-
생각만으로 정확하게 로봇팔 조종이 가능한 뇌-기계 인터페이스 개발
우리 대학 바이오및뇌공학과 정재승 교수 연구팀이 3차원 공간상에서 생각만으로 로봇팔을 높은 정확도 (90.9~92.6%)로 조종하는 `뇌-기계 인터페이스 시스템'을 개발했다고 23일 밝혔다.
정 교수 연구팀은 인공지능과 유전자 알고리즘을 사용해 인간의 대뇌 심부에서 측정한 뇌파만으로 팔 움직임의 의도를 파악해 로봇팔을 제어하는 새로운 형태의 뇌-기계 인터페이스 시스템을 개발했다. 뇌 활동만으로 사람의 의도를 파악해 로봇이나 기계가 대신 행동에 옮기는 `뇌-기계 인터페이스' 기술은 최근 급속도로 발전하고 있다. 하지만 손을 움직이는 정도의 의도 파악을 넘어, 팔 움직임의 방향에 대한 의도를 섬세하게 파악해 정교하게 로봇팔을 움직이는 기술은 아직 정확도가 높지 않았다.
하지만 연구팀은 이번 연구에서 조종 `방향'에 대한 의도를 뇌 활동만으로 인식하는 인공지능 모델을 개발했고, 그 결과 3차원 공간상에서 24개의 방향을 90% 이상의 정확도로 정교하게 해석하는 시스템을 개발했다.
게다가 딥러닝 등 기존 기계학습 기술은 높은 사양의 GPU 하드웨어가 필요했지만, 이번 연구에서는 축적 컴퓨팅(Reservoir Computing) 기법을 이용해 낮은 사양의 하드웨어에서도 인공지능 학습이 가능하여 스마트 모바일 기기에서도 폭넓게 응용될 수 있도록 개발해, 향후 메타버스와 스마트 기기에도 폭넓게 적용이 가능할 것으로 기대된다.
우리 대학 김훈희 박사(現 강남대 조교수)가 제1 저자로 참여한 이번 연구는 국제학술지 `어플라이드 소프트 컴퓨팅(Applied Soft Computing)' 2022년 117권 3월호에 출판됐다. (논문명 : An electrocorticographic decoder for arm movement for brain-machine interface using an echo state network and Gaussian readout).
뇌-기계 인터페이스는 사용자의 뇌 활동을 통해 의도를 읽고 로봇이나 기계에 전달하는 기술로서 로봇, 드론, 컴퓨터뿐만 아니라 스마트 모바일 기기, 메타버스 등에서의 이용될 차세대 인터페이스 기술로 각광받고 있다.
특히 기존의 인터페이스가 외부 신체 기관을 통해 명령을 간접 전달(버튼, 터치, 제스처 등)해야 하지만 뇌-기계 인터페이스는 명령을 뇌로부터 직접적 전달한다는 점에서 가장 진보된 인터페이스 기술로 여겨진다.
그러나 뇌파는 개개인의 차이가 매우 크고, 단일 신경 세포로부터 정확한 신호를 읽는 것이 아니라 넓은 영역에 있는 신경 세포 집단의 전기적 신호 특성을 해석해야 하므로 잡음이 크다는 한계점을 가지고 있다.
연구팀은 이러한 문제 해결을 위해 최첨단 인공지능 기법의 하나인 `축적 컴퓨팅 기법'을 이용해 뇌-기계 인터페이스에서 필요한 개개인의 뇌파 신호의 중요 특성을 인공신경망이 자동으로 학습해 찾을 수 있도록 구현했다.
또한 유전자 알고리즘(Genetic Algorithm)을 이용해 인공지능 신경망이 최적의 뇌파 특성을 효율적으로 찾을 수 있게 시스템을 설계했다. 연구팀은 심부 뇌파를 최종 해석하는 리드아웃(Readout)을 가우시안(Gaussian) 모델로 설계해 시각피질 신경 세포가 방향을 표현하는 방법을 모방하는 인공신경망을 개발했다. 이런 리드아웃 방식은 축적 컴퓨팅의 선형 학습 알고리즘을 이용해 일반적 사양의 간단한 하드웨어에서도 빠르게 학습할 수 있어 메타버스, 스마트기기 등 일상생활에서 응용이 가능해진다.
특히, 이번 연구에서 만들어진 뇌-기계 인터페이스 인공지능 모델은 3차원상에서 24가지 방향 즉, 각 차원에서 8가지 방향을 디코딩할 수 있으며 모든 방향에서 평균 90% 이상의 정확도 (90.9%~92.6% 범위)를 보였다. 또한 연구된 뇌-기계 인터페이스는 3차원 공간상에서 로봇팔을 움직이는 상상을 할 때의 뇌파를 해석해 성공적으로 로봇팔을 움직이는 시뮬레이션 결과를 보였다.
인공지능 시스템을 만든 제1 저자인 김훈희 박사는 "공학적인 신호처리 기법에 의존해 온 기존 뇌파 디코딩 방법과는 달리, 인간 뇌의 실제 작동 구조를 모방한 인공신경망을 개발해 좀더 발전된 형태의 뇌-기계 인터페이스 시스템을 개발해 기쁘다ˮ면서 "향후 뇌의 특성을 좀 더 구체적으로 이용한 `뇌 모방 인공지능(Brain-inspired A.I.)'을 이용한 다양한 뇌-기계 인터페이스를 개발할 계획이다ˮ라고 말했다.
이번 연구를 주도한 연구책임자 정재승 교수는 "뇌파를 통해 생각만으로 로봇팔을 구동하는 `뇌-기계 인터페이스 시스템'들이 대부분 고사양 하드웨어가 필요해 실시간 응용으로 나아가기 어렵고 스마트기기 등으로 적용이 어려웠다. 그러나 이번 시스템은 90%~92%의 높은 정확도를 가진 의도 인식 인공지능 시스템을 만들어 메타버스 안에서 아바타를 생각대로 움직이게 하거나 앱을 생각만으로 컨트롤하는 스마트기기 등에 광범위하게 사용될 수 있다ˮ고 말했다.
이번 연구 결과는 사지마비 환자나 사고로 팔을 잃은 환자들을 위한 로봇팔 장착 및 제어 기술부터, 메타버스, 스마트기기, 게임, 엔터테인먼트 애플리케이션 등 다양한 시스템에 뇌-기계 인터페이스를 적용할 가능성을 열어 줄 것으로 기대된다.
