-
웨어러블 압전 센서로 정확한 혈압 모니터링 가능
혈압은 전반적 건강과 뇌졸중, 심장마비의 잠재적 위험을 평가하는 주요 지표다. 혈압을 간편하고, 연속적으로 모니터링할 수 있는 웨어러블 의료제품들이 큰 주목을 받고 있으며, 최근 LED을 활용한 웨어러블 혈압 측정 제품들이 출시되고 있지만, 광센서 정확도의 한계로 인해 의료기기 인증 기준을 만족하는 데 어려움이 있다.
우리 대학 신소재공학과 이건재 교수 연구팀과 한국표준과학연구원, 가톨릭의대 협력 연구팀이 혈압 측정을 위한 고민감 웨어러블 유연 압전 센서를 개발했다고 17일 밝혔다.
이 교수팀은 수 마이크로미터 두께(머리카락 굵기의 백 분의 일)의 초고감도 무기물 압전 박막을 딱딱한 기판에서 고온 열처리 후 유연 기판에 전사하여 혈압 센서를 제작했으며, 피부에 밀착해 혈관의 미세한 맥박 파형에서 정확한 혈압을 측정하는 데 성공했다.
이번 연구에서 개발한 혈압 센서는 가톨릭 병원에서 진행한 임상시험에서 수축기 혈압, 이완기 혈압에서 모두 자동전자혈압계 국제 인증 기준인 오차 ±5 mmHg 이하, 표준편차 8mmHg 이하의 높은 기준을 만족했다. 또한, 웨어러블 워치에 혈압 센서를 탑재해 연속적인 혈압 모니터링이 가능하게 됐다.
이건재 교수는 “이번에 개발된 웨어러블 워치 형태의 혈압 센서는 신뢰성과 내구성이 우수할 뿐만 아니라, 정확하고 연속적인 혈압을 측정할 수 있어 고혈압 환자들을 위한 헬스케어 시장에서 핵심적인 역할을 할 것으로 기대된다”며, “현재 패치 형태의 수면용 혈압 센서를 추가 개발한 후 창업을 통한 기술 사업화에 박차를 가하고자 한다”라고 말했다.
이번 연구는 웨어러블플랫폼 소재기술센터, 휴먼플러스 융합연구개발사업 및 바이오/의료 융합 측정 표준기술 개발 재원으로 지원을 받아 수행됐으며, 국제 학술지 `어드밴스드 머터리얼즈(Advanced Materials)' 온라인 호에 3월 24일자 출판됐으며, 표지논문으로도 선정됐다.
2023.04.17
조회수 5383
-
리튬 금속 이차전지 수명 세계 최고 수준으로 구현
리튬이차전지의 이상적인 음극 소재로 주목받는 리튬 금속은 현재 상용 배터리인 그라파이트(graphite, 372 mAh/g)보다 10배 높은 용량을 가지고 있지만, 충·방전 과정 중 리튬 덴드라이트(dendrite)라 불리는 바늘 구조의 침전물이 쉽게 형성되는 근본적인 문제로 인해 상용화되지 못하고 있다.
우리 대학 신소재공학과 김일두 교수와 생명화학공학과 임성갑 교수 공동 연구팀이 리튬이온전지의 전해액 속에서 팽윤(고분자 화합물이 용매를 흡수해 부피가 늘어남)되는 초박형 공중합체 고분자 보호막을 적용해 리튬 금속 전지의 수명을 획기적으로 늘리는 데 성공했다고 28일 밝혔다.
리튬 금속의 낮은 쿨룽 효율, 짧은 전지 수명, 폭발 위험 등을 막기 위해 인공으로 고체-전해질 계면 (artificial solid-electrolyte interphase, 이하 SEI) 층을 보호막처럼 만들어 리튬 이온의 원활한 전달과 덴드라이트의 성장을 억제하기 위한 다양한 연구들이 진행되었다. 그러나, 기존의 인공 SEI 층들은 두께가 두꺼워 전지 내부의 높은 저항을 발생시키거나, 수백 사이클 이상의 구동 시 리튬 금속으로부터 떨어져 리튬 금속 음극의 장시간 안정성 유지에 어려움이 있었다. 무엇보다도, SEI 층의 형성 과정에서 반응성이 매우 큰 리튬의 손상이 발생하는 경우가 많아 원하는 형태의 SEI 층을 형성하는 데에 제약이 컸다.
공동 연구팀은 리튬 금속의 높은 반응성을 제어하고 덴트라이트 성장 및 전해액 고갈 문제를 해결하기 위해 `개시제를 이용한 화학 기상 증착법(initiated chemical vapor deposition, iCVD)'이라는 공정을 이용했다. 이 공정 기술은 리튬금속 표면에 손상없이 보호막으로 적용되도록 용매를 사용하지 않는 온화한 조건에서 공정을 진행하며 기능성 고분자 박막을 얇게 균일하게 적용할 수 있다는 장점이 있다.
공동 연구팀은 iCVD 공정으로 제조된 고분자 박막을 활용해 리튬 전극의 계면을 안정화하였다. 전해액과 만나 3배 팽윤되어 부드러운 SEI 구조체를 형성하는 고분자 보호막이 적용된 리튬 음극은 세계 최고 수준의 리튬 이온 운반율(0.95)과 이온 전도도(6.54 mS cm-1) 특성을 보였다. 특히 100 nm의 얇은 두께에서도 리튬 덴드라이트 성장을 효과적으로 막는 효과가 있음을 연구팀은 증명했다. 연구팀은 피디멤스가 코팅된 리튬 음극과 상용화된 양극(LiNi0.6Co0.2Mn0.2O2)을 배터리 셀(battery cell)로 제조해, 무려 600 사이클 이상 안정적으로 구동되는 세계 최고 수준의 성능을 구현했다.
생명화학공학과 임성갑 교수는 "전해액에서 팽윤되는 초박형 고분자 보호막을 iCVD 공정을 적용해 리튬 금속 대비 6배 이상 수명 특성이 개선된 리튬 금속 전지 개발에 성공했다ˮ고 밝혔으며, 신소재공학과 김일두 교수는 "고용량 리튬 이차전지뿐만 아니라 리튬-황 전지, 리튬-공기 전지와 같은 차세대 이차전지에도 필수적으로 사용되는 리튬 음극의 상용화를 앞당기는데 기여할 수 있을 것으로 기대된다ˮ 고 말했다.
이번 연구 결과는 우리 대학 졸업생 배재형 박사(現 경희대학교 화학공학과 교수), 우리 대학 최건우 박사과정, 우리 대학 송현섭 박사과정이 공동 제1 저자로 참여했으며, 국제 학술지 `어드밴스드 에너지 머티리얼즈(Advanced Energy Materials)' 온라인 호에 3월 8일자 출판되었으며, 표지논문 (Front Cover)으로도 선정됐다. (논문명 : Reinforcing native solid-electrolyte interphase layers via electrolyte-swellable soft-scaffold for lithium metal anode).
