-
3차원 고해상도 혈관내시경 시스템 개발
우리 학교 기계공학전공 오왕열 교수는 현존하는 기술보다 *이미징 속도가 최대 3.5배 빠른 광학 혈관내시경 시스템을 개발하고 이를 이용해 세계 최초로 3차원 고해상도(혈관 깊이 방향 10㎛급, 혈관 둘레 및 길이 방향 30㎛급) 생체 혈관 내부 이미지 획득에 성공했다. *이미징 : 시각적으로 인식할 수 있는 형으로 정보를 표현하는 것
이번에 국내 최초로 개발된 혈관내시경 시스템은 영상속도는 물론 해상도, 영상품질, 영상획득영역 등도 세계 최고의 성능을 갖고 있다. 또 혈관 벽의 취약여부 파악에 용이한 편광 이미징 등 기능성 이미징도 동시에 수행할 수 있어 심혈관계 질환 진단 및 치료에 새로운 전기를 가져올 것으로 기대된다.
혈관내시경 광단층영상(OCT, Optical Coherence Tomography) 시스템은 심근경색으로 대표되는 심혈관계질환 진단을 위해 가장 높은 해상도를 제공하는 장비로써 임상분야에서 주목을 받고 있다.
그러나 기존 시스템은 영상 촬영속도가 느려 빠르게 이미징을 수행해야하는 혈관 내 상황에서 자세한 파악이 불가능하고 혈관 내부를 띄엄띄엄 분석할 수밖에 없었다. 임상에서 생체 혈관 내부 광학적 영상을 위해서는 내시경을 혈관에 삽입한 다음 투명한 액체를 순간적으로 흘려보내 수초 안에 촬영을 해야 하기 때문이라고 연구팀은 전했다.
연구팀은 초고속·고해상도 광단층영상 시스템과 직경 0.8mm(밀리미터)의 유연한 고속·고해상도 내시경 및 이미징 빛을 혈관 내에서 고속으로 스캔할 수 있는 장치를 개발하고, 이를 활용해 혈관 벽 내부 구조를 영상화하는데 성공했다.
연구팀은 개발한 시스템을 활용해 사람의 관상동맥과 비슷한 크기인 토끼 대동맥 7cm 길이의 혈관을 5.8초 만에 초당 350장의 속도로 단층 촬영에 성공, 3차원 모든 방향으로 10~35㎛(마이크로미터, 100만분의 1미터)의 고해상도 이미지를 얻어냈다.
연구팀은 현재 상용화중인 혈관내시경처럼 200㎛ 간격으로 이미징할 경우에는 7cm 길이의 혈관을 1초 안에 모두 이미징할 수 있었다.
오왕열 교수는 “이번에 개발한 혈관내시경 시스템은 세계 최고의 성능을 갖는 것은 물론 살아있는 동물 혈관 내부 촬영을 통해 사람의 혈관과 비슷한 상황에서 테스트가 됐다는 점에서 크게 의미가 있다”고 연구 의의를 밝혔다.
더불어 “병원과 긴밀한 협력을 통해 올 상반기에 사람의 심장과 비슷한 크기를 가진 동물 심장의 관상동맥 촬영을 준비하고 있다”며 “이를 거쳐 향수 수년 내에 임상에서 환자에 적용할 수 있을 것”이라고 임상적용 및 상용화에 대한 강한 기대감을 내비쳤다.
이번 연구는 한국연구재단의 중견연구자지원사업(도약연구) 및 글로벌프론티어사업의 지원을 통해 수행됐으며, 연구결과는 지난 1월 바이오메디컬 옵틱스 익스프레스(Biomedical Optics Express) 지에 게재됐다.
그림1. 내시경 말단 광학부(좌측상단)
그림2. 내시경 고속 광 스캐닝 유닛(우측상단)
그림3. 고해상도로 이미징된 동물 생체 혈관 내부 영상(혈관 둘레 및 길이방향)
그림4. 고해상도로 이미징된 동물 생체 혈관 내부 영상(혈관 깊이방향)
2014.03.12
조회수 18838
-
단백질 나노튜브의 자기조립 분자스위치 발견
- 한국, 미국, 이스라엘 국제 공동 연구 성과 -
- 암 치료와 뇌 질환 메커니즘 단서 -
우리 학교 바이오및뇌공학과 최명철 교수와 송채연 연구교수는 미국
산타바바라 캘리포니아대학교, 이스라엘 히브리대학교와 공동으로 세포분열과 세포간 물질수송에 열쇠가 되는 단백질 나노튜브의 자기조립
구조를 제어하는 분자스위치를 발견했다.
연구 결과는 세계적 학술지 ‘네이처 머티리얼즈(Nature Materials, IF=35.7)’ 19일자에 게재됐다.
마이크로튜불(microtubule, 미세소관)은 사람의 몸속에서 세포분열·세포골격·세포간 물질수송 도구로 사용되는 튜브 형태의 단백질로 굵기가 25나노미터(1나노미터는 머리카락 굵기의 10만분의 1)에 불과하다.
대부분의 암 치료 약물은 마이크로튜불의 형성을 교란해 암세포 분열을
억제하는 것으로 작용 메커니즘이 알려져 있다. 알츠하이머병은 세포간 물질수송을 담당하는 마이크로튜불의 구조적 안정성이 떨어지면서
신경세포에서의 신호전달이 제대로 이루어지지 않아 생기는 대표적 뇌질환이다.
연구팀은 싱크로트론 X선 산란장치(synchrotron x-ray
scattering: 전자를 빛의 속도에 가깝게 가속시켜 강력한 X선을 발생시키는 장치)와 투과전자현미경을 이용해 단백질
나노튜브의 자기조립 구조를 서브나노미터(1나노미터 미만)의 정확도로 측정했다.
연구팀은 이번 연구를 분자 레벨에서 레고 블록을 쌓아 올리는 것에 비유해
가로×세로×폭이 각각 4×5×8 나노미터인 단백질 블록을 쌓아 올려 25나노미터 굵기의 튜브를 형성하는 메커니즘을 추적했다. 이
과정에서 연구팀은 레고 블록의 형태를 제어하는 분자스위치를 발견했다. 또 지금까지 보고된 바 없는 전혀 새로운 크기와 형태의
단백질 튜브 구조를 만들어 내는데 성공했다.
최명철 교수는 “인간의 생명 시스템은 고도의 자기조립 구조체를 형성해 복잡한 생물학적 기능을 하고 있지만 한편으로는 극히 단순한 물리학적 원리에 의해 제어가 가능하다는 새로운 패러다임을 제시했다”고 이 연구의 의의를 밝혔다.
