조영주 박사과정이 허원도 교수 연구팀에서 2015년 1년간 연구했던 경험 덕분에 구체적인 아이디어가 나오게 됐다.
또한 박용근 교수 연구팀 홀로그래픽 현미경 기술로 창업한 ㈜토모큐브를 통해 현미경 및 데이터 형식이 규격화돼 대규모 인공지능 학습이 용이했고, 이를 바탕으로 ㈜토모큐브 조형주 연구원(공동 제1 저자) 및 민현석 연구원(공동 교신저자) 등 인공지능 전문 인력이 합류하면서 최신 인공지능 기법들의 빠른 도입이 가능했다.
한편 이번 연구는 한국연구재단의 창의연구사업, 과학기술정보통신부의 정보통신방송 기술개발사업 (홀로그램핵심기술), 일자리진흥원의 연구장비개발 및 고도화지원사업, 한국보건산업진흥원의 보건의료기술 연구개발사업의 지원을 받아 수행됐다.
2021.12.20
조회수 8643
-
신소재 데이터 고속 분석을 위한 인공지능 훈련 방법론 개발
우리 대학 신소재공학과 홍승범 교수 연구팀이 시뮬레이션을 기반으로 한 신소재 데이터 분석을 위한 인공지능을 개발했다고 24일 밝혔다.
최근 컴퓨팅 파워가 기하급수적으로 증가함에 따라 인공지능을 활용한 다양한 응용들이 실생활에 활용되고 있으며, 이에 인공지능을 활용해 신소재 데이터를 고속으로 분석하고 소재를 역설계하는 기술의 연구 역시 가속화되고 있다.
최근 인공지능의 효율 및 정확도를 증가시키는 연구를 바탕으로 자율주행 자동차, 데이터베이스 기반의 마케팅 및 물류 시스템 보조 등의 분야에 인공지능의 활용이 높아지고 있다. 특히 신소재 개발에 장시간이 소요되는 점을 고려할 때, 소재 및 공정 개발에 인공지능을 활용해 다양한 구조 및 물성 데이터 사이의 상관관계를 빠르게 분석해 신소재 개발 소요 시간을 획기적으로 줄일 수 있는 인공지능 방법론이 주목을 받고 있다.
그러나 신소재 데이터의 경우, 대량의 유의미한 실험 데이터를 구하기 어렵고 기업들이 중요한 데이터는 대외비로 취급하고 있어서 인공지능을 소재 데이터 영역에 적용하는 것이 상당히 어려운 것이 현실이다. 이런 데이터의 다양성, 크기 및 접근성 문제가 해결돼야 하며, 이를 보완하기 위해 생성 모델 및 적절한 데이터의 합성에 관한 연구가 진행되고 있다. 인공지능의 성능 향상을 위해 생성되는 데이터 또한 실제 소재가 가지는 물리적 제약을 따라야 하며, 소재 데이터의 재료적 특징을 파악할 수 있는 기술이 필요하다.
홍승범 교수 연구팀이 이번에 개발한 인공지능 훈련 방법론은 훈련을 위해 생성되는 데이터가 물리적 제약을 공유하도록 위상 필드 시뮬레이션을 활용해 기초 데이터를 형성하고 소재 데이터가 가지고 있는 실제 측정 과정에서 발생하는 다양한 잡음, 입자의 분포 정보 및 입자의 경계를 모사해 크기가 작은 소재 데이터의 한계를 해결했다. 기존에 수작업으로 작성한 소재 데이터를 활용한 인공지능과의 상 분리 성능을 비교했으며, 생성된 데이터의 모사 요소가 상 분리에 영향을 미치는 영향을 파악했다.
아울러 이번 연구에서 제시하는 소재 데이터 생성을 활용한 인공지능 훈련 방법은 기존의 수작업으로 훈련 데이터를 준비하는 시간을 크게 단축할 수 있으며, 인공지능의 전이 학습 및 다양한 물리적 제약을 바탕으로 하는 위상 필드 시뮬레이션 활용을 바탕으로 다양한 소재 데이터에 빠르게 적용할 수 있는 장점이 있다.
