-
전해질 첨가제로 최초 장수명 배터리 기술 개발
1회 충전에 500km 이상 운행할 수 있는 전기자동차를 실현하기 위해서는 고에너지밀도 전지가 필수적이다. 팩 단위*에서 고에너지 밀도가 확보 가능하다는 장점이 있는 리튬인산철 양극은 낮은 전자전도도를 가져 계면층을 형성하기 어렵다는 단점이 있다. KAIST 연구진이 리튬인산철 양극의 낮은 전자전도도를 개선한 전해질 첨가제를 개발하여 화제다.
*팩단위: 현재 전기차용 배터리는 단일 전지(Cell)를 적층하여 배터리 관리시스템(BMS)과 냉각장치가 포함된 모듈(Module)을 구성하고, 이를 다시 모아 관리시스템으로 구성한 팩(Pack)으로 구성되어 있음
우리 대학 생명화학공학과 최남순 연구팀이 저비용 리튬인산철 양극과 흑연 음극으로 구성된 리튬이온 이차전지의 상온 및 고온 수명 횟수를 늘린 전해질 첨가제 기술을 개발했다고 16일 밝혔다.
기존 전해질 첨가제 연구는 주로 흑연 음극을 보호하기 위해 설계돼 높은 이온전도도를 가짐과 동시에 전해질 부반응이 억제되고 수지상 리튬(Li dendrite)이 성장하지 않게 하도록 낮은 전자전도도를 갖는 계면층을 형성시켰다.
이와 다르게 연구팀이 개발한 전해질 첨가제는 흑연 음극을 보호함과 동시에 삼성분계 양극*과는 달리 발열 특성이 낮아 셀 투 팩(Cell To Pack) 기술**도입 가능한 리튬인산철 양극을 보호하며 양극 표면에서 전자전도도와 이온전도도의 균형을 맞추는 데 성공했다. 이는 배터리 충·방전 횟수 증가에 따른 급격한 용량 감소 문제를 해결할 수 있는 새로운 기술이다.
*삼성분계 양극: LiNixCoyMn1-x-yO2(NCM) 화학식으로 표현되는 층상형 양극재의 한 종류로서, 니켈함량이 높을수록 양극 가역 용량이 높아져 배터리 용량을 증가시키나 발열량이 증가하고, 비가역적인 전극 열화에 취약한 한계를 가짐.
**셀 투 팩 기술: 높은 안정성을 가진 리튬인산철 양극 사용하여 단일 셀로 팩을 구성하는 기술로 모듈을 생략하여 팩 단위에서 높은 에너지밀도를 가짐.
개발 기술은 일반적인 실험실 수준이 아닌 기업에서 요구하는 수준의 높은 합재 밀도를 가진 흑연 음극과 리튬인산철 양극을 사용해 배터리의 상온 및 고온 장수명을 실현했다는 점과 저비용으로 극대화된 효율을 낼 수 있는 리튬인산철용 전해질 첨가제 디자인의 방향성을 제시했다는 점에서 그 의미가 크다고 하겠다.
이번 논문의 공동 제1 저자인 생명화학공학과 문현규 연구원은 "개발된 전해질 첨가제는 내열성과 전도성이 우수한 전극 계면 층을 형성해 리튬인산철 양극과 흑연 음극으로 구성된 전지의 구동 온도인 45도 500회, 25도 1,000회 충·방전 후에도 각각 초기용량의 80.8%, 73.3%를 발현했으며, 이는 첨가제가 없는 전해질과 비교하여 각각 20.4%, 8.6% 향상된 수치이다. 현재 전기차용 전지가 약 10년 수명을 보장하므로 개발한 본 첨가제를 적용한다면 10~20% 향상된 11년에서 12년 수명을 보장할 수 있을 것으로 기대할 수 있다. 또한, 리튬인산철 양극의 낮은 전자전도 특성을 개선해 고속 충전 조건에서도 효과가 있었다ˮ 라고 말했다.
최남순 교수는 “이번 성과는 리튬인산철 양극을 보호하는 전해질 첨가제 기술로 이온전도와 함께 전자전달이 가능한 양극 계면층을 형성하는 것이 전해질의 상한한계전압보다 낮은 충전전압조건을 가진 배터리 성능을 확보하는 핵심기술이다”라고 연구의 의미를 강조했다. 그뿐만 아니라 양산 수준의 전극 로딩 조건에서 상온에서부터 고온에 이르기까지 온도 내구성이 뛰어난 전극 계면층을 형성하는 전해질 첨가제 기술로 전기차 배터리 등에 활용이 기대된다고 밝혔다.
이번 연구에서 KAIST 최남순 교수와 문현규, 김동욱(現 LG에너지솔루션) 연구원은 전해질 시스템 개발과 실험적 원리 규명을 담당했다. KAIST 홍승범 교수와 박건(現 LG에너지솔루션) 연구원은 전도성 원자현미경(C-AFM) 분석을 통해 전해질 첨가제가 적용된 리튬인산철 양극 표면에서의 전자전도도를 나노스케일로 영상화했다.
한편 이번 연구는 저명한 국제 학술지 `어드밴스트 펑셔널 머터리얼즈 (Advanced Functional Materials)'에 5월 9일 字로 온라인 공개됐다. (논문명 : Balancing Ionic and Electronic Conduction at the LiFePO4 Cathode–Electrolyte Interface and Regulating Solid Electrolyte Interphase in Lithium-Ion Batteries).
한편 이번 연구 수행은 현대자동차의 지원을 받아 수행됐다.
2024.05.16
조회수 4186
-
개인 맞춤형 정밀 의학 정확도 높일 ‘렌즈’ 개발
평균이 아닌 개인차를 고려하는 정밀 의학 시대가 열렸다. 사람마다 다른 유전적 특징을 알아내는 기술이 비약적으로 발전한 덕분이다. 더 빠르고, 정확하게 전사체를 해독할 수 있는 새로운 도구가 개발됐다. 우리 대학 수리과학과 김재경 교수(IBS 수리 및 계산 과학 연구단 의생명 수학 그룹 CI) 연구팀은 전사체 분석 빅데이터에서 유용한 생물학적 정보만 골라내는 새로운 도구인 ‘scLENS(single-cell Low-dimension Embedding using Effective Noise Subtraction)’를 개발했다.
단일세포 전사체 분석은 최근 생물학, 신약 개발, 임상 연구 등 여러 분야에서 주목받는 도구다. 개별 세포 단위에서 유전적 변화를 확인할 수 있기 때문이다. 가령, 단일세포 전사체 분석을 이용하면 암 조직 내 수십 가지 종류의 세포를 구분하고, 유전적 변이가 발생한 세포만 표적하는 정밀 치료가 가능해진다.