이번 연구는 KAIST-LG에너지솔루션 프론티어 리서치 랩 (Frontier Research Lab, FRL)과 과학기술정보통신부 선도연구센터 지원사업 (웨어러블 플랫폼 기술센터)의 지원을 받아 수행됐다.
2023.03.28
조회수 6078
-
폭발 위험 없고 저렴한 레독스 흐름전지 개발
대표적인 2차전지인 리튬-이온 전지를 대체할 수 있는 수계 레독스 흐름 전지는 낮은 원가, 낮은 발화 위험, 그리고 20년 이상의 장수명 특성을 가져 신재생 에너지와 연계한 에너지 저장장치 (ESS, energy storage system)로 활용할 수 있다. 레독스 흐름전지로 가장 널리 사용되는 활성물질은 바나듐 원소이지만, 최근 바나듐의 원가 상승으로 인해 이를 대체할 수 있는 레독스 물질의 연구가 활발히 진행되고 있다.
우리 대학 화학과 변혜령, 백무현 교수 연구팀, POSTECH 화학과 서종철 교수팀이 공동연구를 통해 수계 레독스 흐름전지에 활용할 높은 용해도의 안정한 유기 활성 분자를 개발했다고 23일 밝혔다.
연구팀은 유기 분자의 설계를 통한 수계 레독스 흐름 전지 개발 연구에 집중하였다. 유기 분자는 다양한 합성 디자인을 통해 용해도, 전기화학적 레독스 전위 등을 조절할 수 있어 바나듐보다 높은 에너지 저장이 가능한 유망한 활성물질의 후보군이다. 대부분의 유기 레독스 활성 분자들은 낮은 용해도를 가지거나 레독스 반응 시 화학적 안정성이 낮은 문제점을 가지고 있다. 활성 분자들의 용해도가 낮으면 에너지 저장 용량이 낮아지며, 분자의 화학적 안정성이 낮으면 사이클 성능의 감소가 나타난다. 연구팀은 나프탈렌 다이이미드(naphthalene diimide, NDI)를 활성분자로 사용하였는데, NDI는 높은 전기화학적 안정성을 가짐에도 수계 전해액에서 낮은 용해도를 가져 지금까지 연구가 많이 이루어지지 않았다.
NDI 분자는 물에 거의 용해되지 않지만 연구팀은 NDI에 네 개의 암모늄 기능기를 도입하여 용해도를 최대 1.5 M*까지 상승시켰다. 또한, 1 M의 개발된 NDI 분자를 중성의 수계 레독스 흐름전지에 사용시 500 사이클 동안 약 98%의 용량이 유지됨을 확인하였다. 이는 한 사이클 당 약 0.004%의 용량만이 감소하며 총 45일간 작동 시 처음의 용량 대비 오로지 2%만이 감소됨을 의미한다. 또한 개발된 NDI는 한 분자당 2개의 전자를 저장할 수 있어 1 M의 NDI를 사용 시 약 2 M의 전자 저장이 가능함을 증명하였다. 참고로 고농도의 황산용액을 사용하는 바나듐 레독스 흐름 전지의 활성물질인 바나듐의 용해도는 약 1.6 M이며 전자 저장 수는 원소당 1개여서 총 1.6 M의 전자 저장이 가능하다. 따라서 개발한 NDI 활성 분자는 기존의 바나듐보다 높은 용량을 구현할 수 있다.
*1 M (mol/L) : 용액 1 L에 6.022 x 1023 개의 활성분자가 존재함을 의미함
싱 비크람 연구교수, 권성연, 최윤섭 박사과정 연구원이 1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스 머터리얼즈(Advanced Materials)' 2월 7일에 온라인으로 출판됐다. (논문명 : Controlling π–π interactions of highly soluble naphthalene diimide derivatives for neutral pH aqueous redox flow batteries). 또한 전자상자성 공명 분석의 우리 대학 화학과 이예림 박사과정 연구원 및 임미희 교수팀이 함께 연구를 수행했다.
변혜령 교수는 "기존에 낮은 용해도를 가지는 유기 활성 분자를 이용하여 레독스 흐름전지의 활성 분자로 사용할 수 있는 분자 디자인 원리를 보였다. 또한 레독스 반응에서 분자들이 결합하거나 분리되는 상호 결합력을 이용하여 라디칼로 형성된 분자들의 화학적 반응성을 억제할 수 있음을 보여주었다ˮ 라며 "향후 수계 레독스 흐름전지로 사용 시 고에너지밀도, 고용해도의 장점과 함께 중성의 수계 전해액을 사용할 수 있어, 기존의 바나듐 레독스 흐름전지의 산성용액 사용에서 오는 부식 문제 등을 해결할 수 있을 것으로 기대된다. 현재 사용하고 있는 리튬-이온전지 기반의 ESS는 화재의 위험이 높기 때문에 안전하고 저렴한 차세대 ESS의 개발이 필요하며 본 연구는 그 가능성을 보여준 것ˮ 이라고 말했다.
이번 연구는 삼성미래기술육성사업, 기초과학연구원, 재단한국연구재단의 지원을 받아 수행됐다.
2023.03.23
조회수 6158
-
머리카락 굵기의 1/100보다 작은 초고해상도 디스플레이 픽셀 구현 기술 개발
초고해상도 디스플레이는 가상 현실(VR), 증강 현실(AR), 스마트 워치 등의 차세대 전자제품 개발에 필수적인 요소로, 헤드 마운트 디스플레이 방식 뿐 아니라 스마트 글라스, 스마트 렌즈 등에도 적용이 가능하다. 이번 연구를 통해 개발된 기술은 이러한 차세대 초고해상도 디스플레이나 다양한 초소형 광전자 소자를 만드는 데 활용될 수 있을 것으로 기대된다.
우리 대학 물리학과 조용훈 교수 연구팀이 집속 이온 빔을 이용하여 평균 머리카락 굵기(약 100 마이크론)의 100분의 1보다도 작은 0.5 마이크론 스케일의 픽셀을 구현할 수 있는 초고해상도 발광 다이오드 (LED) 디스플레이 핵심 기술을 개발했다고 22일 밝혔다.
현재 초고해상도 LED 디스플레이의 픽셀화는 보통 픽셀 주변의 영역을 물리적으로 깎아내는 식각 방법을 사용하는데, 주변에 여러 결함이 발생하여 픽셀이 작아질수록 누설전류가 증가하고 발광 효율이 떨어지는 부작용이 있다. 또한 픽셀화를 위한 패터닝 및 누설전류를 막기 위한 후공정 과정 등 여러 복합한 공정이 필요하다.