홍승범 교수는 "인공지능은 분야를 막론하고 다양한 영역에서 활용되고 있으며, 소재 분야 역시 인공지능의 도움을 바탕으로 신소재 개발을 더욱 빠르게 완료할 수 있는 세상을 맞이할 것이다ˮ라며, "이번 연구 내용을 신소재 개발에 바로 적용하기에는 데이터 합성 측면에서의 여전히 보강이 필요하지만, 소재 데이터 활용에 큰 문제가 됐던 훈련 데이터를 준비하는 긴 시간을 단축해 소재 데이터의 고속 분석 가능성을 연 것에 연구의 의의가 있다ˮ고 말했다.
신소재공학과 염지원 연구원, 노스웨스턴(Northwestern) 대학의 티베리우 스탄(Tiberiu Stan) 박사가 공동 제1 저자로 참여한 이번 연구는 노스웨스턴 대학의 피터 부리스(Peter Voorhees) 교수 연구실과 함께 진행됐으며 연구 결과는 국제 학술지 `악타 머터리얼리아(Acta Materialia)'에 게재됐다. (논문명: Segmentation of experimental datasets via convolutional neural networks on phase field simulations)
한편 이번 연구는 KAIST 글로벌특이점 연구 지원으로 수행됐다.
2021.08.24
조회수 8625
-
이상수 교수팀, iF 디자인 어워드 금상 포함 8개상 석권
우리 대학 이상수 산업디자인학과 교수가 이끄는 디자인팀이 세계 최고 권위의 디자인 공모전인 'iF 디자인 어워드 2021(International Forum Design Award 2021)'에서 최고상인 금상(Gold Award)을 비롯해 총 8개의 상을 받았다.
이 교수팀의 이번 성과는 우리 대학이 iF 디자인 어워드에서 금상을 받은 최초의 사례로 산학 연계 수업을 통해 수상작을 배출했다는 점에서 특히 주목할 만하다. 금상을 수상한 얼라인(ALINE, 정은희, 남서우, 박수연, 황영주, Edwin Truman, 이선옥, 최다솜 학생 참여)은 최근 화두로 떠오르고 있는 ESG 투자(사회적책임투자)를 기반으로 디자인됐다. 새로운 개념으로 투자할 수 있게 도와주는 모바일 애플리케이션 솔루션으로 수익률을 중심으로 판단하던 기존의 방식에서 벗어나 사용자의 가치관을 반영해 투자와 소비를 유도하는 서비스다. 심사위원단은 "정제된 사용자경험(UX) 디자인을 통해 투자 및 소비의 새로운 장을 열었다”고 평가했다.
이뿐만이 아니라 iF 디자인어워드 2021의 서비스디자인 부문 표지 작품으로 게재된 것과 동시에 iF가 지구의 날을 맞아 발행한 '2020-2021 지속 가능한(sustainable) 소비를 위한 디자인 10선'에도 선정되는 등 많은 관심을 받았다.
또한, 대학에서 구성된 디자인팀이 학생 부문이 아닌 일반 기업 경쟁 부문에 참가해 한 번에 8개의 상을 수상한 것 역시 국제적으로도 극히 이례적인 성과로 평가받고 있다. 이상수 교수팀은 52개국 1만여 개 작품이 출품된 올해 공모전에서 서비스 디자인 부문 3개, 사용자 인터페이스(UI) 부문 2개, 사용자 경험(UX) 부문 2개, 커뮤니케이션 부문 1개 등 4개 부문에 걸쳐 총 8개의 상을 받았다. 특히, 금상은 1만여 개의 경쟁 작품 중에서 75개의 출품작에만 주어지는 최고 등급의 상이라는 점에서 이 교수팀의 이번 성과는 더욱 큰 의미를 가진다. 그밖에, 서비스 디자인 부문에서는 부모와 자녀가 함께하는 투자 서비스 핀토(Pinto, 김영우, 김태륜, 조해나 학생 참여), UI부문에서는 멘탈 어카운팅을 반영한 인터페이스 디자인 아쿠아(Aqua, 정기항, 신동욱, 최성민, 임현승 학생 참여), 커뮤니케이션 부문에서는 주식 선물 모바일 애플리케이션 스톡박스(Stockbox, 김병재, 박찬형, 신준범, 이민하, 김우석 학생 참여) 등이 본상을 받았다.