단일세포 전사체 분석 기술이 임상에 광범위하게 이용되려면, 도출되는 빅데이터에서 유용한 생물학적 신호를 찾아내는 효율적인 분석 도구 개발이 선행돼야 한다. 단일세포 전사체 분석은 수백~수천 개에 이르는 개별 세포의 수만 개에 이르는 다양한 유전자 발현량을 측정하기 때문에 데이터 용량이 수~수십 GB에 달한다. 이 방대한 데이터 중 생물학적으로 유용한 신호는 3% 내외에 불과하다.
이 방대하고 노이즈(잡신호)가 많은 데이터에서 유용한 생물학적 신호를 골라내기 위해 지금까지 여러 데이터 처리 도구가 개발됐다. 하지만 기존 도구는 사용자가 생물학적 신호와 노이즈의 ‘경계선’을 직접 설정해야 해서 주관이 개입됐다. 즉, 분석가에 따라 결과가 크게 달라지고, 정확도가 떨어진다는 한계가 있었다.
우선, 연구진은 기존 분석 도구들이 부정확한 근본적인 원인을 규명하고 해결책을 제시했다. 사용자가 노이즈의 임계값을 결정하는 데이터 전처리 방식 자체가 생물학적 신호를 왜곡시킨다는 것을 규명하고, 왜곡 없는 새로운 전처리 방식을 개발했다. 나아가 연구진은 수학적 방법론인 ‘랜덤 행렬 이론’을 이용해 사용자의 주관적 선택 없이 자동으로 단일세포 전사체 분석 데이터에서 신호와 노이즈를 구별하는 프로그램인 ‘scLENS’를 개발했다.
제1 저자인 김현 연구원은 “scLENS는 사용자의 선택 없이 데이터에 내재된 구조만을 이용해 자동으로 신호와 노이즈를 구별하기 때문에 사용자 편향성 문제를 원천 차단할 수 있다”며 “연구자들의 노동집약적인 신호 선택 과정을 없애면서도 분석 정확성은 높였다”고 설명했다.
이어 연구진은 기존 개발된 11가지 데이터 분석 프로그램과 scLENS의 상대적 성능을 비교했다. 이를 통해 scLENS가 다른 모든 프로그램보다 우수한 성능을 보인다는 점을 확인할 수 있었다. 널리 쓰이는 프로그램인 ‘Seurat’과 비교했을 때 scLENS는 세포 그룹화 성능이 약 10% 이상 우수하며, 데이터에 내재된 국소 구조를 43% 더 효과적으로 포착하는 것으로 나타났다.
특히, scLENS는 기존 프로그램보다 많은 계산을 하지만 메모리 사용 최적화를 통해 10만 개의 세포와 2만 개의 유전자로 이뤄진 대규모 데이터를 3시간 만에 분석하는 경쟁력 있는 분석 속도를 보였다.
연구를 이끈 김재경 CI는 “지난 십여 년간 단일세포 전사체를 분석할 수 있는 실험 기술의 비약적인 발전했지만, 데이터 분석 방법의 한계로 인해 큰 비용과 시간을 투자해 얻은 데이터를 최대한 활용하지 못하는 경우가 많았다”며 “기초 수학 이론이 생명과학 연구의 혁신을 견인하고, 감춰졌던 생명의 비밀을 빠르고 정확하게 밝히는 데 쓰일 수 있음을 보여주는 연구”라고 말했다.
연구결과는 4월 27일(한국시간) 국제학술지 ‘네이처 커뮤니케이션즈(Nature Communications, IF 16.6)’ 온라인판에 실렸다.
2024.05.09
조회수 3075
-
자바스크립트 안정성을 책임지다
전 세계에서 가장 널리 사용되는 프로그래밍 언어 중 하나인 자바스크립트*는 컴퓨터 뿐 아니라 스마트폰, 스마트시계 등 다양한 기기에서 동작하기 때문에, 자바스크립트 실행기를 올바르게 구현하는 것이 매우 중요하다. 또한 프로그램 개발 및 배포 과정에서 사용되는 소프트웨어의 안정성 보장이 중요하다.
*자바스크립트: C나 Java와 같이 컴파일 후 사용해야하는 프로그래밍 언어와 달리 코드를 작성하고 바로 실행해 볼 수 있음
우리 대학 전산학부 류석영 교수 연구팀이 고려대 박지혁 교수와 공동연구를 통해 인간 친화적인 형태인 영어로 작성한 자연어 명세에서 컴퓨터에 친화적인 형태인 기계화 명세를 자동으로 추출해 이를 기반으로 자바스크립트 생태계 안정성을 보장하는 기술을 개발하는데 성공했다고 7일 밝혔다.
현재 자바스크립트는 2015년부터 매년 새로운 기능이 추가될 정도로 급성장에 따른 부작용으로 프로그램 실행 중 작동이 되지 않거나 개인 정보 유출 등 언어 생태계의 안정성을 보장하기가 상당히 어려운 상황이다.
연구팀은 이번 기술을 활용하여 크롬 및 엣지와 같은 웹 브라우저에 내장된 자바스크립트 엔진 및 코드 변환 도구에서 수많은 결함을 검출해 내는 데 성공했다. 또한, 자바스크립트용 정적 분석기*를 결함 없이 자동으로 생성하는 데 성공해, 기존 수동으로 개발돼오던 정적 분석기보다 우수한 안정성을 제공했다.
*정적 분석기: 주어진 프로그램을 실행하지 않고 자동으로 분석하는 도구
이러한 장점을 인정받아, 자바스크립트 언어의 명세를 관리하는 위원회에서는 자바스크립트에 새로운 기능을 추가할 때마다 이 기술을 필수적으로 사용하도록 했다. 이 기술은 자바스크립트 언어의 명세를 작성하는 도중에도 결함을 검출할 수 있어서, 자바스크립트 언어의 설계 초기 단계에서 발생할 수 있는 결함을 줄이는 효과를 보였다.
연구팀은 이번 연구를 통해 수년간 논문으로 발표한 결과물들을 산업계에서 널리 사용되는 자바스크립트에 성공적으로 적용, 자바스크립트뿐 아니라 다양한 프로그래밍 언어에도 적용할 수 있는 기틀을 마련했다. 연구팀은 이번 연구를 기반으로, 자바스크립트 후속 언어로 빠르게 성장하고 있는 웹어셈블리 언어에도 관련연구를 적용하고, 네트워크 소프트웨어용 프로그래밍 언어인 P4에 적용하는 연구를 코넬대학 연구팀과 공동으로 진행하고 있다.
연구팀은 모든 연구 결과물을 오픈 소스 SW로 개발해, 누구나 활용할 수 있도록 공개했다. 여러 기기가 스마트 기능을 갖게 되면서 개인 정보 유출 등 심각한 문제가 많이 발생하는 상황에서, 브라우저만 있으면 어느 기기에서나 동작하는 자바스크립트 코드가 올바르게 동작하도록 돕는 데 기여했다.
류석영 교수는 "10년이 넘는 동안 뚝심 있게 자바스크립트를 연구한 학생들의 노력이 만들어 낸 획기적인 기법”이라며, "더 많은 프로그래밍 언어에 적용해, 일상생활에서 더 안전하고 올바르게 동작하는 소프트웨어를 사용할 수 있기를 기대한다”고 말했다.