조용훈 교수 연구팀은 집속 이온 빔을 이용해 복잡한 전, 후 공정 없이도 마이크로 스케일 이하의 크기까지 픽셀을 만들 수 있는 기술을 개발했다. 해당 방법은 집속 이온 빔을 약하게 제어하여 물질 표면에 어떤 구조적 변형을 일으키지 않고, 발광하는 픽셀 모양을 자유자재로 설정할 수 있다는 장점이 있다.
집속 이온 빔 기술은 재료공학이나 생물학 등의 분야에서 초고배율 이미징이나 나노 구조체 제작 등에 널리 쓰여 왔다. 그러나, LED와 같은 발광체 위에 집속 이온 빔을 사용하면 빔을 맞은 부분과 그 주변 영역의 발광이 급격히 감소하기 때문에 나노 발광 구조를 제작하는 데 장벽으로 작용되어 왔다. 이에 조용훈 교수 연구팀은 이러한 문제들을 역발상으로 이용하게 되면 서브 마이크론 (sub-micron) 스케일의 초미세 픽셀화 방식에 활용할 수 있다는 점을 착안했다.
연구팀은 표면이 깎이지 않을 정도로 세기가 약화된 집속 이온 빔을 사용했는데, 집속 이온 빔을 맞은 부분에 발광이 급격히 줄어들 뿐만 아니라 국소적인 저항도 크게 증가함을 알아내었다. 이로 인해 LED 표면을 평평하게 유지되면서도 집속 이온 빔을 맞은 부분은 광학적 및 전기적으로 격리가 되어 개별적으로 작동을 할 수 있는 픽셀화가 가능하게 된다.
연구를 주도한 조용훈 교수는 “집속 이온 빔을 이용해 복잡한 공정이 없이도 서브 마이크론 스케일의 초소형 픽셀을 만들 수 있는 기술을 새롭게 개발했고, 이는 차세대 초고해상도 디스플레이와 나노 광전소자에 응용될 수 있는 기반 기술이 될 것” 이라고 말했다.
물리학과 문지환 석사와 김바울 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 한국연구재단의 중견연구자지원사업 및 정보통신기획평가원의 지원을 받아 수행됐으며, 재료 과학 분야의 세계적 학술지인 ‘어드밴스드 머터리얼즈(Advanced Materials)’에 2월 13일 字에 온라인 출간되었고, 다음 오프라인 출간호의 내부 표지로도 선정됐다. (논문명: Electrically Driven Sub-Micron Light-Emitting Diode Arrays Using Maskless and Etching-Free Pixelation)
2023.02.22
조회수 5897
-
기존보다 30% 향상된 고성능 리튬-황 전지 개발
우리 대학 생명화학공학과 이진우 교수 연구팀이 POSTECH 한정우 교수 연구팀, LG에너지솔루션 차세대전지연구센터(센터장 손권남 박사)와 공동연구를 통해 기존 대비 에너지 밀도와 수명 안정성을 대폭 늘린 리튬-황 전지를 개발하는 데 성공했다고 19일 밝혔다.
리튬-황 전지는 상용 리튬 이온 전지에 비해 2~3배 정도 높은 에너지 밀도를 구현할 수 있을 것으로 기대되고 있어, 차세대 이차전지 후보군 중 많은 관심을 받고 있다. 특히, 전기자동차 및 전자기기와 같이 한 번에 얼마나 많은 양의 에너지를 저장할 수 있는지가 중요한 응용 분야의 경우, 리튬-황 전지 기술개발의 중요성이 더욱 대두되고 있다.
높은 수준의 에너지 밀도를 지닌 리튬-황 전지를 구현하기 위해서는 전지 내부에 들어가는 무거운 전해액의 사용량을 줄이면서도 높은 용량과 구동 전압을 확보하는 것이 필수적이다. 하지만, 전지 내부의 전해액 양이 줄어들면, 양극에서 발생하는 리튬 폴리 설파이드 용해 현상에 의한 전해액 오염정도가 극심해져 리튬 이온 전도도가 낮아지고 전기화학 전환 반응 활성이 떨어져 높은 용량과 구동 전압을 구현하는 것이 제한된다.
전 세계적으로 많은 연구진이 리튬 폴리 설파이드의 지속적인 용해 현상 및 전환 반응 활성을 개선하기 위해서 다양한 기능성 소재들을 개발해왔으나, 현재까지는 리튬-황 파우치셀 수준에서의 높은 에너지 밀도와 수명 안정성을 확보하는 데 어려움을 겪고 있다. 파우치셀이란 양극, 음극, 분리막과 같은 소재를 쌓은 후, 필름으로 포장된 형태의 배터리이다. 파우치셀은 가장 진보된 형태의 베터리 중 하나로 간주되며, 응용분야에 따라 다양한 모양으로 제작할 수 있다는 장점이 있다.
이진우 교수 연구팀은 이번 연구를 통해 리튬 폴리 설파이드의 용해 현상과 전기화학 전환 반응성을 대폭 향상할 수 있는 철(Fe) 원자 기반의 기능성 양극 소재를 개발하는 데 성공했다. 연구팀은 최적화된 전자구조를 지닌 철 원자 기반 기능성 소재를 양극에 도입함으로써, 리튬 폴리 설파이드의 용해 현상을 효율적으로 억제할 수 있는 효과뿐만 아니라 리튬 폴리 설파이드가 불용성의 리튬 설파이드로 전환될 수 있는 반응성 또한 개선할 수 있었고, 전지 내부에 소량의 전해액 양을 사용하더라도 높은 가역 용량, 구동 전압, 그리고 수명 안정성을 구현할 수 있었다.
특히, 이번 연구에서 개발된 양극 기능성 소재를 활용함으로써, 기존의 상용화된 리튬이온 배터리 대비 약 30% 정도 향상된 에너지 밀도인 A h 수준의 리튬-황 파우치셀에서 320W h kg-1 이상의 에너지 밀도 (베터리의 단위 무게 당 저장할 수 있는 총 에너지의 양)를 확보하는 성과를 거뒀다. 더욱이, 철(Fe)은 가격이 매우 저렴한 소재이기 때문에 이번 연구에서 개발된 양극 기능성 소재가 향후 리튬-황 전지 산업 분야에서 활용될 가능성도 열려있다.
생명화학공학과 이진우 교수는 "우수한 리튬-황 전지 양극 기능성 소재를 개발함에 있어, 전자 교환 현상 유도를 통한 전자구조 제어 기술이 전도유망할 수 있음을 보여줬다ˮ고 설명하면서, "앞으로도 기능성 소재의 전자구조를 제어할 수 있는 다양한 기술개발을 통해, 리튬-황 파우치셀 수준에서의 높은 에너지 밀도와 수명 안정성을 확보하려는 노력이 지속돼야 한다ˮ고 설명했다.