이번 성과를 이끈 이상수 교수는 2020년 NH투자증권-KAIST UX디자인 연구센터를 개소해 새로운 투자 서비스 및 UX디자인을 목표로 연구해왔다. 이 교수(NH투자증권-KAIST UX디자인 연구센터장)는 "KAIST 산업디자인학과 학생들이 세계 최고 수준의 디자인 역량을 갖췄다는 것을 입증받아 기쁘다”라고 소감을 전했다. 이어, "디자인이 단순히 사용자를 즐겁게 만드는 것에 그치는 것이 아니라 더 좋은 사회를 만드는데 기여할 수 있도록 앞으로도 최선을 다할 것ˮ 이라고 수상 소감을 밝혔다.
이상수 교수는 매년 산학 연계 수업을 통해 산업 현장에서 쓰일 수 있는 실질적인 디자인 교육을 지향하고 있으며, 지난 2018년에도 네이버와의 협업을 통해 레드닷 디자인 어워드에서 본상 3개를 한 번에 수상하며 주목받은 바 있다. 한편, iF 디자인 어워드는 레드닷, IDEA 디자인상과 더불어 세계 3대 디자인상으로 손꼽히는 권위 있는 시상식이다. 제품·패키지·커뮤니케이션·서비스디자인·사용자 경험(UX)·사용자 인터페이스(UI)·콘셉트·인테리어·건축 등 총 9개 부문에서 디자인 차별성과 영향력 등을 종합적으로 평가해 수상작을 선정하고 있다.
2021.05.04
조회수 26774
-
다른 사람들과 디지털 게임을 하는 중장년층, 웰빙 지수 높아
중장년층이 다른 사람과 함께 디지털 게임을 하는 것이 웰빙 지수, 사회적 지지 만족도와 연관돼 있다는 연구 결과가 나왔다. 이번 연구는 우리나라에서 진행된 설문 연구지만, 그동안 게임 연구에서 주목받지 못했던 중장년층 게이머들의 삶의 만족도를 살펴봤다는 점에서 좋은 평가를 받아 국제 학술지에 게재됐다.
우리 대학 문화기술대학원 도영임 초빙교수가 50~60대 중장년층 190명을 대상으로 한 온라인 설문 연구 결과를 발표했다고 18일 밝혔다. 연구팀은 게임을 다른 사람과 함께 플레이하는 그룹, 게임을 혼자 플레이하는 그룹, 게임을 하지 않는 그룹으로 나눠 웰빙 지수, 사회적 지지 만족도, 게임에 대한 인식에 차이가 있는지 알아봤다. 그 결과, 디지털 게임이 사람들을 고립시킨다는 일반적인 고정관념과는 정반대의 결과가 나왔다.
중장년층에서 게임을 누군가와 함께 플레이하는 사람이 게임을 혼자 플레이하는 사람, 그리고 게임을 하지 않는 사람보다 웰빙 지수와 사회적 지지 만족도가 높았다. 또한, 게임을 혼자 플레이하더라도 게임을 전혀 하지 않는 사람보다 사회적 지지 만족도가 높다는 흥미로운 결과가 나왔다.
그뿐만 아니라, 중장년 게임 이용자들은 비 이용자들에 비해 `게임은 창의성이나 집중력 향상, 두뇌 계발 등에 도움이 된다', `게임 활동을 통해 새롭고 다양한 활동과 도전을 경험해 볼 수 있다', `가족이 같이 게임을 즐기면 관계에 오히려 도움이 될 수 있다'와 같은 긍정적인 인식에 더 동의했다.