이번 연구는 한국연구재단 뇌 원천기술개발사업의 지원을 받아 수행됐다.
2022.02.24
조회수 12444
-
장수명 리튬 금속 배터리를 위한 새로운 액체 첨가제 개발
우리 대학 신소재공학과 강지형 교수와 박찬범 교수, 충남대학교 송우진 교수 공동연구팀이 새로운 대칭성 이온성 액체 첨가제를 개발하고, 이를 이용해 장수명 리튬 금속 배터리를 구현했다고 21일 밝혔다.
리튬 금속 배터리는 기존의 흑연 음극재를 리튬 금속 음극으로 대체한 배터리로, 흑연 전극이 사용된 배터리에 비해 높은 에너지 밀도를 가지는 차세대 전지다.
하지만 리튬 금속은 증착 시 발생하는 침상(dendrite)의 리튬이 내부 단락을 일으켜 배터리의 수명과 안전성을 저해시킨다는 문제점이 있었다. 이러한 침상의 성장은 리튬 팁(Tip)이 평평한 부분에 비해 강한 전기장을 띄는 것으로 인해 리튬 이온 흐름이 돌출부에 집중되는 현상으로부터 발생한다.
이온성 액체는 이러한 침상의 리튬을 억제할 수 있는 유망한 첨가제다. 이온성 액체의 양이온은 리튬 팁에 흡착돼 알킬 사슬 기반의 반(反)리튬성 보호층을 형성하고 이를 통해 리튬 이온을 팁 주변으로 반발시켜 균일한 리튬 증착을 유도할 수 있다.
그러나 기존의 이온성 액체는 비대칭적인 분자 구조를 가져 높은 양친매성(amphiphilic, 극성인 물과 비극성인 기름 모두에 친화적인 성질)을 보이기 때문에 자가 응집되는 현상이 일어난다. 그 결과 상대적으로 이온성 액체가 부족한 부분이 발생해 불완전한 보호층이 생기는 문제가 있었다.
강지형 교수 연구팀은 최적의 반리튬성 보호층을 형성하는 분자 구조가 대칭성을 띠는 이온성 액체 첨가제를 새롭게 개발해 침상의 리튬 성장을 억제하고 리튬 금속 배터리의 안정성을 크게 개선했다.
공동연구팀은 이온성 액체에 대칭성의 알킬 사슬을 도입해 양친매성을 완화했으며, 이에 따라 이온성 액체가 응집 현상 없이 균일한 반리튬성 보호층을 형성한다는 것과 대칭 사슬 중에 `n-헥실 사슬'이 최적의 보호층을 만든다는 것을 확인했다.
대칭성의 이온성 액체 첨가제를 삼원계(니켈·고발트·망간) 배터리에 사용한 경우, 600 사이클 동안 쿨롱 효율 99.8%와 초기 용량의 80%를 유지하며 우수한 성능을 보였고, 희박 전해액(E/C, electrolyte/cathode ratio=3.5 g/Ah), 초박막 리튬(두께 40μm)과 같은 실용적인 조건에서도 250 사이클 동안 전극의 용량이 80% 이상 유지되는 높은 안정성을 보였다. 이는 기존 기술 대비 3배 향상된 결과다.
우리 대학 신소재공학과 장진하 박사과정이 제1 저자로 참여한 이번 연구 결과는 에너지 재료 분야 저명 국제 학술지 `어드밴스드 에너지 머티리얼즈 (Advanced Energy Materials)' 2월 10일 字 온라인판에 게재됐다. (논문명 : Self-assembled Protective Layer by Symmetric Ionic Liquid for Long-cycling Lithium-Metal Batteries).
강지형 교수는 "이번 연구는 장수명 리튬 금속 배터리 구현을 위한 전해질 설계 방향을 새롭게 제시했다는 점에서 의미가 있다ˮ고 하면서, "이번에 개발된 신개념 전해질은 급속도로 성장하고 있는 배터리 소재 시장에 게임 체인저가 될 것으로 기대된다.ˮ고 말했다.
한편 이번 연구는 한국연구재단의 미래소재디스커버리사업, 과학기술정보통신부의 리더연구자 지원사업, 나노소재기술개발사업, 2020 과학기술연구원 공동연구사업의 지원을 받아 수행됐다.
2022.02.22
조회수 9349
-
빛에 담긴 비대칭성을 증폭하는 카이랄 초분자 형성원리 규명
우리 대학 화학과 서명은 교수를 주축으로 한 연구팀이 분자 자기조립 시스템에 대한 연구를 통해 빛으로부터 *초분자 나선 방향이 결정되는 원리를 규명했다고 16일 밝혔다.
☞초분자(supermolecule): 분자 간 결합 또는 인력을 통해 둘 또는 그 이상의 작은 분자들이 모여 생성된 거대한 분자들의 집합을 말한다. 효소 등 기능성 생체 분자들도 초분자로 볼 수 있다.
단백질을 이루는 아미노산 분자는 오른손과 왼손처럼 모양은 같지만 서로 겹칠 수 없는 거울상이 존재할 수 있다. 그러나 지구상에서 탄생한 생명은 한 종류의 거울상 아미노산만을 선택해 단일한 *카이랄성을 띠게끔 진화했다. 아미노산에 담긴 카이랄 정보가 단백질로 전달되면 한쪽으로 꼬인 나선과 같이 분자를 넘어선 초분자 수준에서 증폭돼 나타나며, 이는 단일 카이랄성이 만들어지는 데 중요했을 것으로 여겨진다. 즉, 어떻게 카이랄성이 탄생하고 증폭됐는지는 자연이 단일 카이랄성을 지니게 된 이유와 연관 지을 수 있어, 생명의 기원과 깊게 관련된 문제다.
☞ 카이랄(Chiral): 수학, 화학, 물리학, 생물학 등 다양한 과학 분야에서 비대칭성을 가리키는 용어중 하나다. 이는 어떤 대상의 모양이 거울에 비춘 모양과 일치되지 않을 때 카이랄 성이 존재한다고 일컫는다. (Ex) 오른손 & 왼손)
태초에 같은 양씩 존재했을 거울상 분자 한 쌍 중에 한쪽의 비율이 높아질 수 있는 원인으로 시계 방향 혹은 반대로 회전하면서 나아가는 빛인 원편광이 흔히 거론되는데, 거울상 분자가 원편광을 흡수하는 정도가 서로 다르기 때문이다. 자연적으로 지구에 내리쬐는 원편광은 그 회전 방향이 무작위할 것이므로 분자와 원편광에 담긴 카이랄 정보가 서로 경쟁하는 가운데 어느 순간 한쪽 거울상이 과잉되면서 단일한 카이랄성이 출현했을 것으로 추론할 수 있으나, 분자와 원편광으로부터 카이랄 정보가 동시에 전달될 때 어떤 현상이 일어나는지는 거의 연구된 바 없었다.