한편 이번 연구 결과는 이진우 교수 연구실의 임원광 박사(現 퍼시픽 노스웨스트 내셔널 레보터리 박사후 연구원), 박철영 박사과정, 그리고 POSTECH 한정우 교수 연구실의 정현정 박사과정이 공동 제1 저자로 참여하였으며, 국제 학술지 `어드밴스드 머티리얼즈 (Advanced Materials)'에 2022년 12월 17일 字 온라인판에 게재됐다.
이번 연구는 한국연구재단이 추진하는 중견연구와 LG에너지솔루션의 지원을 받아 수행됐다. 이진우 교수 연구팀은 다년간 LG에너지솔루션과 공동연구를 수행해오면서 LG에너지솔루션의 연구팀과 산학 협업을 통해 리튬 폴리 설파이드의 용해 현상 억제 및 전기화학 전환 반응성 개선 등을 위한 핵심 아이디어를 도출해오고 있으며, 앞으로도 리튬-황 전지 상업화에 기여하기 위해 LG에너지솔루션과 리튬-황 전지 내 반응 현상에 대한 설명과 소재 개발에 대해서 지속적인 협업을 진행할 계획이다.
2023.01.19
조회수 6711
-
빛을 완전히 조절할 수 있는 메타렌즈 개발
우리 대학 신소재공학과 신종화 교수 연구팀이 빛의 세 가지 주요 특성인 세기, 위상, 편광을 동시에 모두 조절할 수 있는 유니버설 메타표면(universal metasurface)을 개발했다고 2일 밝혔다.
단일 소자로 빛의 세기, 위상, 편광을 모두 자유로이 조절할 수 있는 기술은 갈릴레이가 망원경으로 목성의 위성을 관측했던 광학 분야의 시초부터 제임스웹 망원경으로 130억 년 전 우주를 볼 수 있게 된 현재까지 풀리지 않는 난제로 남아있었다. 최근, 마이크로미터 이하 크기의 인공적인 구조체들을 유리 등 기존 소재 표면을 따라 배열해 빛의 특성을 높은 자유도로 조절할 수 있는 메타표면이 이러한 난제를 해결할 수 있는 기술이 될 수 있다는 기대감으로 관련 연구가 세계 여러 대학과 연구소, 기업에서 경쟁적으로 이뤄지고 있다.
이러한 메타표면은 현재 안경 두께의 천 분의 일인 수 마이크로미터 수준의 얇은 두께만으로도 렌즈의 역할을 할 수 있을 뿐만 아니라, 편광판, 컬러필터 등 기존 다른 광학 부품들의 기능도 동시에 수행할 가능성을 갖고 있어서 여러 종류의 광학필름이 필수적으로 들어가는 OLED 등 현재 상용 디스플레이의 두께를 현저히 줄이고 공정을 단순화시키거나 동영상 홀로그램, 증강현실(AR) 글래스, 라이다(LiDAR) 등의 새로운 응용의 광학 부품들에도 널리 적용될 수 있는 다재다능한 기술로 관심을 받고 있다.
하지만, 현재까지 보고된 메타표면들은 여전히 특정 색의 빛이 가지는 세 가지 특성 중 일부분만을 동시에 조절(예: 위상과 편광 또는 위상과 세기 등)할 수 있어, 하나의 소자로 세 특성을 완전히 조절하는 문제는 해결되지 못한 숙제로 남아있었다.
연구팀은 행렬과 관련된 수학적 원리에 착안해, 밀접한 두 층으로 이뤄진 유전체 메타표면이 빛의 세 가지 주요한 특성을 완벽히 조절할 수 있음을 이론적으로 밝히고, 이를 실험적으로 규명했다. 특히, 기존에 단일 소자로 불가능했던 벡터 홀로그램들을 제안하고 최초로 구현하는 데 성공했다. 학문적으로는 메타표면의 편광 선택적인 특성을 통해 맥스웰 방정식을 만족하는 두 가지 독립적인 임의의 3차원 전자기장 분포를 구현하는 방법을 최초로 보였다는 점에서 이번 연구는 큰 의의를 갖는다.
또한, 연구진은 유니버설 메타표면과 일반 렌즈의 조합만으로 임의의 편광 선택적인 선형 광학계의 구현이 가능함을 이론적으로 입증했는데, 이는 푸리에 변환 등을 포함한 복잡한 수학적 연산이나 데이터 처리를 광학적으로 간단하게 구현할 수 있음을 의미한다. 한 가지 예시로 연구팀은 확률론적 양자 CNOT 게이트 배열을 유니버설 메타표면과 렌즈만을 사용해 만들 수 있음을 보였으며, 이러한 원리는 양자 광학 뿐만 아니라, 광 통신, 광 신경망을 이용한 기계학습 기반 안면인식 등 여러 분야에서 활용될 수 있을 것으로 기대된다.
연구진은 "이번 연구를 통해 광학 분야의 오랜 난제였던 빛의 세기, 위상, 편광의 완전한 조절을 해결했을 뿐만 아니라, 이를 바탕으로 모든 편광 선택적인 선형 광학계 구현이 이론적으로 가능함을 밝혔다ˮ며, 이어 "이번 연구에서 제안한 메타표면의 가능성을 활용하여 기존 한계를 극복한 응용 광소자를 적극적으로 개발할 계획ˮ이라고 언급했다.
신소재공학과 장태용 박사와 정준교 박사과정생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 머티리얼스(Advanced Materials)' 지난 11월 3일 字 출판됐다. (논문명 : Universal Metasurfaces for Complete Linear Control of Coherent Light Transmission).
한편 이번 연구는 한국연구재단 과학기술분야 기초연구사업 및 원천기술개발사업의 지원을 받아 수행됐다.
2022.12.02
조회수 6975
-
스핀 소자 기반 물리적 복제방지 보안기술 개발
우리 대학 신소재공학과 박병국 교수팀이 물리학과 김갑진 교수 연구팀 및 현대자동차와 공동연구를 통해 자성메모리(Magnetic random-access memory, MRAM)를 기반으로 사람의 지문과 같이 매번 다른 패턴을 갖는 하드웨어 보안인증 원천 기술을 개발하는 데 성공했다고 30일 밝혔다.
박병국 교수 연구팀은 반강자성체-하부강자성체-비자성체-상부강자성체 다층박막 구조에서 무자기장(field-free) 스핀-궤도 토크(spin-orbit torque, SOT)로 동작하는 MRAM 소자의 스위칭 극성을 무작위적으로 분포시켜 물리적 복제 불가능성(physical unclonable function, 이하 PUF)을 지닌 보안소자를 개발하는 것이 가능함을 입증했다. 이 기술은 고온 및 고자기장 등의 환경에서도 높은 동작 신뢰도 및 무작위성을 유지하면서 작동 가능해 사물인터넷(IoT)을 비롯한 다양한 보안시스템에 응용될 수 있을 것으로 기대된다.