이 결과는 중장년층에서 게임을 하면 웰빙 지수가 높아진다는 인과관계를 증명하는 것은 아니지만, 그동안 게임 문화 참여자로 주목하지 않았던 중장년층 게이머와 그들이 경험하는 게임의 긍정적인 사회 정서적 역할을 조망하였다는 데 의의가 있다.
한편, 중장년층이 주로 하는 게임 장르는 애니팡, 테트리스와 같은 퍼즐 게임과 고스톱, 바둑과 같은 온라인 보드게임이 대다수를 차지했다. 연구팀은 시니어들이 즐길 수 있는 상용 게임이 제한돼 있어 이러한 편중이 일어날 수 있다고 봤다.
2020년 한국콘텐츠진흥원의 게임 이용자 실태 조사에 따르면, 50대의 56.8%, 60~65세의 35%가 게임을 플레이하는 것으로 나타났다. 연구팀은 기존 게임들이 주로 젊은 게이머들을 대상으로 서비스했지만, 앞으로 고령(시니어) 세대가 함께 즐길 수 있는 다양한 게임을 제작하고, 이들에게 게임에 대한 정보를 제공할 필요가 있다고 설명했다. 또한, 게임 시장의 새로운 수요층으로 떠오르는 시니어 게이머에 대한 지속적인 심화 연구가 필요하다고 강조했다.
문화기술대학원 이세연 박사과정 학생과 시정곤 교수가 각각 제1, 제2 저자로 참여한 이 논문은 국제학술지 `엔터테인먼트 컴퓨팅(Entertainment Computing)' 2월 27일 字에 실렸다. (논문명 : The relationship between co-playing and socioemotional status among older-adult game players, https://doi.org/10.1016/j.entcom.2021.100414)
한편 이번 연구는 문화체육관광부와 한국콘텐츠진흥원의 <시니어 게임 플레이 지원 기술 및 게임 서비스 모델 개발> 과제의 지원을 받아 수행했다.
2021.03.18
조회수 102079
-
인공지능 기술을 이용한 유전자 전사인자 예측 시스템 개발
우리 대학 생명화학공학과 이상엽 특훈교수와 미국 캘리포니아대학교 샌디에이고캠퍼스(UCSD) 생명공학과 버나드 팔슨(Bernhard Palsson) 교수 공동연구팀이 인공지능을 이용해 단백질 서열로부터 *전사인자를 예측하는 시스템인 '딥티팩터(DeepTFactor)'를 개발했다고 29일 밝혔다. 이번 연구는 국제학술지인 '미국국립과학원회보(PNAS)'에 12월 28일 字 게재됐다. (논문명: DeepTFactor: A deep learning-based tool for the prediction of transcription factors)
※ 전사인자 (transcription factor) : 유전자의 전사(유전 정보를 복사하는 과정)를 조절하는 단백질. 특정 DNA 서열에 특이적으로 결합해 유전자의 전사를 조절한다.
※ 저자 정보 : 김기배(한국과학기술원, 제1 저자), 예 가오(Ye Gao) (UCSD, 제2 저자), 버나드 팔슨(Bernhard Palsson) (UCSD, 제3 저자), 이상엽(교신저자) 포함 총 4명
전사인자는 특정한 DNA 서열에 특이적으로 결합해 유전자의 전사(유전 정보를 복사하는 과정)를 조절하는 단백질이다. 전사인자로 인한 유전자 전사를 분석함으로써 유기체가 유전적 또는 환경적 변화에 어떻게 반응해 유전자의 발현을 제어하는지 이해할 수 있다. 이러한 점에서 유기체의 전사인자를 찾는 것은 유기체의 전사 조절 시스템 분석을 위한 첫 단계라고 할 수 있다.