우리 대학 서명은 교수 연구팀은 빛에 반응해 자기조립되는 프로펠러 모양의 분자를 찾고, 분자와 빛에 담긴 카이랄 정보가 전달돼 초분자 나선으로 나타날 때 각각 얼마나 효과적인지 연구했다. 먼저 원편광의 회전 방향과 분자 프로펠러 방향이 맞을 때 광화학 반응이 우세하게 일어나고, 이는 자기조립을 유도해 정해진 나선 방향으로 성장함을 밝혔다.
나아가 한쪽 거울상 분자가 과잉된 조건에서 원편광을 쬐어 나선 방향이 어느 쪽을 따라가는지 살핀 결과, 양자의 정보가 일치할 때 초분자 카이랄성이 증폭되고 반대일 때 상쇄되며, 심지어 빛으로 분자 카이랄 정보를 눌러 나선 방향을 반전할 수 있음을 정량적으로 보였다. 또한 일정 비율 이상의 거울상 분자가 축적되면 빛과 관계없이 단일한 나선 방향이 유지되는 것 역시 확인했다.
원편광을 선택적으로 걸러내는 소재는 현재 OLED, 3D 안경 등 디스플레이에 널리 쓰이고 있고, 원편광을 내는 재료 등은 차세대 디스플레이용 소재로 떠오르고 있다. 초분자 나선 구조는 개개의 분자에 비해 원편광을 훨씬 효과적으로 흡수하고 방출할 수 있다. 따라서 초분자 나선 구조를 한번 더 조립하여 분자-초분자-거시적 스케일에서 모두 카이랄성을 띠는 멀티스케일 카이랄 구조체를 구현한다면 카이랄성을 극도로 증폭할 수 있는 소재를 만들 수 있을 것으로 기대된다. 또한 약물로 쓰이는 화합물은 탈리도마이드처럼 반대 거울상 분자가 기형을 유발하는 등의 부작용을 일으킬 수 있는 만큼, 한쪽 카이랄성만을 가지게끔 합성하는 것이 필수적이다. 멀티스케일 카이랄 구조체는 이러한 비대칭 합성에서도 강력한 카이랄 환경을 제공하여 입체 선택성이 높은 촉매를 제조하거나, 거울상 분자를 효과적으로 검출할 수 있는 센서를 만드는 플랫폼이 될 수 있다.
연구진은 "이번 연구를 통해 빛에 담긴 비대칭성이 어떻게 분자 및 초분자 수준으로 전달되고 증폭될 수 있는지를 이해할 수 있었을 뿐 아니라, 분자에 담긴 정보와 별개로 초분자 카이랄성을 제어할 수 있는 가능성을 보였다는 데 큰 의의가 있다ˮ며, "이번 연구를 발판으로 카이랄 광학 소재, 비대칭 촉매 등 미래 먹거리가 될 수 있는 멀티스케일 카이랄 신소재 개발로 연구를 확장하겠다ˮ고 소감을 밝혔다.
우리 대학 화학과 강준수 석박사통합과정 학생이 제1 저자로 연구를 주도하고, 화학과 김우연 교수, 임미희 교수, 윤동기 교수 연구팀이 협업한 이번 연구 결과는 미국화학회가 발행하는 국제 학술지 `미국화학회지(Journal of the American Chemical Society)'에 2월 4일 字로 온라인 게재됐다. (논문명 : Circularly Polarized Light Can Override and Amplify Asymmetry in Supramolecular Helices)
이번 연구는 한국연구재단(NRF)에서 선정한 선도연구센터인 카이스트 화학과 멀티스케일 카이랄 구조체 연구센터의 지원을 받아 주로 진행됐다.
2022.02.16
조회수 10727
-
전기화학 분야의 오랜 난제인 전기 이중층 구조 규명
우리 대학 화학과 김형준 교수 연구팀이 GIST 신소재공학부 최창혁 교수 연구팀과 공동 연구를 통해 전기화학 분야의 오랜 난제 중 하나인 전기 이중층 구조를 이론적으로 규명하는 데 성공했다고 27일 밝혔다.
태양광 발전 등 친환경적으로 생산된 전기를 화학연료의 형태로 변환 및 저장하는 기술은 현재 인류가 직면하고 있는 에너지-환경 문제를 해결할 수 있는 가장 효율적인 미래전략이다. 2019년 리튬이온 배터리의 노벨 화학상 수상에서도 볼 수 있듯이, 전기화학 기술은 이러한 지속 가능한 탄소 중립 사회의 구축에 있어 가장 중요한 코어 기술로 여겨진다. 그러나 전기화학 분야에서 교과서에도 등장하는 100년 가까운 오래된 난제 중 하나가 있는데, 이는 바로 `전기 이중층'이라 불리는 특별한 액체 구조를 밝혀내는 것이다.
전기 이중층은 전기를 가한 금속 전극 주변에 액체 속의 이온이 쌓이면서 생성되는 특이한 층 구조를 의미한다. 이 구조적 특성에 따라 에너지 변환/저장 성능이 결정되기 때문에, 전기 이중층의 구조를 밝히려는 노력이 오랫동안 이어져 왔다. 그러나 전기 이중층은 금속 전극과 액체 전해질 사이 계면에 파묻혀 생성되는 나노 크기 정도 공간 속, 물과 이온들의 복잡한 배열을 가지는 구조이기 때문에 이를 직접 관측하기란 거의 불가능에 가까웠으며 지난 수십 년간 난제의 풀이에 대한 뚜렷한 진보를 이룰 수 없었다.