PUF를 이용한 하드웨어 기반 보안 소자는 동일한 공정 과정을 통해 제작해도 공정 편차에서 발생하는 제어되거나 예측할 수 없는 반도체소재/소자 간의 차이를 이용해 보안용 인증키를 형성하는 기술이다. 이는 기존 소프트웨어 기반 보안시스템과 다르게 외부 공격에 대해 높은 저항성을 지니는 장점이 있기에 최근 증가하고 있는 사물인터넷 기기 해킹 등의 보안 위협을 해결할 기술로 주목받고 있다.
하지만 기존에 주로 연구됐던 상보적 금속 산화물 반도체(complementary metal oxide semiconductor, CMOS) 소자 기반 물리적 복제방지기술은 외부 환경 변화에 민감하며 반복 동작 시 신뢰도가 낮아지는 문제점이 있다. 이에 반해 자성메모리(magnetic random-access memory, MRAM)를 포함한 자화를 이용해 정보를 저장하는 스핀트로닉스 기반 소자는 높은 내구성 및 안정성을 지니고 있고 환경 변화에 비교적 민감하지 않다. 따라서 이러한 특성을 이용해 물리적 복제방지기술을 개발한다면 현행 반도체 공정 기술과 호환이 가능하며 보안인증 등 다양한 활용 범위를 가지는 비휘발성 메모리 기반 보안 기술 개발을 기대할 수 있다.
신소재공학과 이수길 박사와 강재민 박사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드벤스드 머티리얼스(Advanced Materials)'에 11월 10일 字 온라인 게재됐다. (논문명 : Spintronic physical unclonable functions based on field-free spin-orbit torque switching)
연구팀은 교환결합이 형성된 다층박막을 제작해 고온에서 교류 자기장 인가를 통해 교환결합의 방향의 좌우로 50:50의 비율을 갖는 무작위한 분포 생성했다. [그림1(a)] 이때 생성된 교환결합의 방향이 상부 강자성체의 무자기장 스위칭 부호를 결정하는 성질을 이용해 무작위한 분포 방향을 전기적으로 0과1의 이진법분포로 바꿔 출력했으며 이를 보안키로 활용하는 물리적 복제 방지 기술을 개발했다. [그림1(b) 및 1(c)]
연구팀이 개발한 스핀 기반 물리적 복제방지 기술은 50,000번 이상의 반복 동작 시에도 에러가 발생하지 않는 높은 내구성을 보이며 반도체소자가 기본적으로 요구하는 -100℃부터 125℃까지 넓은 온도 범위에서도 안정적으로 작동한다. 또한 무작위성의 원천으로 교환결합의 방향을 이용했기 때문에 자성체 기반 소자임에도 불구하고 외부 자기장을 이용해 저장된 무작위분포를 바꾸지 못하는 것을 확인했다.
공동 제1 저자인 이수길 박사와 강재민 연구원은 "이번 연구는 차세대 MRAM의 주요 기술인 스핀-궤도 토크 기반으로 보안소자 기술을 개발할 수 있다는 것을 제시한 것에 의미가 있으며 향후 유력한 차세대 메모리인 MRAM에 보안 소자 기술을 접목하는 연구가 활발히 이뤄질 것으로 예상 된다ˮ고 밝혔다.
한편 이번 연구는 현대자동차 및 과학기술정보통신부 PIM인공지능반도체핵심기술개발 사업과 중견연구자지원 사업 연구과제의 지원을 받아 수행됐다.
2022.12.02
조회수 5750
-
인간 피부의 압력 감지 능력을 뛰어넘는 로봇용 전자 피부 개발
우리 대학 전기및전자공학부 정재웅 교수 연구팀이 인간 피부의 압력 감지 능력을 뛰어넘는 고감도 및 광범위 압력 측정이 가능한 로봇용 전자 피부를 개발했다고 27일 밝혔다.
연구팀이 개발한 전자 피부는 인간 피부에 비해 더 높은 민감도와 더 넓은 압력 측정 범위를 보여 최근 각광받는 로봇 산업, 헬스케어 산업, 증강 현실 등 다양한 분야에 폭넓게 적용될 수 있을 것으로 기대된다.
전기및전자공학부 이시목 박사과정과 변상혁 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 머터리얼즈(Advanced Materials)' 온라인 버전에 10월 3일 字 출판됐다. (논문명 : Beyond the Human Touch Perception: Adaptive Robotic Skin Based on Gallium Microgranules for Pressure Sensory Augmentation)
인간 피부의 촉각 인지 능력을 모방하는 전자 피부는 원격으로 감도 및 외압 측정이 가능해 메타버스, 로봇 공학, 의료 기기 등 다양한 산업에 활용할 수 있다. 이로 인해 전자 피부가 많은 주목을 받고 있으며, 특히 전자 피부의 핵심 기술인 압력 센서의 민감도를 높이기 위해 많은 연구가 진행됐다.
하지만 개발된 고감도 압력 센서는 압력 감지 범위가 좁다는 단점을 가진다. 이를 해결하기 위해 광범위 압력 감지 센서가 등장했으나 기존 고감도 센서들과 비교해 현저히 낮은 민감도를 보였다. 이에 따라 사용자들은 상황과 목적에 맞춰 별개의 센서를 사용해야 했으며 이 과정에서 측정의 정확도가 떨어지고 번거롭다는 문제가 발생했다.
연구팀은 갈륨(Gallium)과 중합체(Polymer)를 합성해 온도에 따라 민감도와 압력 감지 범위를 변화시킬 수 있는 가변 강성 압력 센서를 개발했다. 개발된 압력 센서는 사용자가 상황과 목적에 맞게 고감도 감지 모드와 광범위 압력 감지 모드를 손쉽게 전환할 수 있도록 설계됐다.
압력 센서의 핵심 소재는 액체금속 중 하나인 갈륨으로, 금속임에도 불구하고 미온(29.76 ℃)에서 녹는점을 가져 쉽게 고체와 액체 간의 상태 변화가 가능하다. 연구팀은 내장된 갈륨의 상태에 따라 센서의 강성률이 변화하는 점에 기반해 온도에 따라 민감도와 감지 범위 변화가 가능한 압력 센서를 제작했다.
연구팀은 미세 유체기반 제작 방식을 통해 균일한 갈륨 미립자를 형성/활용해 압력 센서를 제작했고 이를 통해 센서 간 균일성 및 재현성을 극대화해 신뢰성 높은 대면적 전자 피부 제작을 가능하게 했다.