이번 연구는 컴퓨팅 분야 최고 학술지인 'Communications of the ACM' 2024년 5월호에 게재되고 온라인으로는 4월 24일 발표됐다.
(논문 제목: JavaScript Language Design and Implementation in Tandem,
https://cacm.acm.org/research/javascript-language-design-and-implementation-in-tandem/
https://www.youtube.com/watch?v=JGxc-KIUnQY)
한편 이번 연구는 한국연구재단 중견연구자지원사업 및 선도연구센터와 정보통신기획평가원(IITP), 삼성전자의 지원을 받아 수행됐다.
2024.05.07
조회수 3494
-
값싸고 40% 향상된 리튬이온전지 만든다
전기자동차, 스마트폰 등에 사용되는 리튬이온전지 원가 중 가장 높은 비율을 차지하는 가장 비싼 재료는 니켈, 코발트와 같은 고가 희귀금속이 다량 포함된 양극재다. 국제공동연구진이 리튬이온전지의 에너지 밀도와 가격 경쟁력을 모두 높이는 새로운 전략을 제시했다.
우리 대학 신소재공학과 서동화 교수 연구팀이 UNIST, 캐나다 맥길대(McGill University)와 공동연구를 통해 리튬이온전지 양극의 핵심 광물인 값비싼 니켈, 코발트 없이도 에너지밀도가 40% 향상된 고성능 차세대 리튬이온전지 양극을 개발했다고 1일 밝혔다.
국제공동연구팀은 망간 기반의 양이온-무질서 암염(Disordered rock-salt, 이하 DRX) 양극재에 주목했다. DRX 양극재는 값싸고 매장량이 풍부한 망간, 철 등을 사용할 수 있으면서 양극재 무게 기준 기존 상용화된 삼원계양극재(약 770Wh/kg)보다 높은 에너지밀도(약 1,000Wh/kg)를 가질 수 있기 때문이다. 무엇보다, 값비싼 니켈과 코발트 없이도 소재를 설계할 수 있다는 장점이 있어 차세대 리튬이온전지 양극재로 주목받고 있다.
그러나 망간 기반 DRX 양극재의 경우 양극재 비율이 90% 이상인 전극으로 전지를 만들면 전지 성능이 매우 낮고 급격하게 열화되는 문제가 있었다. 따라서 DRX 양극재 연구자들은 양극재 비율을 70%로 낮춰 전극을 만들어야 했는데, 이 경우 전극 수준에서 삼원계(약 740Wh/kg)보다 오히려 낮은 에너지밀도(약 700Wh/kg)를 가지게 되는 문제가 있었다.
공동연구팀은 전극 내 망간 기반 DRX 양극재 비율이 높을수록 전자 전달 네트워크가 잘 형성되지 않고, 충·방전 간 부피 변화율이 높을수록 충·방전 동안 네트워크 붕괴가 잘 일어나 전지의 저항이 크게 증가한다는 것을 밝혔다. 고성능 차세대 양극재를 사용하더라도 저항이 크게 걸려 전지가 제 성능을 낼 수 없었던 것이다.
공동연구팀의 연구에 따르면, 망간 기반 DRX 전극 제조 시 다중벽 탄소나노튜브*를 사용하여 DRX 양극재의 낮은 전자전도도를 보완하고 충·방전 간 부피 변화를 견딜 수 있게 되어 전극 내 양극재의 비율을 96%까지 끌어올리더라도 전자 전달 네트워크와 전지 성능이 열화되지 않았다. 이를 통해 니켈, 코발트 없이 전극 무게 기준 약 1,050Wh/kg의 높은 에너지밀도를 보이는 차세대 리튬이온전지 양극을 개발했다. 이는 리튬이온전지 양극 중 세계 최고 수준이며, 상용 삼원계 양극 대비 에너지밀도가 40% 향상된 수준이다.
*다중벽 탄소나노튜브: 여러 개의 농축된 원통형 그래핀 층으로 구성된 나노 스케일의 튜브
또한, DRX 양극재 내 망간 함량이 높을수록 전자전도도는 높지만, 동시에 부피 변화율도 높다는 상관관계를 발견했다. 이러한 이해를 기반으로 망간 함량을 낮춰 부피 변화를 억제하고, 다중벽 탄소 나노튜브를 사용해 낮은 전자전도도를 극복한다는 차세대 리튬이온전지 양극 설계 전략을 연구팀은 제시했다.
서동화 교수는 “상용화를 위해 풀어야 할 문제들이 아직 남아있지만 대 중국 의존도가 높은 니켈, 코발트 광물이 필요 없는 차세대 양극 개발 시 자원 무기화에 대비할 수 있고 리튬 인산철 양극 주도의 저가 이차전지 시장에서 우리 기업의 글로벌 경쟁력이 강화될 것으로 기대된다”라고 말했다.
이번 연구에는 이진혁 맥길대 교수가 공동교신저자로, 이은렬 UC버클리 박사후연구원(연구 당시 UNIST 에너지화학공학과 박사과정), 이대형 KAIST 신소재공학과 박사과정이 공동 제1 저자로 참여했다. 또, KAIST 신소재공학과 박상욱 박사과정, 김호준 석사과정이 공저자로 참여했다. 연구 수행은 한국연구재단의 과학기술분야 기초연구사업, 나노 및 소재 기술개발사업, 원천기술 개발사업 및 산업통상자원부의 에너지인력 양성사업의 지원을 받아 이뤄졌고, 한국과학기술정보연구원의 슈퍼컴퓨터를 지원받아 수행됐다.
연구 결과는 에너지 분야 국제학술지 ‘에너지 및 환경과학(Energy & Environmental Science)’ 지난 3월 27일자로 온라인 공개되었고, 6월호 표지 논문으로 출판될 예정이다. (논문명 : Nearly all-active-material cathodes free of nickel and cobalt for Li-ion batteries).
2024.05.02
조회수 3776
-
제약 혼합물 최고 분리막 기술 선보이다
분자의 크기와 모양에 따라 분자를 구별할 수 있는 분리막 공정*은 기존의 열 분리 공정(예: 증류법)보다 훨씬 적은 에너지를 소비하며 화학 산업의 탄소 배출량을 줄일 수 있는 잠재력을 가지고 있다.
*분리막 공정: 분리막은 물질의 크기나 흡수력에 따라서 특정 물질을 선택적으로 통과시키거나 배제하는 역할을 하는 선택적 장애물로 분리막을 이용한 분리 공정은 기존의 공정과 달리 많은 에너지를 사용하지 않고도 화합물들을 효율적으로 분리할 수 있음
우리 대학 생명화학공학과 고동연, 임성갑 교수 공동연구팀이 기존에 분리하기 어려웠던 크기의 활성 제약 분자들을 매우 높은 선택도로 분리할 수 있는 초박막 분리 기술을 세계 최초로 개발했다고 29일 밝혔다.