지금까지 새로운 전사인자를 찾기 위해서는 이미 알려진 전사인자와의 상동성(유사한 성질)을 분석하거나, 기계학습(머신러닝)과 같은 데이터 기반의 접근 방식을 이용했다. 기존의 기계학습 모델을 이용하기 위해서는 분자의 물리 화학적 특성을 계산하거나, 생물학적 서열의 상동성을 분석하는 등, 해결하고자 하는 문제에 대한 전문 지식에 의존해 모델의 입력값으로 사용할 특징을 찾아내는 과정이 필요하다.
한편, 심층 학습(딥러닝)은 문제 해결을 위한 잠재적인 특징을 내재적으로 학습할 수 있기에 최근 다양한 생물학 분야에서 활용되고 있다. 하지만, 심층 학습을 이용한 예측 시스템의 경우 시스템 내부의 복잡한 연산 때문에 추론 과정을 직접 확인할 수 없는 `블랙박스(black box)'라는 특징을 가지고 있다.
공동연구팀은 심층 학습 기법을 이용해 주어진 단백질 서열이 전사인자인지 예측할 수 있는 시스템인 딥티팩터(DeepTFactor)를 개발했다. 딥티팩터는 단백질 서열로부터 전사인자를 예측하기 위해 세 개의 병렬적인 합성곱 신경망(convolutional neural network)을 이용한다. 공동연구팀은 딥티팩터를 이용해 대장균(Escherichia coli K-12 MG1655)의 전사인자 332개를 예측했으며, 그중 3개의 전사인자의 게놈 전체 결합 위치(genome-wide binding site)를 실험으로 확인함으로써 딥티팩터의 성능을 검증했다.
공동연구팀은 나아가 딥티팩터의 추론 과정을 이해하기 위해 특징 지도 (saliency map) 기반의 심층 학습 모델 해석 방법론을 사용했다. 이를 통해 딥티팩터의 학습 과정에서 전사인자의 DNA의 결합 영역에 대한 정보가 명시적으로 주어지지 않았지만, 내재적으로 이를 학습해 예측에 활용한다는 사실을 확인했다.
연구팀 관계자에 따르면, 특정 생물군의 단백질 서열만을 위해 개발됐던 이전 예측 방법론들과 달리, 딥티팩터는 모든 생물군의 단백질 서열에서 우수한 성능을 보여 다양한 유기체의 전사 시스템 분석에 활용 가능할 것으로 기대된다.
이상엽 특훈교수는 “이번 연구에서 개발한 딥티팩터를 이용해서 새롭게 발견되는 단백질 서열과 아직 특성화되지 않은 수많은 단백질 서열을 높은 처리 능력으로 분석할 수 있게 됐다”며 “이는 유기체의 전자 조절 네트워크 분석을 위한 기초 기술로써 활용 가능할 것”이라고 밝혔다.
한편, 이번 연구는 과기정통부가 지원하는 기후변화대응기술개발사업의 바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제 지원을 받아 수행됐다.
2020.12.30
조회수 54455
-
심현철 교수팀, 2020 인공지능 그랜드 챌린지 우승
우리 대학 전기및전자공학부 심현철 교수 연구팀이 25일 열린 2020 인공지능 그랜드 챌린지 3차 대회 제어지능 트랙에서 우승을 차지했다.
지난해 열린 대회에서도 우승을 차지한 심 교수팀은 대회 2연패라는 쾌거를 달성해 1차 대회를 통해 지원받은 11억 원을 포함해 총 24억 원가량의 연구비를 받게 된다.
이한섭(항공우주공학과), 김보성(전기및전자공학과) 박사과정 학생이 참여한 이번 대회는 복잡한 실내 환경에서 드론이 안전하게 비행해 조난자에게 물품을 전달하는 시나리오를 전제로 진행됐다.