또 “이번 연구는 암 치료와 뇌질환 메커니즘을 규명하고자하는 작은 발걸음이며 앞으로 바이오 나노튜브를 이용한 공학적 응용이 무궁무진할 것으로 기대한다”고 말했다.
이번 연구는 한국연구재단의 국제협력사업, 신진연구자지원사업, 학문후속세대양성사업, KAIST 고위험 고수익 프로젝트(High Risk High Return Project)의 지원으로 수행됐다.
2014.01.21
조회수 21582
-
배추 절이는 원리로 광결정 미세캡슐 개발
- “반사형 컬러 디스플레이 소자 및 인체 주입 바이오센서에 응용가능” -- 콜로이드 및 유체역학 분야의 대가 故 양승만 교수에게 연구결과 헌정 -
우리 학교 생명화학공학과 김신현 교수 연구팀이 하버드대와 공동으로 삼투압 원리를 이용해 차세대 광학소재로 주목받는 광결정의 미세캡슐화 기술을 개발했다.
연구결과는 네이처 자매지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 7일자 온라인 판에 게재됐다.
남미 열대림에서 서식하는 몰포(Morpho)나비의 날개는 파란 색으로 보이지만 색소가 없다. 날개 표면에 있는 규칙적인 나노 구조로 인해 파란색 파장의 빛만을 반사하기 때문에 우리 눈에는 파란 색으로 보이는 것이다.
이처럼 물질의 광구조가 특정 파장의 빛만 반사하고 나머지는 통과하는 배열을 갖도록 만들어낸 물질을 ‘광결정’이라고 한다.
광결정은 빛의 파장 절반 수준에서 굴절률이 주기적으로 변하는데 특정 파장의 빛만을 제어할 수 있는 특성과 다양한 응용가능성을 갖고 있어 ‘빛의 반도체’라고도 불린다.
1987년 미국 벨연구소 이론 물리학자 엘리 야블로노비치(Eli Yablonovitch)와 프린스턴대학 사지브 존(Sajeev John)이 광결정 개념을 최초로 보고한 이래 지난 27년 동안 많은 과학자들이 광결정을 인공적으로 제조하기 위해 노력해왔다. 그러나 반사색이 대부분 고정된 구조에 의해 발현돼 색을 바꾸는 것이 불가능하고 제조 공정이 까다로워 상용화가 어려웠다.김 교수 연구팀은 △액체 상태의 광결정을 잉크처럼 캡슐화하고 △광결정을 덩어리 형태가 아닌 머리카락 굵기(약 100나노미터) 수준의 미세캡슐형태로 제조해 제작의 공정성을 높였으며 △고무재질의 캡슐막을 적용해 모양을 자유자재로 바꿀 수 있도록 제작했다.
연구팀은 배추를 소금물에 절일 때 발생하는 ‘삼투압현상’을 활용했다. 배춧잎은 물 분자만을 투과시키는 반투막으로 이뤄져있는데 배추가 소금물에 잠기면 높은 삼투압을 갖는 소금물이 배춧잎 내부의 물 분자를 반투막 밖으로 꺼내고 배춧잎은 부피가 줄어드는 원리를 이용한 것이다.
연구팀은 이 현상을 나노입자를 담은 미세 물방울에 적용했다. 삼투압현상에 의해 물방울의 부피가 줄어듦에 따라 나노입자가 스스로 규칙적인 구조로 배열돼 캡슐막 내부에 액상의 광결정을 만들었다. 이 과정에서 머리카락 굵기 수준의 작은 통로를 구현한 미세유체소자를 활용해 광결정 미세캡슐을 균일한 크기로 제조하는데 성공했다.
김신현 교수는 “미세 광결정 잉크캡슐은 상용화 가능한 수준으로 향후 구부리거나 접을 수 있는 차세대 반사형 컬러 디스플레이 소자 및 인체 내로 주입 가능한 바이오센서 등을 구성하는 핵심 광학소재로 사용될 수 있을 것”이라고 이번 연구 의의를 설명했다.
KAIST 및 하버드 연구진들은 이번 연구 결과를 지난해 9월 불의의 사고로 고인이 된 콜로이드 및 유체역학 분야의 세계적 대가 故 양승만 교수(前 KAIST 생명화학공학과 교수)에게 헌정했다고 전했다.
한편, 이번 연구는 산업통상자원부에서 지원하는 선진기술국가 국제공동기술개발사업으로 진행됐다.
□ 용어설명- 광결정 (Photonic crystals): 빛의 파장의 절반 수준에서 굴절률이 규칙적으로 변하는 물질로써 특정 에너지를 갖는 광자가 물질 내에 존재할 수 없는 광밴드갭 (photonic bandgap)을 갖는 물질을 말함. 광밴드갭에 해당하는 파장이 가시광선 영역에 있을 때, 외부에서 입사하는 백색광 중 광밴드갭에 해당하는 파장의 빛이 선택적으로 반사되어 금속 광택과 흡사한 느낌의 색깔을 보임.
- 미세유체소자(Microfluidic device) : 머리카락 굵기 수준의 미세한 유로를 집적화함으로써 유체 흐름을 매우 정교하게 제어할 수 있게 해주고, 균일한 크기와 구조의 이멀젼(emulsion) 을 생성시킬 수 있는 소자.
□ 그림설명
그림1. 삼투압 차에 따른 캡슐 크기 감소를 보여주는 모식도
그림2. 균일한 크기의 광결정 캡슐을 제조할 수 있는 미세유체소자
그림3. 초록색 및 파란색 반사색을 보이는 광결정 캡슐의 광학현미경 사진
그림4. 광결정캡슐의 변색 및 변형을 보여주는 광학현미경 사진
그림5. 자연계에 존재하는 광결정의 예: 오팔보석, 공작새 깃털, 극락조의 날개
2014.01.15
조회수 25784
-
손상된 DNA의 돌연변이 수리과정 규명
- DNA 손상을 복구하는 암 관련 핵심 효소 ATM의 조절 메커니즘 밝혀 -
우리 학교 생명과학과 최광욱 교수와 홍성태 박사 연구팀은 생체정보를 저장하는 DNA가 손상됐을 때 이를 수리하는 핵심효소의 기능에 필수적인 단백질 ‘ATM(Ataxia telangiectasia mutated)’의 작동 메커니즘을 규명했다.
연구결과는 네이처 자매지인 ‘네이처 커뮤니케이션즈(Nature communications)’ 19일자 온라인판에 게재됐다.