김형준 교수 연구팀은 컴퓨터 속 디지털 세상에 전기 이중층을 구현해 이러한 실험적 한계를 돌파하고자 했다. 양자 역학 및 분자동역학에 기반한 높은 정확도의 컴퓨터 시뮬레이션 방법을 개발해 그동안 베일에 싸여있던 전기 이중층 구조를 규명하는 데 성공했다. 이러한 가상공간에서의 결과는 GIST 최창혁 교수 연구팀이 실제로 실험에서 측정한 전기 이중층의 물리적 특성을 정확하게 예측할 수 있었다. 더 나아가 이러한 지식의 진보를 바탕으로, `주인-손님 화학' (특정 `손님' 분자만을 선택적으로 받아들이는 `주인' 분자의 특이한 화학적 성질을 의미)이라는 특별한 화학 반응을 활용해 전기 이중층 구조를 실제로 제어할 수 있는 전략을 도출했으며, 이를 통해 탄소 저감에 중요한 전기화학적 이산화탄소의 연료화 반응 효율 제어에 성공했다.
연구진은 "이번 연구를 통해 전기화학 분야의 오래된 난제인 전기 이중층 구조를 규명하는 데 성공했을 뿐만 아니라, 궁극적으로 이를 제어해 친환경 전기 에너지의 변환 및 저장 성능을 획기적으로 높일 가능성에 첫 단추를 끼웠다ˮ며, 이어 "이번 연구를 시발점으로 연료전지, 배터리, 질소 고정화 등 인류의 생존에 꼭 필요한 신 전기화학 기술 개발을 위한 연구를 지속하겠다ˮ고 소감을 밝혔다.
우리 대학 화학과 신승재 박사과정 학생과 GIST 신소재공학부 김동현, 배근수 박사과정 학생이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 에 1월 10일 字 게재됐다. (논문명: On the importance of the electric double layer structure in aqueous electrocatalysis)
한편 이번 연구는 삼성전자 미래기술육성사업 및 한국연구재단(NRF)의 지원으로 진행됐다.
2022.01.27
조회수 12110
-
광학 칩과 광섬유로 초안정 마이크로파 발생 기술 개발
우리 대학 기계공학과 김정원 교수와 물리학과 이한석 교수 공동연구팀이 광학 칩과 광섬유를 이용해 손바닥만 한 작은 장치로부터 2조분의 1(5×10-13) 수준의 주파수 안정도를 가지는 초안정 마이크로파를 발생하는 기술을 개발했다고 26일 밝혔다.
이 새로운 기술을 이용하면 기존의 마이크로파 발생 기술들보다 월등하게 우수한 위상잡음과 주파수 안정도의 마이크로파를 핸드폰 크기 면적의 작은 장치로부터 생성할 수 있어, 향후 5G/6G 통신, 전파망원경을 이용한 천체 관측, 군용 레이더, 휴대용 양자 센서 및 초고속 신호 분석 기술 등의 다양한 분야에서 획기적인 성능 향상이 가능하다.
우리 대학 기계공학과 권도현 박사(現 한국표준과학연구원)와 나노과학기술대학원 정동인 박사가 공동 제1 저자로 참여한 공동연구팀의 이번 논문은 국제학술지 `네이처 커뮤니케이션즈(Nature Communications)' 1월 19일 字에 게재됐다. (논문명: Ultrastable microwave and soliton-pulse generation from fibre-photonic-stabilized microcombs)
최근 초소형 마이크로공진기(microresonator)를 이용해 광 펄스를 생성하는 마이크로콤(micro-comb) 기술이 급격하게 발전하고 있다. 마이크로콤은 광 펄스가 나오는 속도를 수십 기가헤르츠(GHz, 1초에 10억 번 진동)에서 테라헤르츠(THz, 1초에 1조 번 진동)까지 높일 수 있어 고주파 마이크로파(microwave)나 밀리미터파(millimeter-wave) 생성이 쉽고 시스템의 소형화가 가능해 다양한 정보통신기술 시스템의 대역폭 향상과 성능 개선에 핵심적인 역할을 할 것으로 기대되고 있다.
마이크로콤은 이론적으로 펨토초(femtosecond, 10-15초=1,000조분의 1초) 수준의 펄스 간 시간 오차를 가지지만, 소형 소자의 특성상 주변 환경에 의해 쉽게 변해 장시간 그 성능을 유지하는 데에 어려움이 있었다. 이를 해결하기 위해 마이크로콤을 기계적으로 안정한 장치에 주파수 잠금해 안정도를 향상할 수 있으나, 지금까지는 이러한 안정화 장치가 매우 복잡하고 진동에 민감하며 부피가 커서 초소형 마이크로콤이 가지는 장점을 살릴 수 없고 실험실 밖 응용에 활용할 수 없었던 문제가 있었다.
연구팀은 이 문제를 해결하기 위해 광섬유를 이용해 마이크로콤의 주파수를 안정화하는 기술을 개발했다. 1km 길이의 광섬유는 열 기계적(thermomechanical) 잡음 한계에 의한 이론적인 길이 안정도가 1,000조분의 1 수준으로 매우 우수하면서도, 부피가 작고 매우 가벼우면서 가격도 저렴한 장점이 있다. 연구팀은 이러한 광섬유 기반의 안정화 장치를 108 mm × 73 mm × 54 mm 크기로 구현할 수 있었다.
그 결과 생성된 22-기가헤르츠(GHz) 마이크로파의 시간 오차를 상용 고성능 신호 발생기보다 6배 이상 향상된 10펨토초 수준으로 낮출 수 있었으며, 주파수 안정도는 2조분의 1(5×10-13) 수준까지 낮출 수 있었다.
이 기술은 매우 우수한 위상잡음과 주파수 안정도의 마이크로파와 광 펄스를 동시에 생성할 수 있어, 다양한 최첨단 과학기술 분야들에서 활용할 수 있다. 대표적인 예로서 전파망원경 기반의 초장기선 간섭계(very long baseline interferometer, VLBI)의 경우 보다 높은 주파수와 낮은 잡음을 가지는 마이크로파와 광 펄스를 사용하면 측정 분해능과 관측 정밀도를 획기적으로 향상시킬 수 있어 기존에는 관측할 수 없었던 블랙홀의 사건의 지평선(event horizon)과 같은 새로운 천체 현상들을 탐사할 수 있을 것으로 기대된다.
우리 대학 기계공학과 김정원 교수는 "이번에 개발된 초안정 기술을 통신, 레이더, 데이터 변환기와 전파망원경 등 다양한 분야들에 적용하기 위한 후속 연구들을 진행 중ˮ이라고 밝혔으며, 물리학과 이한석 교수는 "향후 성능을 더욱 끌어올리고자, 실리콘 칩 상에 구현된 핵심 소자인 마이크로공진기의 광학적 특성을 개선하는 연구를 수행 중ˮ이라고 밝혔다.