벽, 창문, 그물 3개, 숲, 터널, 움직이는 블라인드가 있는 창문, 강풍 구간에서 정해진 위치에 물건 전달하기, 자동으로 정확한 착륙 지점에 하강하기 등 총 7개로 구성된 복잡한 장애물 환경을 극복할 수 있는 드론을 개발해 임무를 수행하는 방식이다.
주어진 코스의 규격이 사전에 공개되지 않기 때문에 출전팀은 장애물을 실측할 수 없는 상태로 대회를 준비해 임무를 완료해야 한다. 출전팀마다 총 3회의 기회가 부여되며 전체 임무를 순서대로 진행하는 과정에서 얼마나 많은 임무를 수행했는지에 따라 우승자가 가려진다. 만약, 성공한 임무의 숫자가 같을 경우 단시간에 임무를 종료한 팀이 우위에 오르게 된다.
심 교수 연구팀은 자체 개발한 실시간 정밀 측위시스템과 고속 비행제어 시스템, 복잡한 임무수행이 가능한 비행제어 시스템을 활용해 100% 자체 개발한 기술로 모든 임무를 완벽하게 수행했다.
총 5개의 출전팀 중 4개 팀이 다섯 번 째 임무 구간인 터널 입구에 도착하지 못한 채 대회를 종료했다. 심 교수 연구팀만이 유일하게 모든 임무를 완료했으며, 주어진 3차 시기를 진행하는 동안 계속해서 기록을 단축하는 압도적인 기량을 선보였다.
2020 인공지능 그랜드 챌린지는 심 교수팀이 출전한 제어 지능 트랙을 포함해 총 8개 종목으로 구성되어 있다. 우승팀은 앞으로 치뤄질 대회를 통해 모든 종목의 경기가 종료된 후 열리는 시상식에서 과학기술정보통신부 장관상을 받을 예정이다. 과기정통부가 주최하고 정보통신기획평가원(IITP)이 주관하는 이번 대회의 우승팀은 향후 인공지능 그랜드 챌린지의 다른 종목 우승팀들과 협업해 복잡한 환경에서 구조 임무를 수행하는 드론을 제작∙제공해 통합적인 임무 수행에 참여하게 된다.
우승을 이끈 심현철 교수는 “인공지능 관련 기술 개발의 중요성이 강조되고 있는 만큼 세계적으로 경쟁력 있는 기술을 개발하기 위해 매진할 계획”이라고 전했다. 이어, 심 교수는 “연구실에서 실내 비행 드론 외에도 민간 무인항공기, 자율주행차량, 배달 로봇, 캠퍼스 주행 트램 등을 개발하고 있으며 이들 자율이동체들에 요구되는 인공지능 기술을 개발 적용해서 관련 분야의 기술력 축적에 기여하고 싶다”고 강조했다.
2020.11.27
조회수 34585
-
초투과성 분리막을 이용한 이산화탄소 전환 시스템 개발에 성공
우리 대학 생명화학공학과 고동연 교수 연구팀이 에너지 집약 산업체의 이산화탄소 배출량을 줄이는 동시에 산업 부산물을 유용한 자원으로 전환하는 신개념 고체 탄산화 시스템을 개발했다고 23일 밝혔다.
연구팀이 개발한 이 시스템은 *중공사막 형태의 `초투과성 분리막'을 이용해 연속적으로 이산화탄소 포집과 전환이 가능하기 때문에 탄소 배출량을 대량으로 줄일 수 있다.
☞ 중공사막: 가운데가 비어있는 형태의 막. 인공 신장 투석기나 정수기 따위의 여과재로 사용된다.
생명화학공학과 황영은 박사과정이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `ACS 서스테이너블 케미스트리 앤드 엔지니어링(ACS Sustainable Chemistry & Engineering)' 10월호에 실렸는데 연구의 파급력을 인정받아 표지논문으로 선정됐다. (논문명 : Solid Carbonation via Ultrapermeable PIM-1 Hollow Fiber Membranes for Scalable CO2 Utilization).