인간을 포함해 DNA를 갖고 있는 모든 생명체는 자신의 DNA정보를 지키기 위해 끊임없이 노력하고 있으며 이들이 살아가고 있는 자연환경에는 DNA를 손상시킬 수 있는 수많은 요소들이 존재한다.
예를 들면, 우리가 매일 섭취하는 음식물속에 들어있는 탄화물질이나 건물의 시멘트에서 나오는 라돈과 같은 방사선 물질, 강한 태양빛에 포함된 자외선 등 수많은 발암물질들과 함께 살아가고 있다.
생명체는 발암물질들로부터 DNA정보를 일정하게 유지하기 위해 복잡하고 정교한 DNA 수리작업을 항상 수행하고 있는데 이 과정에서 ‘ATM’이라고 하는 DNA 손상복구 단백질이 핵심적인 역할을 한다. 따라서 ATM이 제대로 작동하지 않으면 암 발병 확률이 높아진다.
지금까지 학계에서는 TCTP(Translationally controlled tumor protein)라는 단백질이 ATM의 기능을 조절하는데 중요할 것이라고 추정해 왔다. 그러나 이에 대한 주된 연구결과가 배양된 세포수준에서 확인했기 때문에 정확히 어떠한 방식으로 TCTP가 ATM의 기능을 조절하는지 알 수 없었다.
연구팀은 TCTP에 결합하는 아미노산 조각의 정보를 활용해 TCTP가 ATM과 결합을 할 수 있고, 다양한 분자생화학적인 방법들을 이용해 TCTP가 ATM의 효소기능을 높여준다는 사실을 밝혀냈다.
이와 함께 분자 유전학의 모델동물로 널리 사용되는 초파리를 이용해 TCTP와 ATM이 방사선에 의해 손상된 DNA를 수리하는데 매우 중요한 역할을 하고 있다는 점도 규명했다.
이를 통해 연구팀은 TCTP가 세포배양 수준은 물론 고등생명체에서도 DNA 정보를 일정하게 유지하는데 중요한 역할을 하며, TCTP가 ATM의 기능을 조절하는 방법에 대한 중요하고 구체적인 단초를 제시했다.
최광욱 교수는 이번 연구에 대해 “초파리 모델동물을 이용한 기초연구가 암 등 질병의 과정을 이해하고 치료방법을 개발하는데 중요한 기여를 할 수 있음을 보여주는 좋은 사례”라고 말했다.
이번 연구는 미래창조과학부(장관 최문기)와 한국연구재단이 추진하는 중견연구자지원사업(도약 연구)과 일반연구자지원(대통령포스닥펠로우십)의 지원을 받아 수행됐다.
□ 보충자료
1. ATM(Ataxia telangiectasia mutated)ATM 유전자의 이상은 Louis-Bar syndrome 이라는 희귀 퇴행성 신경질환을 유발하는 것으로 알려져 있다. 운동기능이상, 눈의 흰자위나 피부에 비정상적으로 나타나는 혈관 확장, 약화된 면역반응, 혈액암 (림프종, 백혈병) 과 같은 질병증상을 추가로 일으킬 수 있다. ATM 유전자는 인산화 효소(kinase)의 기능을 가지고 있으며, ATM 단백질은 DNA의 이중나선이 모두 끊어질 경우, 이를 연결하는데 중요한 역할을 수행한다.
2. TCTP(Translationally controlled tumor protein)1988년 처음으로 발견된 단백질로, 이 유전자의 이름은 종양 세포에서 그 양이 비정상적으로 많아지기 때문에 붙여졌다. 그 기능이 본격적으로 밝혀진 것은 2000 초반부터이며, 세포의 생존과 성장에 중요한 역할을 한다. 최근에서야 DNA 정보를 유지하는데 중요하다는 것이 밝혀졌다.
3. Nature communcations네이처를 출간하는 Nature Publishing Group (NPG)에서 발간하는 온라인 전용 과학저널. 생물학, 물리학, 화학, 공학, 천문학, 고고학 등 다양한 분야의 수준 높은 과학연구 주제를 다루고 있다. 2012년을 기준으로 하는 SCI (Science citation index, 과학분야 인용지수)는 10.015 이다.
4. 초파리1900년대 초반, Charles W. Woodworth, William E. Castle, Thomas H. Morgan등이 멘델유전학을 연구하기 위해 처음으로 사용하기 시작한 모델 동물. 진핵세포에서 일어나는 생명현상을 연구하기 위해 오랫동안 사용되어온 대표적인 모델 동물이다.
□ 그림설명
그림1. TCTP단백질의 양이 줄어들면 방사능에 의해 쉽게 초파리 눈 세포의 형태가 비정상적으로 변형된다. (화살촉). Scale bars = 200mm
그림2. TCTP 단백질의 양이 줄어들면, 방사능에 의해 초파리의 염색체가 쉽게 끊어진다 (화살촉 표시). Scale bars = 10 mm.
그림3. TCTP와 ATM의 유전자발현이 줄어들면 눈의 정상적인 발생에 큰 결함이 생긴다.(왼쪽 : 초파리의 정상적인 눈, 오른쪽 : 성장이 결핍된 눈)
그림4. ATM은 끊어진 DNA의 위치를 표시하며, TCTP는 이 작용이 원활히 일어나도록 돕는다. 세포 핵 안에 들어있는 DNA(파란 선)는 히스톤 단백질(녹색 원통)에 감겨있다. DNA가 끊어지면(붉은 번개표시) 끊어진 자리에 ATM 단백질이 인산기(P)를 부착한다. 다양한 DNA 수리 단백질들은 이 인산기를 DNA에 수리가 필요하다는 신호로 인식하고 모여든다.
2013.12.20
조회수 19974
-
단분자 수준 단백질 상호작용 측정 성공
- 하나의 분자 수준에서 두 단백질 상호작용 실시간 관찰 성공 -- 면역침강 기법의 측정한계와 시간분해능 십만 배 향상 -
우리 학교 물리학과 윤태영 교수 연구팀이 하나의 분자 수준에서 실시간으로 두 단백질 사이의 상호작용을 관찰하는 기술을 개발한 연구 결과가 ‘네이처 프로토콜스 (Nature Protocols)’ 10월 호에 초청 논문으로 게재됐다.
윤 교수 연구팀은 먼저 하나의 분자까지 관찰할 수 있는 형광현미경을 개발했다.
연구팀은 분자생물학에서 단백질 상호작용 분석에 전통적으로 사용되는 ‘면역침강기법’을 개발한 현미경과 접목함으로써 ‘실시간 단분자 면역침강기법’을 개발해냈다. 이를 통해 연구팀은 순간적으로 상호작용이 반복되는 두 단백질의 반응을 수십 밀리 초 단위에서 정밀하게 관측하는데 성공하였다.