제작된 전자 피부는 인간 피부와 비교 시 97% 높은 민감도와 262.5% 넓은 압력 측정 범위를 보였다. 연구팀은 전자 피부의 가변성을 활용해 맥박 측정과 같이 높은 압력 민감도가 필요한 상황과 몸무게 측정과 같이 넓은 감지 범위가 필요한 상황 모두에 개발된 로봇 피부가 활용될 수 있음을 입증했다.
정재웅 교수는 "액체금속의 상변화를 활용한 이번 기술은 전자 피부를 넘어 상황과 목적에 맞게 전기/기계적 특성을 변환시킬 수 있는 다양한 다목적 전자기기, 센서, 로봇 기술의 개발에도 활용될 수 있을 것이다 ˮ라고 말했다.
한편 이번 연구는 과학기술정보통신부에서 추진하는 나노 및 소재 기술개발사업, ICT 핵심기술개발사업, 한국전자통신연구원 내부연구개발사업 개방형융합선행연구의 지원을 받아 수행됐다.
2022.10.27
조회수 6584
-
닫힌 계면을 갖는 구조체의 보편적 이동 특성 규명
우리 대학 물리학과 김갑진 교수와 한국표준과학연구원(KRISS) 황찬용 박사, 한국과학기술연구원(KIST) 김경환 박사 공동연구팀이 자기 스커미온의 전류 구동 현상을 이용해 닫힌 계면을 갖는 구조체가 형태를 유지한 채 이동할 때의 보편 특성을 규명했다고 13일 밝혔다.
자기 스커미온(magnetic skyrmion)은 수 nm 수준의 자성체 박막, 즉 얇은 자석 내부에 존재하는 소용돌이 모양 혹은 방사형의 스핀 구조를 갖는, 2차원 공간상의 안정한 원형 구조체이다. 이 구조체는 위상학(topology)적 원리에 의해 쉽게 사라지지 않는 안정성을 갖고, 크기가 수십 nm 수준으로 작으며 전류를 흘려 주면 수~수백 m/s의 매우 빠른 속도로 움직이기 때문에 기존의 하드 디스크를 대체할 고속, 고집적 비휘발성 메모리 소자 개발에 응용될 수 있음에 주목되어 왔다. 따라서 보다 정밀한 자기 스커미온 기반 소자를 만들기 위해 자기 스커미온의 속도와 가해 준 전류량의 관계를 정확히 파악하는 것은 중요한 연구 과제로 여겨져 왔다.
연구팀은 비자성체/강자성체/산화물 3중층 구조의 소자에서 연구팀의 독자 기술인 자기장 변화 방식으로 자기 스커미온을 대량 생성, 크립(creep) 운동 영역(스커미온의 속도가 박막의 무작위적 결함과 열적 효과에 영향을 받는 영역)에서의 자기 스커미온 속도-전류밀도 관계를 분석했다. 두 연구팀은 약 70만 개 이상의 빠르고 느린 자기 스커미온의 이동 궤적을 추적, 분석하여 이동 속도-전류밀도 간의 스케일링 법칙을 찾아냈다. 그 결과 자기 스커미온은 2차원 공간상의 구조체임에도 불구하고 1차원 공간상에서 주로 나타나는 ‘호핑(hopping)’ 법칙을 따르는 것으로 나타났다. 이는 2차원에서 움직이는 선을 원형으로 말아 놓을 경우 운동 법칙이 전혀 달라짐을 실험적으로 확인한 것이다. 이를 통해 연구팀은 기존에 알려지지 않은 새로운 보편성 부류(universality class, 같은 스케일링 법칙을 공유하는 집단)의 구분 기준으로 계면의 열리고 닫힘, 즉 ‘구조적 위상(structural topology)’이 존재함을 제안했다.
우리 대학 물리학과 송무준, 유무진 연구원이 공동 제1저자로 참여하고, 박민규 박사가 공동교신저자로 참여한 본 연구는, KAIST(김갑진 교수 연구팀), KRISS(황찬용 박사 연구팀), KIST(김경환 박사 연구팀)의 공동연구로 진행되었으며, 권위 있는 국제학술지 ‘어드밴스드 머테리얼즈(Advanced Materials, IF 32.1)’에 표지논문(front cover)으로 선정돼 10월 6일 게재됐다. (논문명: Universal Hopping Motion Protected by Structural Topology)
이번 연구에서 연구팀은 기존에 자세히 밝혀지지 않은 크립 영역에서의 자기 스커미온의 전류에 의한 거동 특성을 실험적으로 밝혀내고, 이것이 닫힌 계면을 갖는 구조체의 보편 특성임을 제안했다. 이번 연구는 자기 스커미온 기반 메모리 및 컴퓨팅 소자 개발에 활용될 것이며, 다양한 분야의 닫힌 계면 구조를 갖는 구조체의 거동 특성을 분석하는 기반 이론으로써 활용될 것으로 기대된다.
한편 이번 연구는 KAIST 글로벌 특이점 연구사업, 삼성미래기술육성사업, 한국연구재단 선도연구센터/중견연구자지원사업의 지원을 받아 수행됐다.
2022.10.13
조회수 6462
-
항체를 활용한 신개념 생체 형틀법 최초 개발
우리 대학 신소재공학과 장재범 교수 연구팀이 다세포 생물이 갖는 특정 단백질 구조체를 활용할 수 있는 새로운 개념의 생체 형틀법을 최초로 개발했다고 10일 밝혔다. 긴 시간 동안 특정 기능에 최적화된 생명체가 갖는 복잡하고 정교한 구조체를 형틀로 삼아 이를 모방한 무기물 구조체를 만드는 방법을 생체 형틀법 이라고 한다. 이는 에너지, 광학, 마이크로로봇 분야 등에 응용돼왔다.
장 교수 연구팀은 항원-항체 반응에 착안해 특정 단백질을 항체로 표적화한 뒤, 항체에 붙어 있는 1.4 나노미터(nm) 크기의 금 입자에서 다양한 금속 입자들을 성장시킴으로써 특정 단백질 구조체를 모방한 금속 구조체를 합성하는 데 성공했다. 개발된 생체 형틀법은 일반적인 항원-항체 반응과 금속 입자 성장법을 기반으로 하기 때문에 다양한 생명체에 폭넓게 응용 및 적용될 수 있을 것으로 기대된다.
신소재공학과 송창우, 송대현 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 머티리얼즈(Advanced Materials)'에 7월 7일 字 온라인 출판됐다. (논문명 : Multiscale Functional Metal Architectures by Antibody-Guided Metallization of Specific Protein Assemblies in Ex Vivo Multicellular Organisms).