최근 탄소배출권 가격이 오르면서 산업계의 이산화탄소 배출 비용에 대한 절감도 절실히 요구되고 있다. 또한 에너지 집약 산업체의 부산물(석탄회 및 철강 슬래그 등)에 대한 처리비용도 날로 증가하고 있어 이산화탄소를 산업 부산물과 반응시켜 부가가치가 있는 물질로 전환하는 데 관심이 쏠리고 있다.
특히, 이산화탄소를 탄산칼슘 등의 고체 탄산염으로 전환해 건설 소재로 이용하는 기술은 전 세계 시장에서 2030년까지 연간 약 1조 달러의 수익을 창출할 것으로 예상되며, 배출되는 이산화탄소를 연간 약 30~60억 톤 감축할 수 있는 기술로 주목받고 있다.
고동연 교수팀이 개발한 고체 탄산화 기술은 이산화탄소와 알칼리 금속(칼슘, 마그네슘)의 자발적 결정화 반응을 이용하는 일종의 자연모방 기술이다. 이 기술은 이산화탄소를 열역학적으로 가장 안정된 탄소 저장체인 고체 탄산염(CaCO3, MgCO3)으로 전환하는 기술이다. 고체 탄산염은 고품위 물성 제어를 통해 건설·토목 소재, 제지산업, 고분자, 의약, 식품, 정밀화학 분야에 활용할 수 있다.
결과적으로 고 교수팀이 개발한 기술을 활용하면 이산화탄소 배출량을 대폭 줄여 탄소배출권의 절약은 물론 고부가가치 생산물을 통해 추가적인 경제성을 확보할 수 있다는 게 큰 장점이다.
고 교수팀은 우선 미세다공성 고분자로 이뤄진 초투과성 분리막 기술을 통해 기존 공정 유닛보다 5~20배가량 작은 부피로 기존 공정 대비 50% 이상 뛰어난 물질전달 효율을 갖는 고체 탄산화 시스템을 구현하는 데 성공했다.
미세다공성 고분자는 회전할 수 없는 단단한 부분과 고분자 사슬이 뒤틀리는 지점이 반복적으로 나타나는 독특한 구조를 가지는데 기체 분자를 빠른 속도로 투과시킬 수 있어 가스 분리 분야에서 유망한 소재로 주목받고 있다.
연구팀은 이와 함께 미세다공성 고분자를 속이 빈 실과 같은 중공사막 형태로 가공해 모듈화할 수 있는 기술을 확보했다. 이렇게 제조된 초투과성 중공사막 모듈에 이산화탄소/질소 혼합 기체를 흘려보내면 이산화탄소만 선택적으로 빠르게 분리막을 가로질러 중공사막 외부의 알칼리 이온과 반응해 순간적으로 탄산염을 생성하는 원리를 연속식 모듈로 구현했다.
고 교수팀이 개발한 기술은 부피 대비 표면적이 기존 시스템보다 수 배 이상 높아 매우 높은 공간 효율성을 갖는 분리막 모듈의 특성을 이용해 장시간의 연속 공정이 가능한 게 특징이자 장점이다. 이 때문에 이산화탄소 전환 공정의 에너지 및 비용 대비 효율성을 높일 수 있어 고체 탄산염을 활용하는데 높은 경제성뿐만 아니라 이산화탄소 포집 및 전환(CCU) 기술 활성화에도 기여할 것으로 기대가 크다.
이번 연구를 주도한 고동연 교수는 "신기술을 적용해 이번에 새로 개발한 고체 탄산화 시스템은 온실가스 배출량이 많은 발전소나 제철소, 시멘트 제조업체 등 관련 산업계의 탄소배출권 구매량을 줄일 수 있고 동시에 자원 재순환을 통해 경쟁력을 증대시킬 수 있을 것으로 기대된다ˮ고 설명했다.
한편 이번 연구는 산업통상자원부 에너지국제공동연구사업의 지원을 받아 수행됐다.
2020.11.23
조회수 36082