기존의 면역침강기법은 두 단백질 사이의 상호작용을 검출하기 위해 최소 1일 이상의 시간이 소요되었다. 이로 인해 약한 상호작용이나 순간적인 작용을 검출해 내는데 있어 그 한계가 있었다. 또한 결과로 나타난 그림이 단백질 밴드의 세기로 측정되므로 정량적인 분석이 어렵고, 실시간 관측이 불가능한 단점이 있었다.
연구팀은 이러한 기존 방법을 대폭 개량함과 동시에 단분자 수준에서 정밀한 기법을 개발해 내고자 하였다. 새롭게 개발된 기술을 사용하면, 1시간 이내에 원하는 단백질 사이의 상호작용을 관측할 수 있게 된다. 또한 두 단백질의 상호작용을 실시간으로 측정할 수 있으므로 상호작용의 현상을 보다 심도있게 측정하고, 계량할 수 있는 것이다.
또한 실험에 사용되는 모든 프로그램을 연구팀에서 직접 제작, 배포하여 본 기법에 대한 원천기술을 확보함과 동시에, 세계적인 인프라를 구축하는데 있어 토대를 마련하기도 하였다.
윤태영 교수는 “이번에 개발한 기술은 별도의 단백질 발현이나 정제과정을 필요로 하지 않아 매우 미량의 단백질 샘플만 주어져도 그 상호작용을 단분자 동역학 수준에서 매우 정밀하게 분석할 수 있다”며 “암 환자 조직에서 얻어진 발암 단백질도 정확히 분석할 수 있어 향후 맞춤형 항암제 개발을 위한 플랫폼을 마련할 수 있다”고 전했다.
그림1. 기존의 면역침강법과 새로이 개발된 실시간 단분자 면역침강법의 비교 모식도
2013.11.25
조회수 16990
-
치매 정복의 열쇠, PET-MRI 국산화 시대 열린다!
- 순수 국내기술로 PET-MRI 동시 영상 시스템 상용화기술 개발 -- KAIST, 나노종합기술원, 서강대, 서울대병원 융합연구 쾌거 -
수입에만 의존하던 최첨단 의료영상기기 분야에서 국산화에 대한 기대감이 높아지고 있다.
우리 학교 원자력및양자공학과 조규성 교수가 총괄책임을 맡고 있는 3개 대학 공동연구팀은(KAIST, 서강대, 서울대) KAIST 부설기관인 나노종합기술원(원장 이재영)과 함께 순수 국내기술로 PET-MRI 동시영상 시스템을 개발하고 이 시스템을 이용해 자원자 3명의 뇌 영상을 획득하는데 성공했다.
PET-MRI는 인체의 해부학적 영상을 보는 자기공명영상기기(MRI, Magnetic Resonance Imaging)와 세포활동과 대사상태를 분석할 수 있는 양전자방출단층촬영기기(PET, Positron Emission Tomography)의 장점이 융합된 최첨단 의료영상기기다. 신체 내 해부학적 정보와 기능적 정보를 동시에 확인할 수 있기 때문에 종양은 물론 치매의 정밀한 조기 진단이 가능하고 신약 개발과 같은 생명과학연구에서도 필수적인 장치다.
기존의 장비는 MRI에서 발생되는 강한 자기장의 영향으로 인해 PET과 MRI 영상을 각각 찍은 후 결합하는 분리형 방식을 주로 사용해 왔다. 이 때문에 촬영시간이 길어지고 환자의 움직임으로 인한 오차가 발생해 두 기기의 영상을 동시에 측정하는 기술이 필요해 자기장내에서 동작되는 PET 개발이 절실했다.
연구팀이 국내 최초로 개발한 일체형 PET-MRI의 핵심 기술은 크게 △자기장 간섭이 없는 PET 검출기 기술 △PET-MRI 융합시스템 기술 △PET-MRI 영상 처리 기술로 나뉜다.
PET 검출기는 전체 시스템 가격의 절반을 차지할 정도로 비싸고 가장 핵심적인 요소다. 조 교수와 나노종합기술원 설우석 박사 연구팀은 강한 자기장 내에서 사용 가능한 실리콘 광증배센서(방사선 검출기에 들어오는 빛을 증폭) 개발에 성공했다. 개발된 센서는 반도체 공정을 최적화해 95% 이상의 높은 양산성과 10%대의 감마선 에너지 분해능을 확보해 글로벌 경쟁력을 갖췄다.
서강대 전자공학과 최용 교수는 신개념 전하신호전송방법과 영상위치판별회로를 적용한 최첨단 PET 시스템을 개발했다. 연구결과는 창의성 및 우수성을 인정받아 지난 6월 의학물리(Medical Physics)지에 표지논문으로 게재됐다.
서울대병원 핵의학과 이재성 교수는 △실리콘 광증배센서 기반 PET 영상재구성 프로그램 △MRI 영상기반 PET 영상 보정기술 △PET-MRI 영상융합 소프트웨어 개발을 맡았다.
이 밖에 KAIST 전기및전자공학과 박현욱 교수는 PET과 MRI가 동시설치 가능한 무선주파차폐(RF Shielding) 기술을 확보하고 이를 기반으로 PET과 연계해 설치 가능한 뇌전용 헤드코일을 개발했다.
이 기술들을 바탕으로 공동연구팀은 뇌전용 PET-MRI 시스템 개발에 성공, 지난 6월 3명의 PET-MRI 융합 뇌 영상을 획득했다. 이는 실리콘 광증배센서 기반의 PET과 MRI를 융합한 기기에서 세계 최초로 획득한 인체영상이라고 연구팀은 전했다.
특히, 이 시스템은 기존 전신용 MRI시스템에 뇌전용 PET 모듈 및 MRI 헤드코일이 탈부착 가능하도록 제작해 낮은 설치비용으로 PET-MRI 동시영상을 획득할 수 있는 게 큰 특징이다.
조규성 교수는 “국산 PET의 상용화 기반을 마련하고 세계적으로도 도입기인 PET-MRI 시스템 기술에서 세계 최고 기업들과 견줄 수 있게 됐다”며 “향후 수요가 급증할 것으로 예상되는 치매를 비롯한 뇌질환 진단 비용을 획기적으로 절감할 수 있을 것”이라고 이번 연구의 의의를 밝혔다.
산업통상자원부 산업원천기술개발사업으로 지원(7년간 총 98억원)받아 수행된 이번 연구를 통해 20여편의 특허를 출원하고 20여편의 SCI 논문을 발표했다.