생명체가 갖는 특정 기능에 최적화된 다양한 구조체들은 복잡하고 계층적 구조를 기반으로 하여 인공적인 합성 방법을 통해 재현하기 어렵다. 따라서 이러한 생체 구조체를 형틀로 해 동일한 모양의 무기물 구조체를 합성하는 생체 형틀법이 개발돼왔으며, 합성된 생체 재료들은 촉매, 에너지 저장 및 생산, 센서 등 다양하게 활용돼왔다.
하지만 개발된 생체 형틀법 중 특정 단백질 구조체를 형틀로 사용한 경우는 적으며, 있다 하더라도 바이러스나 효모와 같은 단세포 생물의 특정 단백질 구조체를 형틀로 활용한 연구들 뿐이었다.
생명체의 특정 단백질 구조체를 활용하는 생체 형틀법은 원하는 생체 구조체만을 활용 가능하며 합성하고자 하는 생체 재료의 목적에 맞는 단백질을 선택해 사용할 수 있다는 장점이 있다.
연구팀은 기존의 생체 형틀법 한계를 해결을 위해 특정 단백질을 이미징할 때 활용하는 항원-항체 반응을 생체 형틀법에 적용했다.
연구팀이 사용한 항체는 1.4 나노미터(nm) 크기의 금 입자가 달려있고 이는 금속 입자 성장을 위한 종자(seed) 역할을 하게 되어 특정 단백질을 표적화한 항체로부터 다양한 금속 입자를 성장시킬 수 있다.
연구팀은 인간 세포 내부의 미세소관, 미토콘드리아, 핵, 세포막, 세포질에 존재하는 특정 단백질에서만 금 입자를 성장시키는 데 성공했으며, 세포 수준뿐만 아니라 조직 수준인 쥐의 뇌, 신장, 심장에서도 개발한 방법을 적용할 수 있다는 것을 보였다.
나아가 연구팀은 금 입자뿐만 아니라 은, 금-백금, 금-팔라듐 입자를 세포 내부 미세소관 구조체를 따라 합성함으로써 합성된 세포를 액상 반응의 촉매로 활용 가능하다는 것을 증명했다. 또한, 세포 표면에 철 입자를 성장시킨 후 자석으로 조절할 수 있음을 보여 향후 이러한 금속 입자가 성장된 세포들을 조절하거나 군집 행동을 구현하는 것이 가능함을 보였다.
연구팀이 개발한 신개념 생체 형틀법은 다세포 생물뿐만 아니라 항체 염색이 가능한 식물, 균류, 바이러스 등의 생명체에도 활용 가능해 다양한 생체 구조체를 모방한 생체 재료 합성에 이용될 것으로 기대된다.
제1 저자인 송창우 박사과정은 "이번 연구는 기존의 생체 형틀법으로 구현할 수 없었던 다세포 생물의 특정 구조체를 모방한 금속 구조체를 합성한 최초의 사례이며, 이를 통해 생체 형틀법을 활용할 수 있는 생체 구조체의 범위를 넓혔다ˮ 라며 "합성된 생체 재료는 이번 연구에서 보여준 촉매뿐만 아니라 전기화학 및 바이오센서에도 활용 가능할 것으로 예상된다ˮ 라고 말했다.
한편 이번 연구는 한국연구재단 과학난제도전 융합연구개발사업, 우수신진연구사업, 뇌과학원천기술개발사업 등의 지원을 받아 수행됐다.
2022.08.10
조회수 7192
-
항암치료용 인공탄수화물 기반 나노의약 개발
우리 대학 생명과학과 전상용, 화학과 이희승 교수 공동연구팀이 인공탄수화물(artificial glycopolymer) 라이브러리 플랫폼을 이용해 항암치료용 나노의약(nanomedicine) 개발에 성공했다고 12일 밝혔다.
세포막을 둘러싸고 있는 다양한 형태의 당 사슬 집합체를 글라이코칼릭스(glycocalyx)라고 한다. 특히, 암세포 및 암종에 따라 특이적인 글라이코칼릭스는 여러 가지 당에 대해 다른 결합력을 가진다. 이에 착안해 연구팀은 자연에 가장 많이 존재하는 다섯 가지의 당들을 조합해 31가지의 인공탄수화물 후보군들을 합성한 후 최종적으로 30나노미터 크기의 인공탄수화물 기반 나노입자(glyconanoparticle) 라이브러리를 구축했다.
연구팀은 구축된 인공탄수화물 나노입자 라이브러리 스크리닝을 통해 표적 하고자 하는 암세포에 특이적으로 결합하는 나노입자 후보군을 선별했다. 선별된 인공탄수화물 나노입자 후보군을 암 동물모델에서 표적능 및 치료효능을 평가함으로써 표적 항암치료용 나노의약 개발에 적용할 수 있다는 것을 연구팀은 세계 최초로 제시하고 구현해냈다.
생명과학과 황창희 박사과정, 화학과 홍정우 박사과정이 공동 제1 저자로 참여한 이번 연구는 재료공학 분야 최정상급 학술지인 `어드밴스드 머티리얼즈(Advanced Materials, ISSN: 0935-9648 print, 1521-4095 online, Impact Factor: 32.086)' 6월 20일 字 온라인판에 게재 및 표지 논문 (Inside Back Cover)으로 선정됐다.
(https://doi.org/10.1002/adma.202203993. 논문명: Systematic Screening and Therapeutic Evaluation of Glyconanoparticles with Differential Cancer Affinities for Targeted Cancer Therapy)
당사슬(glycan)은 살아있는 모든 세포의 표면에 두드러지게 발현되며 세포 신호, 분자 인식 및 면역과 같은 수많은 과정에 광범위하게 참여한다고 알려져 있다. 종양세포의 경우 비정상적인 당사슬 패턴이 암 종마다 다르게 세포 표면에서 검출되고 있으며, 이러한 세포 표면에 존재하는 당사슬 층은 암세포의 전이(metastasis) 및 증식(proliferation) 등에 중요한 역할을 한다.
연구팀은 암세포 표면에 존재하는 이러한 비정상적 당사슬과 선택적으로 결합할 수 인공탄수화물 기반 나노입자 라이브러리 플랫폼을 개발하였다. 연구팀은 자연에 흔히 존재하는 다섯 가지의 당류인 글루코스 (glucose; Glc), 갈락토스 (galactose; Gal), 만노스 (mannose; Man), 글루코사민 (N-acetyl glucosamine; GlcNAc), 갈락토사민 (N-acetyl galactosamine; GalNAc) 들을 조합해 당사슬을 모방하는 31가지의 새로운 인공탄수화물들을 합성하였고 이로부터 나노크기의 인공탄수화물 나노입자들을 제조하였다.