한편 이번 연구는 정보통신기획평가원 양자센서핵심원천사업과 한국연구재단 중견연구사업의 지원을 받아 수행됐다.
2022.01.26
조회수 10415
-
다공성 나노소재를 활용한 고신뢰성 시냅스 소자 개발
우리 대학 전기및전자공학부 최신현 교수 연구팀이 다공성 구조를 갖는 *차세대 저항 변화 소자(멤리스터)를 활용해 우리 뇌의 신경전달물질 시냅스를 모방한 고신뢰성 소자(시냅스 소자)를 개발했다고 25일 밝혔다.
☞ 멤리스터(Memristor): 메모리와 레지스터의 합성으로 이전의 상태를 모두 기억하는 메모리 소자. 전원공급이 끊어졌을 때도 직전에 통과한 전류의 방향과 양을 기억한다.
최 교수 연구팀은 기존 양이온 저항 변화 방식과 음이온 저항 변화 방식을 혼합한 하이브리드 형태로 매개체를 구성해, 비정질로 이루어진 다공성 구조 및 버퍼 층을 이용해 고신뢰성 시냅스 소자를 설계했다. 해당 구조는 저온 공정을 통해 형성함으로써 기존 실리콘 상보형 산화금속 반도체(CMOS)에 집적 및 적층 가능해 집적도 높은 대용량 로직/인공신경망 컴퓨팅 시스템 제작에 활발히 응용될 수 있을 것으로 기대된다.
우리 대학 최상현 연구원과 박시온 연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 어드밴시스(Science Advances)' 1월호에 출판됐다. (논문명 : Reliable multilevel memristive neuromorphic devices based on amorphous matrix via quasi-1D filament confinement and buffer layer)
멤리스터는 저전력으로 인메모리(In-memory) 컴퓨팅, 가중치 저장, 행렬 계산 능력(vector-matrix multiplication) 등으로 차세대 논 폰노이만 구조에 쓰일 수 있는 차세대 소자로 주목받고 있다.
그러나 현존하는 멤리스터로 실용적인 대용량 인공신경망 컴퓨팅 (Large-scale neural computing) 시스템을 만들기 위해서는 멤리스터 단위 소자의 신뢰성을 확보할 수 있는 연구가 필요하다.
소자의 신뢰성 저하는 전통적으로 비정질 물질 내에 무작위적으로 움직이는 결함 및 이온의 배치에서 기인한다. 최신현 교수는 이러한 문제를 단결정 물질을 사용해 결함 및 이온의 무작위적인 움직임을 제어함으로써 소자 신뢰성 확보에 성공한 바 있다. 하지만 단결정을 이용하는 문제 및 제작에 고온 공정이 필요하므로 기존 실리콘 CMOS에 집적 및 적층이 어려워 집적도를 높이는 데 한계가 있었다.
연구팀은 이번 연구를 통해 기존의 비정질 물질을 사용해 신뢰성을 확보할 수 있는 다공성 구조의 양이온 제어층 및 버퍼층으로 이용되는 음이온 제어층을 설계했고, 이를 통해 적층 및 집적 가능한 소자를 제작했다. 연구팀은 기존 소자 대비 6배 이상 신뢰성을 개선할 수 있었으며, 이와 동시에 인공 시냅스 소자로서 필요한 다른 특성들도 확보할 수 있었다.
연구를 주도한 최신현 교수는 "이번에 개발한 고신뢰성 시냅스 소자는 안정적인 대용량 어레이 제작의 방향성을 제시할 수 있을 것으로 기대되며, 차세대 신소자를 기반으로 한 뉴로모픽 컴퓨팅 등 빅데이터 처리가 필요한 응용 분야에 적합한 플랫폼을 구축하는 데에 기여할 수 있기를 바란다. 또한, 미국, 대만 기업에서 활발히 진행 중인 차세대 신소자 기반 기술 개발이 국내에서도 활성화되기를 희망한다ˮ며 "다른 물질계에서도 구조적으로 적용할 수 있는 방법론을 제시함으로써 활발히 연구가 진행될 것으로 생각된다ˮ고 연구의 의의를 설명했다.
한편 이번 연구는 한국연구재단, 나노종합기술원, 삼성미래기술육성재단의 지원을 받아 수행됐다.
2022.01.25
조회수 9638
-
전하 전달 복합체를 이용한 신개념 디스플레이 소재 개발
우리 대학 신소재공학과 정연식 교수, 전덕영 명예교수, 한국전자통신연구원(ETRI) 권병화 박사 공동 연구팀이 차세대 디스플레이 소자에 적용 가능한 신개념 금속 산화물 복합 나노소재 개발에 성공했다고 19일 밝혔다.
KAIST-ETRI 공동 연구팀은 특정 금속 산화물 나노입자가 다른 산화물 내부에서 나노미터(nm) 크기로 분산될 경우, 접촉면(인터페이스)에서 전하가 교환되면서 전하 전달 복합체(Charge transfer complex)를 형성하는 새로운 현상을 발견했다. 연구팀은 이를 유기발광다이오드(OLED) 등 고부가가치 디스플레이에 적용해 기존 상용 유기 소재 기반의 소자 성능을 뛰어넘는 데 성공했다.
오는 2월에 우리 대학 신소재공학 박사학위 취득 예정인 김무현 연구원이 주도하고 조남명 박사, ETRI 주철웅 선임연구원 등이 참여한 이번 연구는 국제학술지 `네이처 커뮤니케이션스(Nature Communications)' 1월 10일 字 온라인판에 게재됐다. (논문명: Metal Oxide Charge Transfer Complex for Effective Energy Band Tailoring in Multilayer Optoelectronics)
디스플레이 발광 셀 등 다층구조를 가지는 광전자소자에서 금속 산화물은 우수한 전기적 특성 및 안정성 덕분에 전하 수송 및 주입 층으로 널리 활용되고 있다. 하지만, 유기 발광 다이오드(OLED)에서 퀀텀닷 발광다이오드(QLED), 페로브스카이트 발광다이오드(PeLED)로 이어지는 미래 디스플레이 산업에서 이러한 금속 산화물 소재를 더 유용하게 활용하기 위해서는 에너지 레벨 및 전기전도도와 같은 특성들이 더 넓은 범위에서 제어될 수 있어야 한다.
이는 유기 발광 소재, 퀀텀닷, 페로브스카이트 등으로 발광층 소재가 매우 다양해짐에 따라 디스플레이 소자들의 성능을 극대화하기 위해서는 각각의 시스템에 최적화된 전기적 특성을 제공해야 하기 때문이다.