그림1. 개발한 PET-MRI에서 획득한 뇌팬텀(모형) MRI, PET 및 융합 영상
그림2. 개발한 PET-MRI에서 획득한 인체(뇌) MRI, PET 및 융합 영상
그림3. 국산 PET-MRI 임상 영상 촬영 모습
그림4. MRI 내에 삽입된 Head RF 코일과 PET 검출기
그림5. 제작된 삽입형 PET 검출기 모듈
그림6. 제작된 실리콘 광증배센서(좌)와 섬광 크리스탈 블록(우)의 모습
그림7. 제작된 실리콘 광증배센서
그림8. PET 검출원리
2013.11.13
조회수 21296
-
멀티프로젝션 상영관 기술 세계 첫 개발
- KAIST, CJ CGV와 공동개발해 전국 40개 상영관에서 상용화 완료 -- “3D 입체영상 기술 대체해 창조경제 이바지 할 것” -
영화 시장에서 멀티프로젝션을 상영관에 도입하는 연구가 진행되고 있다.
우리 학교 문화기술(CT)대학원 노준용(42) 교수 연구팀이 CJ CGV와 공동으로 몰입감을 제공하는 멀티프로젝션 기술 ‘CGV 스크린X(이하 CGV ScreenX)’를 개발했다.
‘CGV ScreenX’는 극장 화면의 경계를 넘어 전면 스크린은 물론 좌우 벽면에 확장된 영상을 투사해 관객들의 시야를 꽉 채우기 때문에 마치 영화 속에 들어온 것과 같은 미래형 상영관이다.
이 기술은 기존 3D 입체영화와 비교하면 △전용 안경이 필요 없고 △어지러움 증을 유발하지 않으며 △옆면을 스크린으로 활용해 영화 몰입감을 극대화하는 것이 특징이다.
특히, 세계 최초로 개발한 이 기술은 할리우드를 비롯한 전 세계 극장에 역수출 할 수 있다는 장점이 있으며, 기존의 극장 구조를 그대로 이용하면서 프로젝터만 추가하면 되기 때문에 높은 투자비 없이 도입할 수 있다.
노 교수팀과 CJ CGV는 몰입형 영상 기술을 구현하기 위해 멀티프로젝션 기술, 컨텐츠 재구성 기술, 시스템관리 기술 등 핵심적인 기술을 개발했다. 멀티프로젝션 기술은 기존의 극장 옆면을 스크린으로 활용해 자연스러운 영상을 표현할 수 있도록 최적화됐으며, 기존의 광고나 영화 상영 시스템과 동기화 되도록 설계됐다.
이와 함께 서로 다른 구조를 가진 다양한 극장 환경에서 동일한 컨텐츠를 효과적으로 재생할 수 있는 컨텐츠 재구성 기술, 복잡한 시스템을 적은 인력으로도 효율적으로 다수의 극장에 설치·운영하는 시스템 관리 기술을 개발했다.
노준용 교수는 “컨텐츠의 제작, 시스템 설치, 상영 등 전 과정에서 상영 환경의 영향을 많이 받는 멀티프로젝션을 극장 환경 내에서 일반화 시킬 수 있는 기술을 개발한 것이 핵심”이라며 “기존에 한정된 환경에서만 선보여지던 값비싼 멀티프로젝션 기술의 플랫폼화, 대중화를 실현함으로써 이 분야 기술적 우위를 선점한 점에서 의미가 크다”고 이번 기술에 대한 의미를 설명했다.
최근에는 CGV ScreenX 기술을 바탕으로 국내 최고의 비주얼리스트로 불리는 김지운 감독이 영화 를 제작해 화제를 모으고 있다. 는 제18회 부산국제영화제 갈라 프레젠테이션 섹션에 공식 초청되어 뜨거운 관심을 모았으며, 영화제 기간 내내 영화업계 관계자들로부터 영화의 새로운 가능성을 보여준다는 평가를 받았다.
참고로 CGV ScreenX는 현재 CGV여의도 9개관 전관 포함, 전국 22개 극장의 40개 상영관에서 지난 1월부터 선보이고 있으며 연내 50개 상영관으로 확대될 예정이다.
1. CGV ScreenX 기술 요약
그림1. CGV ScreenX 기술 요약- 하드웨어(상영시스템), 소프트웨어(콘텐츠), 관리 기술을 포함한 기술 개발로 다양한 상영관에서의 동시운용을 실질적으로 가능하게 함
2. CGV ScreenX 주요 기술
① 표준 콘텐츠 제작
- 상영관의 통계적인 분석을 통하여 다수의 상영관을 커버할 수 있는 적절한 형태의 콘텐츠 템플릿 제공
② 상영관 특화영상 재구성
- 각 상영관의 구조를 고려하여 상영관에 적합한 형태로 표준 콘텐츠를 자동으로 재구성하여 배포하는 기술
③ 프로젝터별 보정 영상 생성
- 데이터베이스로부터 각 상영관에 설치된 다수의 프로젝터별 보정정보를 입력 받아 재구성 된 특화영상을 실시간으로 보정하여 재생하는 기술
- 상영관의 특성에 기반 한 설계를 통해 보정 과정의 많은 부분이 자동화
되어있어 기존의 방법에 비해 매우 간편함
④ 동기화 재생- 각각의 옆면 보조 프로젝터 뿐만 아니라, 중앙 프로젝터 및 광고, 영화 재생 서버와 실시간 동기화하여 재생하는 기술
2013.10.21
조회수 13791
-
소금쟁이 착안해 나노박막 물성 측정법 개발
-“수 nm 두께 나노박막의 기계적 물성도 손쉽게 측정할 수 있어”-- 네이처 커뮤니케이션즈 3일자 게재 -
우리 학교 기계공학과 김택수 교수와 한국기계연구원(원장 최태인) 나노역학연구실 현승민 박사 공동연구팀은 물 표면의 특성을 이용해 나노박막의 기계적 물성을 평가하는 새로운 방법을 개발했다.
연구결과는 세계적 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)" 3일자 온라인판에 게재됐다.
이번에 개발된 기술을 활용하면 직접 측정하기 어려운 나노박막의 강도, 탄성 등 기계적 물성을 직접 측정해 정확한 결과 값을 얻을 수 있다. 또 방법이 간단해 나노박막 기계적 물성 평가의 새로운 패러다임을 제시한 것으로 학계와 산업계는 평가하고 있다.
나노박막의 기계적 물성 평가는 반도체, 디스플레이 등의 신뢰성을 예측하는데 중요한 것은 물론 나노 세계의 새로운 현상을 발견하는데도 필요하다. 그러나 기계적 강도는 구조물이 바닥으로부터 떨어져 측정을 하는데 나노박막의 경우 쉽게 부서지는 문제점이 있어 시험이 어려웠다.