분리막은 산업계 전반에 사용되는 유기용매들을 분리하는데 저에너지, 저탄소 해결법을 제공할 수 있어 비교적 짧은 상업화 역사에도 불구하고 석유화학, 반도체, 재생합성연료(E-Fuel), 바이오 제약 분야 등 폭넓은 분야에 응용되고 있다.
해수 담수화와 같은 전통적인 응용 분야를 뛰어넘어 분리막이 고부가가치의 화합물을 선택적으로 분리하기 위해서는 기존 소재의 한계를 뛰어넘을 수 있는 혁신적인 고분자 소재의 개발이 필요하다.
연구팀은 반도체 제조 공정에 쓰이는 고분자 박막 증착 기술로 기존 소재의 한계를 뛰어넘는 성능의 분리막을 제조하고, 이를 이용해 고부가가치의 제약 혼합물을 선택적으로 정제할 수 있는 기술을 개발했다.
연구팀은 iCVD(개시제를 이용한 화학 기상 증착법, initiated Chemical Vapor Deposition) 기술을 이용해 기존에 박막으로 만들기 어렵다고 알려진 유기 실록산 고분자를 초박막으로 합성하고 이를 이용해 활성 제약 분자를 선택적으로 정제할 수 있는 분리막 공정을 개발했다. 연구팀은 이와 같은 새로운 접근 방식을 이용해 극도로 얇으면서도 다중으로 연결돼있는 고분자 분리막을 만드는 데 성공했다.
연구팀은 29나노미터(nm) 두께의 분리막을 이용해 다양한 활성 제약 성분, 석유 화합물, 연료 분자 등이 속하는 크기인 분자량 150~350g/mol 범위에 존재하는 분자들을 정제할 수 있다. 다양한 유기 물질이 섞여 있는 매우 복잡한 용매 환경에서 작동할 수 있도록 고안된 이 기술은 기존 분리막의 수명과 분자 선택도를 뛰어넘는 분리막 성능을 입증해 산업계에 분리막이 적용될 수 있는 영역을 넓힐 것으로 기대된다.
연구팀은 나아가 헤르페스 바이러스 치료에 사용되는 주요 활성 제약 성분(API, Active Pharmaceutical Ingredient)인 아시클로버 (Acyclovir), 발라시클로버(Valacyclovir)와 같이 비슷한 모양 및 비슷한 크기(분자량)를 가진 분자들이 섞여있을 때 매우 높은 순도로 아시클로버만 분리해낼 수 있음을 시연했다. 따라서 이번 연구는 분리막 기술을 이용해 기존 제약 제조 공정보다 더 값싸고 에너지 비용이 적은 방법으로 제약 물질을 정제할 수 있음을 밝혀낸 데 의미가 있다.
이번 연구를 이끈 고동연 교수는 "iCVD 방식을 사용한 초박막의 성공적인 제작은 불필요한 반응 없이 결함이 없고 고품질의 밀도 높은 고분자 분리막을 합성할 수 있는 강력한 방법ˮ 이라며 "이전에 접근할 수 없었던 고분자 소재를 제공해 고성능 분리막의 정교한 설계를 촉진할 것ˮ 이라고 말했다.
우리 대학 생명화학공학과 최지훈, 최건우 박사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 ‘네이쳐 커뮤니케이션즈(Nature Communications)’ 3월 15호에 지난 3월 30일 자 출판됐다. (논문명: Ultrathin organosiloxane membrane for precision organic solvent nanofiltration).
한편 이번 연구는 한국연구재단의 우수신진과제, 중견연구과제 및 한국화학연구원 기본사업 협력과제를 통해 지원됐다.
2024.04.29
조회수 4131
-
생성형 AI로 혁신적 신약 개발 가능성 열어
최근 자연어나 이미지, 동영상, 음악 등 다양한 분야에서 주목받는 생성형 AI가 신약 설계 분야에서도 기존 신규성 문제를 극복하고 새로운 혁신을 일으키고 있다고 하는데 어떤 기술일까?
우리 대학 화학과 김우연 교수 연구팀이 단백질-분자 사이의 상호작용을 고려해 활성 데이터 없이도 타겟 단백질에 적합한 약물 설계 생성형 AI를 개발했다고 18일 밝혔다.
신규 약물을 발굴하기 위해서는 질병의 원인이 되는 타겟 단백질에 특이적으로 결합하는 분자를 찾는 것이 중요하다. 기존의 약물 설계 생성형 AI는 특정 단백질의 이미 알려진 활성 데이터를 학습에 활용하기 때문에 기존 약물과 유사한 약물을 설계하려는 경향이 있다. 이는 신규성이 중요한 신약 개발 분야에서 치명적인 약점으로 지적되어 왔다. 또한 사업성이 높은 계열 내 최초(First-in-class) 타겟 단백질에 대해서는 실험 데이터가 매우 적거나 전무한데, 이 경우 기존 방식의 생성형 AI를 활용하는 것이 불가능하다.
연구팀은 이런 데이터 의존성 문제를 극복하기 위해 단백질 구조 정보만으로 분자를 설계하는 기술 개발에 주목했다. 타겟 단백질의 약물 결합 부위에 대한 3차원 구조 정보를 주형처럼 활용해 해당 결합 부위에 꼭 맞는 분자를 주조하듯 설계하는 것이다. 마치 자물쇠에 딱 맞는 열쇠를 설계하는 것과 같은 이치다.
또한 기존 단백질 구조 기반 3차원 생성형 AI 모델들은 신규 단백질에 대해 설계한 분자들의 안정성과 결합력이 떨어지는 등 낮은 일반화 성능을 개선하기 위해서 연구팀은 신규 단백질에 대해서도 안정적으로 결합할 수 있는 분자를 설계할 수 있는 기술을 개발하는 데 초점을 뒀다.
연구팀은 설계한 분자가 단백질과 안정적으로 결합하기 위해서는 단백질-분자 간 상호작용 패턴이 핵심 역할을 하는 것에 착안했다. 연구팀은 생성형 AI가 이러한 상호작용 패턴을 학습하고, 분자 설계에 직접 활용할 수 있도록 모델을 설계하고 재현할 수 있도록 학습시켰다.
기존 단백질 구조 기반 생성형 AI 모델들은 부족한 학습 데이터를 보완하기 위해 10만~1,000만 개의 가상 데이터를 활용하는 반면, 이번 연구에서 개발한 모델의 장점은 수천 개의 실제 실험 구조만을 학습해도 월등히 높은 성능을 발휘한다는 것이다. 이는 자연에서 관찰되는 단백질-분자 상호작용 패턴을 사전 지식의 형태로 학습에 활용함으로써 적은 데이터만으로도 일반화 성능을 획기적으로 높인 것에 기인한다.
일례로 아시아인에 주로 발견되는 돌연변이 상피 성장인자 수용체(EGFR-mutant)*는 비소세포폐암의 주요 원인으로 알려져 있는데, 이를 타겟으로 하는 약물을 설계하기 위해서는 야생형(wild-type) 수용체**에 대한 높은 선택성을 고려하는 것이 필수적이다.