연구팀은 에너지 레벨 차이가 있는 두 금속 산화물 사이에서 일어나는 전하 전달(Charge transfer) 현상에 주목했다. 전하 전달 복합체는 마치 건포도 빵의 형태와 유사한 구조로 되어 있는데, 건포도(나노입자)를 더 넣게 되면 더 많은 당분(전하)이 빵(매트릭스)으로 이동하여 빵 전체가 더 달콤해지는 원리로 비유될 수 있다.
이 새로운 개념을 산화 몰리브덴(MoO3) 나노입자와 산화니켈(NiO)의 조합으로 구현해 두 금속 산화물의 전하 전달 현상을 효과적으로 유도했으며, 광범위한 에너지 레벨 조절 능력 및 최대 2.4배의 전기전도도 향상을 달성했다. 이를 녹색과 청색 OLED에 적용했고 기존의 상용 유기 소재를 적용한 소자보다 32% 더 우수한 외부양자효율을 달성함으로 높은 범용성과 성능을 입증했다.
신소재공학과 정연식 교수는 "이번 기술은 핵심 소재의 성능 제어 방법을 혁신함으로써, 실감형 메타버스 구현에 꼭 필요한 최첨단 디스플레이 구현에 기여할 것ˮ이라고 전망했다.
이번 연구는 과학기술정보통신부 및 한국연구재단이 추진하는 미래소재디스커버리지원사업(단장 최성율), 글로벌프런티어 사업(단장 김광호) 및 나노·소재기술개발사업, 그리고 산업통상자원부에서 추진하는 소재부품장비혁신 Lab기술개발사업의 지원을 받아 수행됐다.
2022.01.24
조회수 11125
-
낙엽을 활용한 친환경 마이크로 슈퍼커패시터 개발
우리 대학 기계공학과 김영진 교수 연구팀과 한국에너지기술연구원(이하 에너지연, 원장 김종남) 에너지저장연구실 윤하나 박사 연구팀이 공동연구를 통해, 극초단 펨토초 레이저 직접 묘화 기술을 기반으로, 세계최초 낙엽 상 그래핀-무기-하이브리드 마이크로 슈퍼커패시터 제작에 성공했다고 13일 밝혔다.
웨어러블 전자 장치의 발전은 유연한 에너지 저장장치의 혁신에 직접적으로 영향을 받는다. 다양한 에너지 저장장치 중 마이크로 슈퍼커패시터의 경우 높은 전력 밀도, 긴 수명 및 짧은 충전 시간으로 큰 관심을 끌고 있다. 그러나, 증대되는 전자 전기 제품의 소비 및 사용, IT 모바일 기기의 첨단화에 따른 짧은 교체 주기에 따라 폐전지의 발생량이 증대하고 있다. 이는 폐전지의 수거, 재활용 및 처리 과정에 있어, 안정성 및 환경적인 이슈 등의 많은 어려움을 유발한다.
산림은 전 세계 육지의 30% 가량을 덮고 있으며, 산림에서는 엄청난 양의 낙엽이 배출된다. 이러한 바이오매스는 자연적으로 풍부하고, 생분해성이며 재생 가능한 매력적인 친환경 재료다. 그러나 이를 효과적으로 활용하지 못하고 방치하면 화재 위험, 식수원 오염 등 산림 재해가 발생할 수 있다.
연구팀은 두 가지 문제점을 동시에 해결할 방법으로 친환경의 생분해성 바이오매스인 낙엽 위에 추가 재료 없이 펨토초 레이저 펄스를 조사해, 대기 중에서 특별한 처리 없이 단일 단계로 높은 전기 전도성을 지닌 미세 전극인 3D 다공성 그래핀을 생성하는 기술을 개발했다. 또한 이를 활용해 유연한 마이크로 슈퍼커패시터를 제작하는 방안을 제시했다. 연구팀은 해당 연구를 통해 낙엽으로부터 쉽고 저렴하며 빠르게 다공성 그래핀-무기결정 하이브리드 전극을 제작할 수 있음을 보였으며, 제작된 그래핀 마이크로 슈퍼커패시터를 LED 발광을 위한 전원 공급 및 온, 습도계 타이머/카운터 기능의 전자시계 전원 공급을 테스트함으로써 성능을 검증했다. 이는 저가의 녹색 그래핀 기반 유연한 전자 제품의 대량 생산을 위한 길을 열 수 있음을 의미한다. (그림1)
연구 논문의 교신저자인 우리 대학 김영진 교수는 개발된 차세대 에너지 저장 소자에 대해 "현재 감당이 어려운 산림 바이오매스인 낙엽을 차세대 에너지 저장 소자로 재사용함으로써, 폐자원의 재사용 및 에너지 선순환 시스템 확립을 가능하게 한다ˮ라고 했다. 또한 공동 교신저자인 에너지연 윤하나 박사는 "이번 기술은 친환경 산업의 기술 혁신 및 고부가가치 신재생에너지 및 이차전지 사업으로써의 신시장 창출뿐 아니라 국가의 사회적, 경제적 비용을 크게 감소시킬 수 있을 것이며, 더 나아가 웨어러블 전자 제품 및 스마트 홈이나 사물 인터넷에도 적용될 것으로 기대된다ˮ라고 말했다.
이번 연구는 한국농림축산식품부의 기획평가원 지원사업과 산림청의 산림과학기술 연구개발사업 및 한국에너지기술연구원 주요사업의 지원을 받아 수행됐다.
기계공학과 레딘츤손 박사 후 연구원과 에너지연 이영아 연구원이 공동 제1 저자로 참여한 이번 연구 결과는 재료과학 및 융합연구분야의 세계적인 학술지인 `어드밴스드 펑셔널 머티리얼즈'(Advanced Functional Materials)에 작년 12월 5일 온라인 공개됐다. (논문명 : Green Flexible Graphene–Inorganic-Hybrid Micro-Supercapacitors Made of Fallen Leaves Enabled by Ultrafast Laser Pulses)
2022.01.13
조회수 10401
-
페로브스카이트 LED 소재의 발광 효율 극대화 메커니즘 규명
우리 대학 화학과 김형준 교수 연구팀이 한밭대학교 홍기하 교수 연구팀과 공동 연구를 통해 페로브스카이트 LED 나노 소재에서 일어나는 발광 효율의 향상 원인을 이론적으로 규명하는 데 성공했다고 12일 밝혔다.