연구팀은 암세포 및 종양 동물모델에서의 스크리닝 결과들을 바탕으로 특정 당 조합으로 이루어진 인공탄수화물 나노입자 높은 암-표적능을 보인다는 것을 최초로 검증하였다. 나아가 암-표적능이 뛰어난 인공탄수화물 나노입자에 항암제를 선적하여 목표로 하는 종양을 광열치료(photothermal therapy) 및 화학요법(chemotherapy)을 통해 효과적으로 치료할 수 있음을 동물실험에서 보여주었다.
전상용 교수는 "이번에 개발한 인공탄수화물 기반 나노입자 플랫폼은 암을 표적하는 나노의약 개발에 적용했지만, 암이 아닌 다른 질병이나 특정 장기 표적형 나노의약 개발에도 확장할 수 있어 후속 연구를 수행 중이다ˮ라고 말했다.
이번 연구는 한국연구재단의 리더연구사업(종양/염증 미세환경 표적 및 감응형 정밀 바이오-나노메디신 연구단) 및 선도연구센터사업(멀티스케일 카이랄 구조체 연구센터, CMCA)의 지원을 받아 수행됐다.
2022.07.12
조회수 8566
-
차세대 정보전달 핵심 기술, 위상학적 솔리톤의 형성과정 실시간 관찰 성공
우리 대학 화학과 윤동기 교수 연구팀이 카이랄(비대칭성) 액정 물질의 자발적 조립으로 위상학적 솔리톤의 형성을 규칙적으로 대면적에서 제어하고 형성과정을 실시간으로 관찰하는 데 성공했다고 11일 밝혔다.
솔리톤은 특정한 파동이 주변과 상호작용을 통해 사라지지 않고 계속 유지하는 현상을 말한다. 특히 파동이 멀리까지 전달될 때도 그 고유의 정보를 잃지 않고 끝까지 원하는 지점까지 도달하는 특성을 갖는다. 따라서, 최근 해킹에 자유로울 수 없는 디지털 사회에서 솔리톤은 고유의 높은 안정성으로 인해 미래 통신의 핵심이 되리란 기대가 크다. 더 나아가 유기 액정 분자를 이용해 만들어진 위상학적 솔리톤은 스핀(spin)이라는 특별한 방향성을 갖고 있기에 차세대 복제 방지 장치 및 메모리 소자로 이용될 수 있을 것으로 기대된다.
윤 교수팀은 특별히 이번 연구를 통해 지금까지는 상온과 같은 온화한 조건에서 실시간으로 관찰할 수 없었던 위상학적 솔리톤의 형성과정을 밝혔다. 이는 공기기둥으로 만들어진 한정된 공간에서의 자기조립 카이랄 액정 물질을 이용했기에 가능한 일이다.
화학과 박건형 박사과정 학생, 서아람 박사가 제1 저자로 참여하고 같은 그룹 최윤석 박사, 이창재 박사과정이 참여한 이번 연구는 국제 학술지 `어드밴스드 머터리얼스 (Advanced Materials)' 온라인판에 지난 6월 5일자에 게재되고, 7월호에 뒤 속표지로 선정될 예정이다. (논문명 : Fabrications of Topological Solitons Array in Patterned Chiral Liquid Crystals for Real-time Observation of Morphogenesis)
윤 교수팀은 이번 연구에서 기존에 널리 사용되는 액정영상표시장치(liquid crystal display; LCD)의 핵심 재료로 사용되는 일반형 액정분자가 아닌 카이랄(비대칭성) 액정 물질을 이용해 상온과 유사한 섭씨 30도 정도에서 위상학적 솔리톤 구조를 구현했다. 일반적으로 위상학적 솔리톤의 형성을 제어하기 위해서는 복잡한 장비가 필요하고, 이들의 형성되는 시간이 매우 짧아 형성과정에 관한 연구가 그동안 진행되지 못했다.
윤 교수팀은 카이랄 액정분자들의 이루는 위상학적 솔리톤의 규칙적 형성과 제어를 위해, 분자들을 수직 방향으로 세울 수 있는 수직 배향막과 공기기둥 조합을 정밀하게 조절했다. 자세히는 수직 배향막이 코팅된 수 마이크론(백만분의 1미터) 크기의 동그란 실리콘 물질 기반의 음각 패턴과 유리 기판을 준비하고 간격을 수 마이크론으로 조절해 카이랄 액정 물질을 주입했을 때 음각 패턴 위로 공기기둥이 자발적으로 형성하게 했다. 그 후 모든 기판에서 액정분자들이 수직으로 배향하게 되고 기판과 기판, 기판과 공기기둥 사이 부분에서는 어쩔 수 없이 규칙적으로 뒤틀림(distortion) 현상을 유발할 수밖에 없어 카이랄 분자체, 즉 위상학적 솔리톤이 형성될 수 있는 시스템을 개발했다.
위상학적 솔리톤의 형성 및 제어에 있어 핵심은 등방상(isotropic) 온도(약 섭씨 40도)에서 액정상 온도(약 섭씨 30도)로 냉각시킬 때 공기기둥 근처에 있는 액정 물질이 유리 기판과 실리콘 패턴 부분 사이의 액정 물질보다 온도가 더 낮아 열적 상전이를 원하는 대로 규칙적으로 일어나게 제어하는 데 있다. 이는 뚝배기에 요리된 계란찜을 먹을 때 뜨거운 뚝배기 부분(실리콘 혹은 유리기판 부분)보다 공기에 노출되어 상대적으로 식은 부분(공기 기둥 근처)부터 떠먹는 일상생활의 지혜와 일맥상통한다.
연구팀은 이렇게 자연스럽게 형성된 공기기둥에 의해 제어된 열적 상전이를 통해 위상학적 결함이 형성되고 결함이 있는 위치에서만 위상학적 솔리톤이 형성된다는 사실을 실시간 분석을 통해 규명했다. 이 분석기술은 전자기학의 스커미온 입자와 같은 다른 물리현상에서 발견되는 위상학적 솔리톤 형성의 해석 등 다양한 분야에서 응용될 수 있는 잠재성을 가진다.
윤동기 교수는 "일반적인 위상학적 솔리톤이 생성이나 소멸만 가능한 것으로 알려질 만큼 안정성이 높은데, 이번 연구 결과를 통해 솔리톤의 형성과정을 더욱 자세히 이해하고 정보를 저장하고 기록하는 등, 차세대 반도체 소자로 손꼽히는 스핀트로닉스 응용기술로써 사용될 수 있을 것ˮ이라고 견해를 밝혔다.
한편 이번 연구는 콜로라도 대학 물리학과의 이반 스말륙((Ivan Smalyukh) 연구실과 공동연구로 진행됐으며, 과학기술정보통신부 한국연구재단의 멀티스케일 카이랄 구조체 연구센터, 전략과제 등의 지원을 받아 수행됐다.
2022.07.11
조회수 6399