*상피 성장인자 수용체: 상피 성장인자 수용체:상피 성장인자 수용체는 상피 세포의 성장을 촉진하는 인자에 결합함으로써 활성화되는 막 단백질로, 이 수용체의 돌연변이로 인한 지나친 활성은 다양한 종양의 발생과 관련이 있다고 알려져 있음
**야생형 수형체: 야생형은 자연 상태에서 가장 흔하게 발견되는 유전자형 또는 표현형으로, 유전자나 생체 분자 등의 변이가 없는 정상적인 상태를 말함
연구진은 생성형 AI를 통해 돌연변이가 일어난 아미노산에 특이적인 상호작용을 유도해 분자를 설계했고, 그 결과 생성된 분자의 23%가 이론상으로 100배 이상의 선택성을 가지는 것으로 예측됐다. 이와 같은 상호작용 패턴에 기반한 생성형 AI는 인산화효소 저해제(kinase inhibitor)* 등과 같이 약물 설계에 있어 선택성이 중요한 상황에서 더욱 효과적으로 활용될 수 있다.
*인산화효소 저해제: 단백질의 인산화를 촉진하는 효소로, 일반적으로 아데노신 삼인산(ATP)으로부터 인산기를 단백질의 특정 잔기에 전달함. 인산화효소는 세포 내 신호전달 네트워크의 핵심 조절자로서, 다양한 질병의 기전에 관여하여 약물 개발의 표적으로 여겨지고 있음. 이를 위해 인산화효소에 결합하여 활성을 억제하는 목적을 가지는 분자를 인산화효소 저해제라 함
제1 저자로 참여한 화학과 정원호 박사과정 학생은 “사전 지식을 인공지능 모델에 사용하는 전략은 상대적으로 데이터가 적은 과학 분야에서 적극적으로 사용되어 왔다”며 “이번 연구에서 사용한 분자 간 상호작용 정보는 약물 분자뿐 아니라 다양한 생체 분자를 다루는 바이오 분야의 문제에도 유용하게 적용될 수 있을 것”이라고 말했다.
한국연구재단의 지원을 받아 수행된 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications) (IF=16.6)’ 2024년 3월 15호에 게재됐다. (논문명: 3D molecular generative framework for interaction-guided drug design, 논문 링크: https://www.nature.com/articles/s41467-024-47011-2)
2024.04.18
조회수 4342
-
세계 최고 속도 입체적 조명 기술 개발
디스플레이(조명) 기술에서는 고속화가 아주 중요한 성능 중 하나로 꼽힌다. 최근 주요 스마트폰 제조사들은 화면 전환 속도가 기존의 초당 60회보다 크게 향상된 초당 120회의 고속 디스플레이를 선보였다. 이런 고속 디스플레이를 탑재한 모델의 이용자들 사이에 ‘한번 경험하면 예전으로 돌아갈 수 없다’는 말이 회자될 정도로, 고속화는 상업적인 가치도 크다고 볼 수 있다.
우리 대학 바이오및뇌공학과 장무석 교수 연구팀이 북해도대학 전자과학연구소의 시부카와 아츠시 부교수, 미카미 히데하루 교수, 오카야마대학 의·치·약과학과의 스도 유키 교수 연구팀과 공동연구를 통해 세계 최고속의 3차원 광 패턴 조명 기술*을 개발하는 데 성공했다고 15일 밝혔다.
*광 패턴 조명 기술: 빛을 특정 패턴이나 형태로 조절하여 원하는 조명 효과를 얻는 기술
광 패턴 조명 기술은 우리에게 친숙한 디스플레이나 빔프로젝터에서 찾아볼 수 있다. 디스플레이나 빔 프로젝터 내부에는 원하는 이미지나 모양 등을 화소 단위로 만들어낼 수 있는 광 패턴 조명 장치인 공간 광 변조기*가 사용되고 있다. 이외에도 광 패턴 조명 기술은 최근 주목받는 가상 현실 기술 분야의 핵심 요소 기술인 3차원 디스플레이 기술에도 사용되며, 산업 분야에서는 금속 가공, 연구 분야에서는 뇌 심부 이미징을 위한 레이저 스캐닝 현미경 등에 사용되고 있다.
*공간 광 변조기: 빛을 화소 단위로 조작하여 원하는 이미지나 모양을 만들어내는 장치로, 빔 프로젝터나 3차원 디스플레이 기술 등에 사용되는 장치
하지만 공간 광 변조기는 조명 패턴의 전환을 고속으로 수행하는 데 큰 한계를 겪고 있었다. 현재 시판되는 공간 광 변조기는 액정형 디스플레이 장치나 디지털 미러 장치가 있지만, 통상적인 전환 속도는 50마이크로초에서 10밀리초 수준으로 제한되며, 원리적으로 이보다 더 빠르게 만드는 데에는 기술적 어려움이 있었다.
연구팀은 공간 자유도-시간 자유도 사이의 치환 개념을 개발하고, 이를 독자 개발한 초고속 1차원 광 변조기와 산란 매질*을 결합하여 구현하는 방식으로, 시판되는 공간 광 변조기보다 약 1,500배 빠른 30나노초의 전환 속도를 갖는 세계 최고 속도의 3차원의 조명(디스플레이) 기술을 개발했다.
*산란 매질: 안개나 물방울 맺힌 유리창처럼 빛을 무질서하게 굴절시키는 물질
연구팀은 빛의 전파를 교란하는 산란 매질의 특성을 역이용해 1차원의 광 패턴을 사용자가 원하는 3차원의 패턴으로 변환하기 위해 복잡 광 파면 조작 기술을 핵심 기술로 활용했다.
연구팀이 개발한 세계 최고 속도의 광 패턴 조명 기술은 특정 각도에서만 볼 수 있는 기존의 2차원 유사 홀로그램과 달리 실제로 3차원 공간상에 광 정보를 재구성해 입체 영상을 만드는 기술로 활용될 수 있다. 그뿐만 아니라 광유전학 기술에 기반한 뇌 신경 조절 기술과 같은 생체 조절 기술의 고속화·대규모화나 금속 3D 프린터 등의 광 가공 생산 효율 향상 등, 다양한 분야에서 응용될 전망이다.
*광유전학 기술: 빛을 이용해 살아있는 생물 조직의 세포를 제어하는 기술
해당 연구 결과는 바이오및뇌공학과 송국호 박사과정이 공저자, 장무석 교수가 교신저자로 참여했으며 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 2024년 4월 8일 온라인판에 게재되었다. (논문명 : Large-volume focus control at 10 MHz refresh rate via fast line-scanning amplitude-encoded scattering-assisted holography)
이번 연구는 과학기술정보통신부 한국연구재단이 주관하는 선도연구센터사업(컬러변조 초감각 인지기술 선도연구센터), 우수신진연구자 사업, 삼성미래기술육성사업, 국토교통부 국토교통과학기술진흥원이 주관하는 차세대 대인 보안검색 기술 개발 사업의 지원을 받아 수행됐다.