할로겐 페로브스카이트 화합물은 태양 빛을 이용해 높은 효율로 전기를 생산할 수 있어 차세대 태양전지에 사용 가능한 소재로 주목받고 있는 물질이다. 한편, LED는 태양전지와는 반대로 전기를 이용해서 빛을 방출하는 장치로서 디스플레이에 널리 사용되고 있다. 놀랍게도 페로브스카이트는 빛을 전기로 변환시키는 효율뿐 아니라 전기를 빛으로 변환시키는 발광 효율 또한 높은 것으로 알려져 차세대 LED 소재로서도 각광받고 있다.
본래 `페로브스카이트'는 러시아 과학자 페로브스키의 이름을 딴 광물 결정 구조의 이름이다. 연구팀은 이러한 페로브스카이트 결정 구조가 내부의 뒤틀림 정도에 따라 다양한 상(phase)을 가질 수 있음에 주목했다. LED 소재로 널리 사용되는 CsPbBr3라는 페로브스카이트 소재는 결정 구조 내부에 뒤틀림이 존재하는데, 이를 작은 나노 구조로 만들게 되면 이러한 뒤틀림이 최소화된 상이 형성된다. 연구팀은 비단열 양자 동역학 시뮬레이션을 이용해 이러한 결정 구조의 뒤틀림 제어가 발광 효율을 높이기 위한 주요 소재 성질 제어 전략임을 밝혔다.
연구진은 "이번 연구를 통해 페로브스카이트의 소재 결정 구조적 특성과 빛을 발생하는 광 동역학적 특성 사이의 복잡한 상관관계를 규명할 수 있었다ˮ고 말했으며 "추후 이러한 이론 기초 연구를 더욱 확장해 페로브스카이트 결정상 제어를 통한 발광 효율 극대화 전략을 도출해내어 페로브스카이트 기반의 고효율 LED 개발에 기여할 수 있을 것ˮ이라고 말했다.
우리 대학 하윤후 박사과정 학생이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `미국화학회지 (Journal of the American Chemical Society)' 에 지난해 12월 27일 字 온라인 게재됐다. (논문명: Enhanced Light Emission through Symmetry Engineering of Halide Perovskites).
한편 이번 연구는 한국연구재단(NRF)의 중견연구사업과 선도연구센터 지원 사업, 나노소재기술개발사업으로 진행됐다.
2022.01.12
조회수 9189
-
3차원 표정인식용 인공지능 라이트필드 카메라 개발
우리 대학 바이오및뇌공학과 정기훈, 이도헌 교수 공동연구팀이 근적외선 기반 라이트필드 카메라와 인공지능기술을 융합하여 얼굴의 감정표현을 구분하는 기술을 개발했다고 7일 밝혔다.
라이트필드 카메라는 일반적인 카메라와 다르게 미세렌즈 배열(Microlens arrays)을 이미지센서 앞에 삽입해 손에 들 수 있을 정도로 작은 크기이지만 한 번의 촬영으로 빛의 공간 및 방향 정보를 획득한다. 이를 통해 다시점 영상, 디지털 재초점, 3차원 영상 획득 등 다양한 영상 재구성이 가능하고 많은 활용 가능성으로 주목받고 있는 촬영 기술이다.
그러나 기존의 라이트필드 카메라는 실내조명에 의한 그림자와 미세렌즈 사이의 광학 크로스토크(Optical crosstalk)에 의해 이미지의 대비도 및 3차원 재구성의 정확도가 낮아지는 한계점이 있다.
연구팀은 라이트필드 카메라에 근적외선 영역의 수직 공진형 표면 발광 레이저(VCSEL) 광원과 근적외선 대역필터를 적용해 기존 라이트필드 카메라가 갖는 조명 환경에 따라 3차원 재구성의 정확도가 낮아지는 문제를 해결했다. 이를 통해 얼굴 정면 기준 0도, 30도, 60도 각도의 외부 조명에 대해, 근적외선 대역필터를 사용한 경우 최대 54%까지 영상 재구성 오류를 줄일 수 있었다. 또한, 가시광선 및 근적외선 영역을 흡수하는 광 흡수층을 미세렌즈 사이에 제작하면서 광학 크로스토크를 최소화해 원시 영상의 대비도를 기존 대비 약 2.1배 정도로 획기적으로 향상하는 데 성공했다.
이를 통해 기존 라이트필드 카메라의 한계를 극복하고 3차원 표정 영상 재구성에 최적화된 근적외선 기반 라이트필드 카메라(NIR-LFC, NIR-based light-field camera) 개발에 성공했다. 연구팀은 개발한 카메라를 통해 피험자의 다양한 감정표정을 가진 얼굴의 3차원 재구성 이미지를 조명 환경과 관계없이 고품질로 획득할 수 있었다.
획득한 3차원 얼굴 이미지로부터 기계 학습을 통해 성공적으로 표정을 구분할 수 있었고, 분류 결과의 정확도는 평균 85% 정도로 2차원 이미지를 이용했을 때보다 통계적으로 유의미하게 높은 정확도를 보였다. 이뿐만 아니라, 연구팀은 표정에 따른 얼굴의 3차원 거리 정보의 상호의존성을 계산한 결과를 통해, 라이트필드 카메라가 인간이나 기계가 표정을 판독할 때 어떤 정보를 활용하는지에 대한 단서를 제공할 수 있음을 확인했다.
정기훈 교수는 "연구팀이 개발한 초소형 라이트필드 카메라는 정량적으로 인간의 표정과 감정을 분석하기 위한 새로운 플랫폼으로 활용될 수 있을 것으로 기대된다ˮ며 "모바일 헬스케어, 현장 진단, 사회 인지, 인간-기계 상호작용 등의 분야에서 활용될 것ˮ이라고 연구의 의미를 설명했다.
우리 대학 바이오및뇌공학과 배상인 박사과정 졸업생이 주도한 이번 연구 결과는 국제저명학술지 `어드밴스드 인텔리전트 시스템즈(Advanced Intelligent Systems)'에 2021년 12월 16일 온라인 게재됐다. (논문명: Machine-Learned Light-Field Camera that Reads Facial Expression from High-Contrast and Illumination Invariant 3D Facial Images).
한편 이번 연구는 과학기술정보통신부 및 산업통상자원부의 지원을 받아 수행됐다.