연구팀은 소금쟁이와 같은 곤충이 물의 표면 위를 자유로이 떠다니는 것에 착안했다.
연구팀은 표면 장력이 크고 낮은 점성을 갖는 물의 특성을 이용해 물 표면에 약 55nm(나노미터) 금나노박막을 띄워 놓고 손상 없이 기계적 물성을 정확하게 특정하는데 성공했다.
이 기술을 이용하면 다양한 종류의 나노박막 뿐만 아니라 두께가 수 나노미터에 이르는 박막의 기계적 물성까지도 측정할 수 있을 것으로 기대된다.
김택수 교수는 이번 연구에 대해 “물의 특성을 이용한 새로운 강도 시험 방법의 개발을 통해 기존에 접근하기 어려웠던 나노박막의 기계적 물성 평가를 효과적으로 수행할 수 있게 됐다”고 의의를 밝혔다.
또 “향후 기존의 강도 시험법으로는 측정이 불가능했던 그래핀과 같은 2차원 나노박막의 기계적 물성을 밝혀나갈 계획”이라고 말했다.
KAIST 기계공학전공 김재한 박사과정(제1저자) 학생이 KAIST 김택수 교수, 한국기계연구원 현승민 박사의 지도를 받아 수행한 이번 연구는 한국연구재단 신진연구지원사업, 한국기계연구원 주요연구 사업과 21세기 프론티어 사업의 지원으로 수행됐다.
<물 표면을 이용한 나노박막의 기계적 물성 평가 과정>
<왼쪽에서부터 현승민 박사, 김재한 박사과정생, 김택수 교수 (카이스트, 한국기계연구원 공동 연구팀)>
2013.10.14
조회수 16892
-
건강한 망막혈관 생성을 유도하는 치료방법 개발
- 향후 당뇨망막병증 치료방법으로 적용 기대
우리 학교 연구진이 실명으로 이어질 수 있는 망막혈관 질환치료의 실마리를 찾아냈다. 혈액공급이 잘되지 않는 망막 부위로 건강한 망막혈관이 생성되도록 하여 망막신경을 보호하는 혈관생성단백질을 찾아낸 것. 향후 당뇨망막병증*과 미숙아망막병증**의 치료방법 개선을 위한 연구의 단초가 될 것으로 기대된다.
이번 연구결과는 국내에서 전문적인 기초과학 교육을 받고 있는 안과 전문의 연구원에 의해 이루어진 대표적인 중개연구의 결과여서 더욱 주목받고 있다.
* 미숙아망막병증 : 망막 혈관의 발달이 완성되지 않은 시기에 출생한 미숙아에서 발생하는 망막 혈관질환으로 소아실명의 가장 흔한 원인 질환이다.
* 당뇨망막병증 : 당뇨병의 합병증으로 망막조직으로의 불충분한 혈액공급으로 생기는 망막 혈관질환으로 성인실명의 중요한 원인 질환이다.
우리 학교 의과학대학원 이준엽 연구원이(안과 전문의, 지도교수: 고규영,유욱준) 수행한 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 중견연구자지원사업(도약)의 지원으로 수행되었고, 연구결과는 사이언스 중개의학(Science Translational Medicine) 표지논문(9월 18일자)으로 소개되었다. 이 학술지는 임상의학과 기초과학을 연계하는 중개의학 분야 권위지로 사이언스지 자매지이다.
(논문명 : Angiopoietin-1 Guides Directional Angiogenesis Through Integrin αvβ5 Signaling for Recovery of Ischemic Retinopathy)
당뇨망막병증의 치료에는 망막조직을 파괴하는 레이저광응고술이나혈관증식과 혈액누출을 억제하는 항체치료제*가 적용되고 있다.
항체치료제는 망막신경을 파괴하지 않는 장점이 있지만 한시적으로 혈관증식을 억제할 뿐, 근본적인 해결이 아니어서 반복적인 치료가 필요하다는 한계가 있었다.
* 항체치료제 : 비정상적인 혈관증식과 혈액누출을 선택적으로 억제하기 위하여 개발된 항체로서, 현재 혈관내피세포성장인자 (VEGF)를 저해하는 아바스틴 (Avastin) 과 루센티스 (Lucentis) 가 대표적인 항체치료제이다.
연구팀은 개체의 발달과정에서 혈관의 생성과 안정화에 필수적이라고 알려진 안지오포이에틴-1* 단백질이 망막혈관의 생성과정에도 중요한 역할을 함을 동물실험을 통해 규명해냈다.
망막출혈에 의한 시력상실의 근본 원인이 되는 망막허혈**을 개선하고 망막신경을 보호하는 단백질을 알아낸 것이다.
망막조직으로 충분한 혈액을 공급해 망막신경의 기능을 보존하는 방식의 근본적인 치료방법 개발의 실마리가 될 것으로 기대된다.
* 망막허혈 : 망막 조직에 충분한 혈액 공급이 되지 않는 상태
* 안지오포이에틴-1(Angiopoietin-1) : 건강한 혈관의 생성을 유도하고 생성된 혈관의 안정화를 유지하는 데 중요한 성장인자.
실제 안지오포이에틴-1을 망막병증 생쥐모델의 안구에 투약한 결과 건강한 망막혈관의 생성이 촉진되어, 망막허혈에 따르는 비정상적인 혈관증식이나 망막출혈, 시력상실이 예방되었다.
이준엽 연구원은 “이번 연구는 안지오포이에틴-1이 망막혈관의 생성과 안정화에 중요한 인자라는 사실을 새롭게 규명함으로써 혈관생성을 억제하는 현재의 치료법에서 건강한 혈관을 생성하고 혈관의 기능을 강화하는 방식의 치료법으로 패러다임이 전환될 것을 기대한다”고 연구 의의를 밝혔다.
그림 1. 망막병증 생쥐모델에서의 안구 내 투여한 Angiopoietin-1의 역할 대조군에 비해 VEGF-Trap 치료군과 Angiopoietin-1 (Ang1) 치료군은 병적인 혈관의 증식을 유의하게 억제함 (아래), 추가적으로 Ang1 치료군은 망막 중심부의 무혈관부위(망막허혈)를 향하여 혈관이 생성되었고, 이러한 현상은 VEGF-Trap 치료군에서는 관찰되지 않음 (위).