2024.04.15
조회수 4014
-
차세대 이차원 반도체 핵심 기술 개발
물질 증착, 패터닝, 식각 등 복잡한 과정들이 필요했던 기존 반도체 공정과는 달리, 원하는 영역에서만 선택적으로 물질을 바로 증착하는 기술은 공정을 획기적으로 줄일 수 있는 차세대 기술로 크게 주목받고 있다. 특히, 현재의 실리콘을 대체할 차세대 이차원 반도체에서 이런 선택적 증착 기술 개발이 핵심 요소기술로 중요성이 더욱 커지고 있다.
우리 대학 신소재공학과 강기범 교수 연구팀과 고려대학교 김용주 교수 연구팀이 이차원 반도체의 수평 성장 성질을 이용해 쉽고 간편한 산화물, 금속 등의 10나노미터 이하 미세 패터닝 기술을 공동 개발했다고 28일 밝혔다.
강 교수 연구팀은 차세대 반도체 물질로 주목받는 이차원 전이금속 ‘칼코겐’ 물질의 독특한 결정학적 특징을 패터닝 기술에 접목했다. 일반적인 물질과는 달리 이차원 물질은 성장 시 수평 방향으로만 자랄 수 있기에 서로 다른 이차원 물질을 반복적으로 성장해 10나노미터 이하 수준의 이차원 반도체 선형 패턴을 제작할 수 있다.
이러한 선형 패턴에 다양한 물질(산화물, 금속, 상변화 물질)을 성장할 때 한 영역 위에서만 선택적으로 증착되는 현상을 최초로 발견했다. 해당 기술을 통해 타깃 물질 패턴 크기의 축소와 이차원 반도체의 소자 제작 공정 효율성 증대 등을 기대할 수 있다.
일반적으로 선형 패턴의 크기는 이차원 물질 합성에 사용되는 기체 상태의 분자들의 유입 시간으로 결정된다. 해당 연구에서는 약 1초당 1나노미터의 패턴 크기를 형성할 수 있기에 기존 광 기반 패터닝 기술에 비해 효과적으로 크기를 줄일 수 있다.
연구팀이 개발한 선택 증착 기술은 선폭 10나노미터 수준의 좁은 패턴에서도 원하는 물질이 한 영역 위에서만 선택적으로 증착됐으며, 기존 기술과는 달리 두께 20나노미터 이상에서도 선택적 증착이 가능했다.
연구팀이 개발한 기술은 다양한 물질들에서 적용할 수 있다. 반도체 산업에서 소자 제작에 필수적으로 활용되는 고유전율 절연체(산화 알루미늄, 산화 하프늄)와 전극 금속(루테늄) 등의 선택적 증착을 확인했다. 이러한 뛰어난 물질 확장성은 연구팀이 제시한 새로운 선택 증착 메커니즘에 의해 가능한 것으로 알려졌으며, 추후 더 넓은 응용 기술 개발에 활용할 것으로 기대된다.
연구팀의 기술은 차세대 물질인 이차원 반도체 기반에서 적용되기에 이차원 반도체에 효과적으로 게이트 절연체 및 전극의 형성을 도울 것으로 기대된다. 이는 향후 이차원 반도체가 실리콘을 대체할 때 핵심적인 요소기술로 작용할 것이며, 한국에서 가장 중요한 연구 분야인 반도체 시장에서 활발히 응용될 수 있다.
제1 저자인 박정원 연구원은 "새로운 원리의 선택 증착 기술이자 다양한 물질을 10나노미터 이하의 선폭으로 패터닝할 수 있는 차세대 기술을 개발했다ˮ 라며 "특히 템플릿으로 사용되는 이차원 반도체에 선택 증착을 통해 게이트 산화물과 전극 등으로 직접 이용하면 이 기술의 기대 효과는 더욱 커진다ˮ 라고 말했다.
신소재공학과 박정원 석박사통합과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 3월 15권에 3월 8일 자 출판됐다. (논문명 : Area-selective atomic layer deposition on 2D monolayer lateral superlattices).
한편 이번 연구는 한국연구재단의 지원을 받아 수행됐다.
2024.03.28
조회수 3758
-
화학물질 없이 식각하는 반도체 기술 최초 개발
차세대 반도체 메모리의 소재로 주목을 받고 있는 강유전체는 차세대 메모리 소자 혹은 작은 물리적 변화를 감지하는 센서로 활용되는 등 그 중요성이 커지고 있다. 이에 반도체의 핵심 소자가 되는 강유전체를 화학물질없이 식각할 수 있는 연구를 성공해 화제다.
우리 대학 신소재공학과 홍승범 교수가 제네바 대학교와 국제공동연구를 통해 강유전체 표면의 비대칭 마멸* 현상을 세계 최초로 관찰 및 규명했고, 이를 활용해 혁신적인 나노 패터닝 기술**을 개발했다고 26일 밝혔다.
*마멸: 물체 표면의 재료가 점진적으로 손실 또는 제거되는 현상
**나노 패터닝 기술: 나노스케일로 소재의 표면에 정밀한 패턴을 생성하여 다양한 첨단 기술 분야에서 제품 성능을 향상시키는데 사용되는 기술
연구팀은 강유전체 소재의 표면 특성에 관한 연구에 집중했다. 이들은 원자간력 현미경(Atomic Force Microscopy)을 활용해 다양한 강유전체의 트라이볼로지(Tribology, 마찰 및 마모) 현상을 관찰했고, 강유전체의 전기적인 분극* 방향에 따라 마찰되거나 마모되는 특성이 다르다는 것을 세계 최초로 발견했다. (그림 1) 아울러, 이러한 분극 방향에 따라 달라지는 트라이볼로지의 원인으로 변전 효과(Flexoelectric effect)*에 주목했다.
*전기적 분극(electric dipole): 자석의 북극과 남극처럼 전기적으로 양극과 음극이 있는 것을 의미함
*변전 효과: 물질이 휘어졌을 때 분극이 발생하는 현상이지만, 거시 규모에서 물질을 구부렸을 때 유도되는 분극의 크기가 매우 작아 그동안 큰 주목을 받지 못했다. 그러나 2010년대 들어서 물질이 나노스케일로 미세화될 경우, 매우 큰 변전 효과가 발생할 수 있다는 연구 결과가 나오면서 많은 연구자의 주목을 받기 시작했다.
연구진은 강유전체의 트라이볼로지 특성이 나노 단위에서 강한 응력이 가해질 때 발생하는 변전 효과로 인해 강유전체 내부의 분극 방향에 따른 상호작용으로 트라이볼로지 특성이 바뀌게 된다는 것을 발견했다. 또한 이러한 새로운 강유전체 트라이볼로지 현상을 소재의 나노 패터닝에 응용했다.
이러한 패터닝 방식은 기존의 반도체 패터닝 방식과는 다르게 화학 물질 및 고비용의 리소그래피 장비가 필요하지 않고, 기존 공정 대비 매우 빠르게 나노 구조를 제작할 수 있는 장점이 있다.
이번 연구의 제1 저자인 신소재공학과 졸업생 조성우 박사는 “이번 연구는 세계 최초로 강유전체 비대칭 트라이볼로지를 관찰하고 규명한 데 의의가 있고, 이러한 분극에 민감한 트라이볼로지 비대칭성이 다양한 화학적 구성 및 결정 구조를 가진 강유전체에서 널리 적용될 수 있어 많은 후속 연구를 기대할 수 있다”고 밝혔다.
공동교신저자로 본 연구를 공동 지도한 제네바 대학교 파루치(Paruch) 교수는 “변전 효과를 통해 강유전체의 도메인이 분극 방향에 따라 서로 다른 표면 특성을 나타내는 것을 활용함으로써, 다양하고 유용한 기술들을 개발할 수 있을 것이다”며 이번 연구가 앞으로 뻗어나갈 분야에 대한 강한 자신감을 피력했다.
연구를 이끈 홍승범 교수는 “이번 연구에서 개발된 패터닝 기술은 기존 반도체 공정에서 쓰이는 패터닝 공정과 달리 화학 물질을 사용하지 않고, 매우 낮은 비용으로 대면적 나노 구조를 만들 수 있어 산업적으로 활용될 수 있는 잠재력을 가지고 있다”고 전망했다.
한편, 이번 연구는 한국연구재단(2020R1A2C2012078, NRF-2022K1A4A7A04095892, RS-2023-00247245), KAIST 글로벌특이점 사업의 지원 및 스위스, 스페인 연구진과의 국제공동연구를 통해 수행됐으며, 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’에 1월 9일 자 출판됐다. (논문 제목: Switchable tribology of ferroelectrics)
2024.03.26
조회수 4366
-
화합물 생성AI 기술로 신약 개발 앞당긴다
신약 개발이나 재료과학과 같은 분야에서는 원하는 화학 특성 조건을 갖춘 물질을 발굴하는 것이 중요한 도전으로 부상하고 있다. 우리 대학 연구팀은 화학반응 예측이나 독성 예측, 그리고 화합물 구조 설계 등 다양한 문제를 동시에 풀면서 기존의 인공지능 기술을 뛰어넘는 성능을 보이는 기술을 개발했다.
김재철AI대학원 예종철 교수 연구팀이 분자 데이터에 다중 모달리티 학습(multi-modal learning) 기술을 도입해, 분자 구조와 그 생화학적 특성을 동시에 생성하고 예측이 가능해 다양한 화학적 과제에 광범위하게 활용가능한 인공지능 기술을 개발했다고 25일 밝혔다.
심층신경망 기술을 통한 인공지능의 발달 이래 이러한 분자와 그 특성값 사이의 관계를 파악하려는 시도는 꾸준히 이루어져 왔다. 최근 비 지도 학습(unsupervised training)을 통한 사전학습 기법이 떠오르면서 분자 구조 자체로부터 화합물의 성질을 예측하는 인공지능 연구들이 제시되었으나 새로운 화합물의 생성하면서도 기존 화합물의 특성 예측이 동시에 가능한 기술은 개발되지 못했다.
연구팀은 화학 특성값의 집합 자체를, 분자를 표현하는 데이터 형식으로 간주해 분자 구조의 표현식과 함께 둘 사이의 상관관계를 아울러 학습하는 AI학습 모델을 제안했다. 유용한 분자 표현식 학습을 위해 컴퓨터 비전 분야에서 주로 연구된 다중 모달리티 학습 기법을 도입해, 두 다른 형식의 데이터를 통합하는 방식으로, 바라는 화합물의 성질을 만족하는 새로운 화합물의 구조를 생성하거나 주어진 화합물의 성질을 예측하는 생성 및 성질 특성이 동시에 가능한 모델을 개발했다.
연구팀이 제안한 모델은 50가지 이상의 동시에 주어지는 특성값 입력을 따르는 분자 구조를 예측하는 등 분자의 구조와 특성 모두의 이해를 요구하는 과제를 해결하는 능력을 보였으며, 이러한 두 데이터 정보 공유를 통해 화학반응 예측 및 독성 예측과 같은 다양한 문제에도 기존의 인공지능 기술을 뛰어넘는 성능을 보이는 것으로 확인됐다.
이 연구는 독성 예측, 후보물질 탐색과 같이 많은 산업계에서 중요하게 다뤄지는 과제를 포함해, 더 광범위하고 풍부한 분자 양식과 고분자, 단백질과 같은 다양한 생화학적 영역에 적용될 수 있을 것으로 기대된다.
예종철 교수는 “새로운 화합물의 생성과 화합물의 특성 예측 기술을 통합하는 화학분야의 새로운 생성 AI기술의 개척을 통해 생성 AI 기술의 저변을 넓힌 것에 자부심을 갖는다”고 말했다.
예종철 교수 연구팀의 장진호 석박통합과정이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’지난 3월 14일 자 온라인판에 게재됐다. (논문명 : Bidirectional Generation of Structure and Properties Through a Single Molecular Foundation Model)
한편 이번 연구는 한국연구재단의 AI데이터바이오선도기술개발사업으로 지원됐다.
2024.03.25
조회수 4606
-
RNA 유전자 가위 정밀제어기술로 유전자 치료 성큼
최근 유전자 치료제 개발에 있어 중요한 역할을 하는 유전자 가위(CRISPR/Cas) 기술은 DNA 편집을 통해 영구적인 치료 효과를 보일 수 있으나, 비표적 효과에 의한 생체 내 부작용에 의한 돌연변이가 발생하였을 때, 대체할 방안이 불명확하다. DNA 편집의 잠재적인 위험성을 극복하여 특이적으로 인식하고 조절할 수 있는 RNA 대상으로 하는 유전자 가위 시스템이 주목받고 있다.
우리 대학 생명과학과 허원도 교수 연구팀이 세계 최초로 RNA 유전자 가위 기술 (CRISPR/Cas13)의 활성을 화학 유전학 및 광유전학으로 조절해 시간 및 공간적으로 표적 RNA의 염기 편집을 수행하는 기술을 개발했고, 동물 모델에서의 RNA 염기 편집 효과를 입증했다고 7일 밝혔다.
허원도 교수 연구팀은 구조가 알려지지 않은 단백질의 구조를 재구조화해, 화학적 및 광유전학적으로 조절 가능한 Cas13 단백질 조각을 예측하고 개발하는 데 성공했다. 이를 통해 개발된 에디터 기술로 RNA 분해 및 RNA 염기 편집을 실시간으로 유도할 수 있으며, RNA 염기 편집의 활성을 가역적으로 조절할 수 있음을 확인했다. 또한, 기존 연구자들이 실험에 이용하던 세포모델에서 더 나아가 세계 최초로 실험 쥐 모델에 해당 시스템을 적용해 광유전학적으로 RNA 염기 편집이 효과적으로 일어나는 것을 입증했다.