그림 2. Angiopoietin-1에 의한 망막허혈과 망막 출혈의 감소 및 혈관의 정상화 (좌) 대조군에 비해 Angiopoietin-1 (Ang1) 치료군은 망막허혈부위 면적(화살표)을 유의하게 감소시켰으며, 망막 출혈의 양도 Ang1 치료에 의해 감소함. (우) Ang1 에 의해 새롭게 형성된 혈관은 정상 망막 혈관과 같이 혈관주위세포에 의한 지지를 받는 구조적으로 안정된 혈관임.
그림 3. Angiopoietin-1에 의한 망막 신경 보호 효과 (위) 대조군에 비해 Angiopoietin-1 (Ang1) 치료군은 망막 중앙부 와 주변부의 신경세포의 세포자멸사를 유의하게 억제함. (아래) 이러한 Ang1에 의한 망막 신경 보호 효과는 전기 생리학적 검사인 망막전위도 검사를 통해 확인됨.
그림 4. Angiopoietin-1 이 망막 혈관 생성을 유도하는 기전 Angiopoietin-1은 망막 혈관의 내피세포 (Endothelial cell) 에 작용하여 혈관의 안정성 유지에 중요한 역할을 할 뿐만 아니라 망막의 별아교세포 (Astrocyte) 의 integrin 수용체를 통하여 fibronectin 이라는 세포외기질의 생성을 증가시켜 망막 조직 내로의 혈관 생성의 경로를 안내하는 역할을 함.
2013.09.22
조회수 19078
-
다양한 물질로 만든 나노선 상용화 가능성 열려
- 산·학·연 2년간 공동연구 끝에 나노선 상용화 가능한 기술 개발 -- 폭 50nm, 길이 20cm 나노선 2시간이면 200만 가닥 대량생산 가능해 -
폭이 수십 나노미터 정도로 매우 얇은 나노선의 상용화를 앞당길 혁신적인 기술이 국내 산·학·연 공동연구진에 의해 개발됐다. 향후 나노선을 이용한 반도체, 고성능 센서, 생체소자 등 다양한 분야에 활용될 것으로 전망된다.
우리 학교 전기및전자공학과 윤준보 교수 연구팀은 (주)LG이노텍(대표 이웅범), 나노종합기술원(원장 이재영)과 공동으로 첨단 과학 분야에서 핵심적인 소재로 쓰이고 있는 나노선을 다양한 소재로 필요한 길이만큼 대량 생산할 수 있는 기술을 개발했다.
연구결과는 나노 과학 분야의 권위 있는 학술지인 ‘나노 레터스(Nano Letters)’ 7월 30일자 온라인판에 게재됐다.
나노선은 폭이 최대 100나노미터 정도에 불과한 긴 선 모양의 구조체로 기존에 발견되지 않았던 다양한 열적, 전기적, 기계적 특성을 보이는 다기능성 나노 소재다. 나노 세계에서만 보이는 특성을 활용하기 위해 나노선은 반도체, 에너지, 생체소자, 광학소자 등 다양한 분야에 활용될 수 있는 첨단 소재로 각광 받고 있다.
그러나 수 밀리미터를 성장시키는데 3~4일이 소요될 만큼 합성 속도가 매우 느리고 대량 생산이 어려운 것은 물론 원하는 물질을 자유자재로 나노선으로 제작할 수 있는 기술이 개발되지 않았다.
또 제작된 나노선을 실제로 적용하기 위해서는 가지런히 정렬시켜야 하는데 기존 기술은 정렬을 위해 복잡한 후처리를 해야 하고 정렬 상태도 완벽하지 못해 상용화에 커다란 걸림돌이었다.
연구팀은 이러한 종래의 문제점을 극복하기 위해 기존의 화학적 합성법을 사용하지 않고 반도체공정을 적용했다.
연구팀은 직경 20센티미터의 실리콘 웨이퍼 기판에 광식각 공정을 이용해 목표하는 주기보다 큰 패턴을 형성한 뒤 이 주기를 반복적으로 줄여가는 방법을 이용해 100나노미터 초미세 선격자 패턴을 제작했다.
이 패턴을 기반으로 반도체 제조과정에서 널리 쓰이는 박막증착공정을 활용해 폭 50nm(나노미터), 최대 길이 20cm(센티미터)의 나노선을 완벽한 형태로 대량 제조하는데 성공했다.
개발된 기술은 장시간의 합성 공정을 거칠 필요가 없으며 별도의 후처리를 하지 않아도 완벽하게 정렬된 상태로 만들 수 있어 상용화 가능성이 높은 것으로 학계와 산업계는 평가하고 있다.
윤준보 교수는 이번 연구에 대해 “낮은 생산성, 긴 제조시간, 물질합성의 제약, 나노선 정렬 등과 같은 기존 기술의 문제점을 해결했다는 데 의미가 있다”면서 “그동안 나노선을 산업적으로 널리 활용하지 못했지만 개발된 기술을 활용하면 나노선을 사용한 고성능의 반도체, 광학, 바이오 소자 등의 상용화를 앞당길 수 있을 것”이라고 밝혔다.
KAIST 전기및전자공학과 연정호 박사과정 학생, LG이노텍 이영재 책임연구원 나노종합기술원 유동은 선임연구원이 참여한 이번 연구는 미래창조과학부(장관 최문기)와 한국연구재단(이사장 이승종)이 추진하는 중견연구자지원사업(도약연구)의 지원으로 수행됐다.
2013.08.22
조회수 15725
-
명현 교수, 해파리 퇴치용 군집 로봇 개발
- 3대의 군집 로봇으로 현장 시연 완료 -
우리 학교 건설 및 환경공학과 명현 교수 연구팀이 해파리 퇴치용 로봇 제로스 (JEROS)를 이용한 협업 군집 로봇 개발을 완료하고 이를 현장에서 시험했다.
최근 우리나라 연근해에 해파리 떼가 출몰하면서 해파리로 인한 인명 사고와 조업 손실(연간 3,000억원 정도 추산됨)이 큰 문제가 되고 있는 가운데, 명현 교수 연구팀은 4년 전 해파리를 제거할 수 있는 무인 자동화 시스템인 ‘제로스’ 개발에 착수했으며, 작년에 1대로 현장 시험을 완료한 바 있다.
올해에는 제로스의 속도 및 퇴치 성능을 향상시키고 3대를 제작하여, 편대를 지으며 협동으로 해파리를 퇴치하는 군집 로봇을 개발, 현장에서 시험을 진행했다.