이번 연구는 유전자 가위 시스템을 활용한 유도 가능한 RNA 조절 시스템 개발로, 질병과 관련된 돌연변이를 표적으로 하는 RNA 기반 치료법의 발전 및 세포 내 RNA 기반 연구의 적용에 기여할 것으로 기대된다. 특히 생체 내 전달 목적으로 주로 사용되는데 연구팀은 RNA 대상 편집 시스템에서 단백질의 상대적으로 큰 크기를 유전체 전달에 있어서 임상적 적용에 한계점을 가지고 있다는 점을 감안하여 DNA 크기 제한을 분할 시스템으로 극복하고, 실험 쥐의 기관 내에서 다양한 모델 시스템 구축을 통해 생체 내 RNA 연구의 적용 범위를 확장할 수 있다.
연구를 주도한 허원도 교수는 “재결합이 가능한 분할 단백질 Cas13 조각을 개발해, 화학적 및 광유전학적으로 특정 시공간에서 정밀하게 조절되는 RNA를 실험적으로 확인했다. 이 기술은 그동안 실험적 한계로 인해 어려웠던 복잡한 RNA 연구를 촉진할 것으로 기대된다.라고 말했다.” 아울러 “유전자 가위 시스템을 활용한 유도 가능한 RNA 조절 시스템 개발로, 질병과 관련된 돌연변이를 표적으로 하는 RNA 기반 치료법의 발전 및 세포 내 RNA 기반 연구의 적용에 기여할 것으로 기대된다”라고 전했다.
우리 대학 생명과학과 유정혜 박사과정이 제1 저자로 수행한 이번 연구는 저명 국제 학술지 ‘네이처 커뮤니케이션즈 (Nature Communications)’ 2024년 1월 22일 字 온라인판에 게재됐다. (논문명: Programmable RNA base editing with photoactivatable CRISPR-Cas13). (Impact Factor: 17.694). (DOI: https://doi.org/10.1038/s41467-024-44867-2)
한편, 이번 연구는 삼성미래기술육성재단과 정부의 재원으로 한국연구재단 바이오·의료기술개발사업의 지원을 받아 수행됐다.
2024.02.07
조회수 4721
-
입찰자, 판매자 모두에게 이득되는 경매?
일반적인 경매는 참여자가 늘어나면 경쟁만 심해지기 때문에 ‘친구’를 함께 데리고 갈 이유가 없다. 하지만 판매자 입장에서는 가격을 올리기 위해 친구를 ‘추천’해서 참여시켜 주길 원한다. 이렇게 판매자와 추천할 친구가 있는 입찰자의 이해관계 상충을 어떻게 해결할 수 있을까?
우리 대학 기술경영학부 정승원 교수가 성균관대학교 이주성 교수와 공동연구를 통해, 참여자가 친구를 추천할 유인(Incentive)을 제공하며, 판매자 입장에서도 기존 경매 방식들보다 높은 수익을 얻을 수 있는 새로운 경매 메커니즘 지피알(GPR, Groupwise-Pivotal Referral)을 개발했다고 2월 1일 밝혔다.
이번에 새로 개발된 지피알 경매는 판매자도 기존 경매 방식 대비 많은 이익을 가져오며, 입찰자도 자신의 친구를 추천하여 함께 참여하는 것이 항상 이득이 된다. 만약 내가 추천을 안 하더라도 낙찰을 받을 수 있으며 추천을 해서 타인이 낙찰받게 될 경우, 오히려 직접 낙찰받는 것보다 더 큰 보너스를 받게 된다.
일반적으로 많이 사용하는 비공개 입찰방식은 최고가격(First-Price)경매 또는 차순위가격(Second-Price) 경매가 있다. 최고가격 경매는 참여자 모두가 입찰가를 비공개로 적어내고, 가장 높은 가격을 적어낸 사람이 해당 가격에 낙찰을 받는 경매 방식이다. 반면, 차순위가격 경매는 최고가를 적어낸 사람이 낙찰을 받되, 두 번째로 높은 금액만 내는 경매 방식이다.
최고가격 경매의 참여자 면에서 단점은 입찰가를 정하는 것이 매우 어렵다는 점이다. 두 번째로 높은 금액보다 아주 조금만 높게 적어내는 것이 최선이지만, 두 번째로 높은 금액을 알 수가 없기 때문이다. 2014년에 최고가 경매로 팔린 한전 부지의 경우 현대차가 10조 5,500억 원에 낙찰을 받았고, 두 번째 금액으로 추정되는 삼성전자의 입찰가가 4조 6,700억 원이라 언론을 통해 알려진 바가 있다. 이렇기 때문에 규모가 큰 최고가격경매의 경우, 경쟁자의 입찰가를 알아내기 위해, 또 역으로 거짓 정보를 흘린다든지, 많은 신경전이 일어나기도 한다.
차순위가격 경매의 경우, 경쟁자가 어떻게 입찰하든지 간에 상관없이 각 참여자가 자신의 실제 가치를 입찰하는 것이 본인한테도 최선이 되는, 유인합치성(incentive compatibility)이라고 불리는 좋은 성질이 있다. 차순위가격 경매는 이를 연구한 노벨경제학 수상자 월리엄 비크리(William Vickrey)의 이름을 따서, 비크리 경매라고도 부른다.
일반적인 환경의 비크리 경매에서는 각 참여자가 자신의 외부효과만큼 지불하는데 이를 통해 유인합치성이 만족되게 된다. 하지만 추천을 통해 비크리 경매에 참여하는 경우, 과도한 추천 보너스 지급으로 인해 정작 판매자의 수익이 마이너스가 되는 경우가 발생할 수 있는 결정적인 단점이 있다.
이번에 새로 개발된 지피알 경매의 경우, 외부효과를 추천 네트워크상의 그룹별로 계산함으로써, 여러 좋은 성질을 가지게 된다.
연구에 참여한 우리 대학 경영대학 기술경영학부 정승원 교수는 “이번 연구는 입찰자 입장에서도 손해 볼 걱정없이 다른 입찰자들을 추천해서 참여시킬 수 있고, 판매자 입장에서도 마이너스 수익이 발생하지 않음은 물론, 기존의 여러 경매 방식보다 수익이 항상 더 크게 나오는 경매 방식을 최초로 제시한다는 점에서 의미가 있다”며 “또한 모든 수익을 판매자와 직접 연결된 입찰자와 판매자 둘이서만 나눠 가지게 되는 GPR 메커니즘의 내쉬 균형(Nash Equilibrium)의 경우, 마치 원청업체가 하청업체보다 높은 수익을 얻는 상황의 극한값으로도 설명될 수 있다”고 말했다.
이번 연구 결과는 국제 학술지 `Games and Economic Behavior'에 지난 1월 게재됐다. (논문명: The groupwise-pivotal referral auction: Core-selecting referral strategy-proof mechanism)
논문링크:https://www.sciencedirect.com/science/article/pii/S0899825623001847
2024.02.01
조회수 3272