무인 수상 로봇의 일종인 ‘제로스’는 길이 1.5m, 폭 1m, 높이 1m이고, 폭 1.2m, 높이 1.2m 크기의 분쇄부를 탈부착 가능하다. 원기둥 형태의 두 개의 동체가 부력을 유지하며, 동체에 붙어 있는 두 개의 추진 모터를 이용해서 전・후진 및 회전이 가능하다. 또한 GIS (지리정보시스템) 기반 맵 데이터를 이용하여 해파리 퇴치 작업 영역을 지정하면 작업 경로를 자동으로 계산을 하며 GPS(위성항법장치) 수신기 및 IMU(관성항법장치)를 이용하여 자율 운항을 한다.
군집 로봇은 삼각 편대, 일렬 편대와 같이 정해진 패턴을 유지하는 동시에, 계산된 경로를 따라가며 해파리 퇴치 작업을 수행하게 된다. 이때 선도(리더) 로봇만 주어진 경로를 알면 되고, 다른 로봇들은 무선통신(지그비 방식) 을 이용하여 서로의 위치를 주고 받으며 편대를 유지하게 되므로, 개별적인 제어가 필요하지 않다는 장점이 있다.
제로스는 무인 항법을 통해 스스로 이동하며, 추진 속도를 이용하여 아래에 부착된 분쇄부 쪽으로 해파리가 미끄러져 들어오게 하고, 분쇄부 중앙의 고속 회전하는 프로펠러가 흡입하여 해파리를 완전 분쇄하게 된다.
현장 시험 결과에 따르면, 3대의 군집 로봇이 4노트(시속 7.2km) 의 속도로 진행하였을 때 처리 용량은 시간당 약 900kg인 것으로 나타났다.
연구팀은 현재 경남 마산만에서 보름달물해파리 제거 시험을 완료하였으며, 추후 다양한 장소 및 환경에서 성능 보완을 완료할 예정이다.
군집 제로스 기술은 해파리 제거 외에도 해양 순찰 및 경계, 원유 유출 방지, 부유 쓰레기 제거 등 다양한 목적으로도 활용될 수 있다.
한편, 이번 연구는 미래창조과학부의 ‘신진연구지원사업’ 및 산업통상자원부의 ‘융복합 로봇 전문인력 양성 사업’을 통해 수행됐다.
2013.08.19
조회수 15180
-
주차걱정 끝~! 접이식 초소형 전기차 개발
- 동물 모사해 접는 초소형 전기차 ‘아마딜로-T’ 개발 -
- 2.8m 차량을 접으면 1.65m, 한 대 공간에 3대 주차 가능해 -- “경차보다 작은 신규 초소형 세그먼트 차량 인증 법규 서둘러야” -
도심 속 주차난을 한 방에 해결해 줄 초소형 접이식 전기차 ‘아마딜로-T(Armadillo-T)’가 공개됐다.
13일 오전 10시 KAIST에서 공개한 접이식 자동차 ‘아마딜로-T’는 지난 2011년 12월부터 국토교통부, 국토교통과학기술진흥원 등의 지원을 받아 KAIST 조천식녹색교통대학원 서인수 교수 연구팀이 개발했다.
‘아마딜로’는 아메리카 대륙에 사는 가죽이 딱딱한 동물로 적을 만나면 공 모양으로 몸을 둥글게 말아 자신을 지켜낸다. 연구팀은 이 동물이 몸을 접는 모습에 착안해 차량을 디자인 했다. ‘아마딜로’라는 동물의 이름에 자동차의 시대를 연 포드의 세계 최초 대량생산 자동차인 ‘포드 모델 T’의 T를 붙여 아마딜로-T라는 이름을 붙였다고 연구팀은 전했다.
연구팀은 다양한 디자인을 검토해 △초소형 전기자동차 △독창적인 접이식 구조의 적용 △공기역학적 설계 및 실내 공간 최대화 △모터 제어 및 4륜 동력학적 통합제어 알고리즘의 개발 등을 통해 혁신적인 차체 형상과 고효율 및 차량의 안정성을 보장하도록 설계했다.
길이는 국내에서 가장 작은 경차보다도 짧은 2.8m에 불과하다. 주차모드로 전환하면 차량 중간지점을 기준으로 부채처럼 접히면서 1.65m로 줄어든다. 5m길이의 일반 주차장에 3대까지 주차할 수 있다.
500kg의 무게에 최고속도는 시속 60km까지 낼 수 있으며 탑승 정원은 2명이다. 13.6kWh 용량의 배터리를 탑재해 10분 동안 급속 충전하면 최대 100km까지 주행 가능하다.
경차 또는 기존 저속 전기차 보다도 작은 초소형 차량(micro mobility)은 유럽에서는 국제연합유럽경제위원회(UNECE) 규정에 의거, 연비 및 안정성 등 차량 인증 법규가 존재한다. 일본에서도 정부 차원에서 많은 실증이 진행되고 있지만 국내에서는 아직 사회적 관심이나 법규 검토 등에서 아직 미약하다.
차량을 움직이는 동력은 바퀴 안쪽에 장착된 인 휠 모터(In-Wheel Motor)에서 나온다. 동력 창치를 바퀴에 적용함으로써 승객의 편의를 위한 차량의 공간을 최대화 할 수 있다. 또 4개의 바퀴를 독립적으로 제어할 수 있기 때문에 기존의 차량보다 더 안정되면서도 높은 성능을 낼 수 있으며, 차가 접힌 상태에서는 제자리에서 360도 회전이 가능하다.
다른 첨단기술도 접목했다. 사이드미러를 없애고 카메라를 통해 좌우측 후면을 볼 수 있도록 해 디자인을 간결하게 하면서 사각지대를 최소화했다. 또 최첨단 컴퓨터를 통해 배터리가 남은 양 등 차량 각 장치의 정보를 전달받아 모니터에 표시해준다. 주차 시에는 차량을 주차한 후 스마트폰 앱을 통해 외부에서 접을 수 있다. 게다가 접은 상태에서 스마트폰을 이용해 자동 주차 제어가 가능하다.
서인수 교수는 접이식 전기차 개발 배경에 대해 “고령화 사회에 대비한 노인들의 복지, 제한된 석유자원과 친환경 에너지, 근거리 도심 또는 지역사회 교통수단 등 다양한 목적을 가지고 만들었다”며 “최근 KAIST가 개발한 무선충전 전기버스처럼 상용화에 성공해 우리나라 창조경제 발전에 기여할 것”이라고 말했다.
연구팀은 ‘아마딜로-T’ 개발과정에서 총 13건의 국내외 특허를 출원했으며, 지난 5월 국제전기전자공학회 산하 국제전기기계및자동차학회에서 실시한 디자인경진대회에서 2위에 입상하는 성과를 이루기도 했다.
2013.08.13
조회수 15335