2022.01.07
조회수 8241
-
인공지능의 오랜 난제를 뇌 기반 인공지능으로 풀다
우리 대학 바이오및뇌공학과 이상완 교수(신경과학 인공지능 융합연구센터장) 연구팀이 뇌 기반 인공지능 기술을 이용해 인공지능의 난제 중 하나인 과적합-과소적합 상충 문제를 해결하는 원리를 풀어내는 데 성공했다고 5일 밝혔다.
이상완 교수와 김동재 박사(現 뉴욕대학교 박사후 연구원)가 주도하고 우리 대학 정재승 교수가 참여한 이번 연구는 `강화학습 중 편향-분산 상충 문제에 대한 전두엽의 해법'이라는 제목으로 국제 학술지 셀(Cell)의 오픈 액세스 저널인 `셀 리포트(Cell Reports)'에 지난해 12월 28일 字 온라인판에 게재됐다. (논문명: Prefrontal solution to the bias-variance tradeoff during reinforcement learning)
최근 인공지능 모델들은 다양한 실제 문제들에 대해 최적의 해법을 제시하지만, 상황 변화에 유동적으로 대응하는 부분에 있어서는 여전히 어려움을 겪고 있다. 기계학습에서는 이를 과소적합-과적합의 위험성 (underfitting-overfitting risk) 또는 편향-분산 상충 문제(bias-variance tradeoff)라 하며 오랫동안 연구됐지만, 실제 세계와 같이 상충 조건이 계속 변하는 상황에서의 명확한 해법은 아직 제안된 바가 없다.
반면 인간은 현재 주어진 문제에 집중하면서도(과소적합 문제 해결), 당면 문제에 과하게 집착하지 않고(과적합 문제 해결) 변하는 상황에 맞게 유동적으로 대처한다. 연구팀은 뇌 데이터, 확률과정 추론 모형, 강화학습 알고리즘을 이용해 인간의 뇌가 이 문제를 어떻게 해결하는지에 대한 이론적 틀을 마련하고 이로부터 유동적인 메타 강화학습 모델을 도출해냈다.
놀랍게도 인간의 뇌는 중뇌 도파민 회로와 전두엽에서 처리되는 `예측 오차'의 하한선(prediction error lower bound)이라는 단 한 가지 정보를 이용해 이 문제를 해결한다. 우리의 전두엽, 특히 복외측전전두피질은 현재 내가 사용하고 있는 문제 해결 방식으로 주어진 문제를 얼마나 잘 풀 수 있을지에 대한 기대치의 한계를 추정하고(예: `이렇게 풀면 90점까지는 받을 수 있어'), 변화하는 상황에 맞춰 최적인 문제 해결전략을 유동적으로 선택하는 과정 (예: `이렇게 풀면 기껏해야 70점이니 다르게 풀어보자')을 통해 과소적합-과적합의 위험을 최소화하게 된다.
이상완 교수 연구팀은 2014년 해당 전두엽 영역이 환경의 불확실성을 바탕으로 강화학습전략을 유동적으로 조절하는 데 관여한다는 사실을 처음 발견했고(`뉴런(Neuron)' 학술지에 발표), 2015년에는 인과관계 추론 과정에도 관여한다는 사실을 발견했다(`PLOS Biology' 학술지에 발표). 이어 2019년에는 해당 뇌 영역이 문제의 복잡도까지 고려할 수 있다는 사실을 발견했다(`네이처 커뮤니케이션즈(Nature Communications)' 학술지에 발표).
이러한 일련의 연구 결과들은 자신의 학습 및 추론 능력을 스스로 평가하는 인간의 메타 인지 능력을 보여주는 증거로, 이 능력을 바탕으로 인공지능이 풀기 어려워하는 현실 세계의 다양한 상충적 상황들을 풀어낼 수 있다는 `전두엽 메타 학습 이론'을 정립한 바 있다(`사이언스 로보틱스(Science Robotics)' 학술지에 발표). 이번 연구는 이 이론에 기반해 인공지능의 오랜 난제 중 하나인 과소적합-과적합 상충 문제를 실제로 풀어낸 최초의 사례로 평가된다.
연구를 통해 개발된 메타 강화학습 모델을 이용하면 간단한 게임을 통해 인간의 유동적 문제 해결 능력을 간접적으로 측정할 수 있다. 더 나아가 스마트 교육이나 중독과 관련된 인지 행동치료에 적용할 경우 상황 변화에 유동적으로 대처하는 인간의 문제 해결 능력 자체를 향상할 수 있을 것으로 기대된다. 차세대 인공지능, 스마트 교육, 인지 행동치료 등 다양한 분야에 파급력이 큰 원천 기술로 최근 국내 및 해외 특허 출원이 완료된 상태다.
연구를 주도한 제1 저자 김동재 박사는 "인간 지능의 특장점에 대한 이해가 얼마나 중요한지 보여주는 연구 중 하나ˮ라고 말했다. 연구 책임자인 이상완 교수는 "인공지능이 우리보다 잘 푸는 문제가 많지만, 반대로 인공지능으로 풀기 어려운 문제들이 우리에게는 정말 쉽게 느껴지는 경우들이 많다. 인간의 다양한 고위 수준 능력을 인공지능 이론 관점에서 형식화하는 연구를 통해 인간 지능의 비밀을 하나씩 풀어나갈 수 있을 것으로 기대된다ˮ라며 "이러한 뇌 기반 인공지능 연구는 인간의 지능을 공학적으로 탐구하는 과정으로 볼 수 있으며, 인간과 인공지능이 서로 도우며 함께 성장해 나갈 수 있는 명확한 기준점을 마련할 수 있을 것ˮ이라고 말했다. 이상완 교수는 뇌 기반 인공지능 연구의 독창성과 도전성을 인정받아 구글 교수 연구상과 IBM 학술상을 받은 바 있다.
연구팀은 과학기술정보통신부의 재원으로 정보통신기획평가원의 지원을 받아 설립한 KAIST 신경과학-인공지능 융합연구센터에서 기반 기술을 활용해 인간 지능을 모사한 차세대 인공지능 모델을 개발하고, 아울러 딥마인드, IBM 인공지능 연구소, MIT, 옥스퍼드 대학 등 국제 공동연구 협약 기관과 공동연구를 통해 기술의 파급력을 높여나갈 계획이라고 말했다.
한편 이번 연구는 삼성전자 미래기술육성센터, 과학기술정보통신부 정보통신기획평가원 및 한국연구재단의 지원을 받아 수행됐다.
2022.01.05
조회수 9439
-
촉매 반응 활성도의 정량적 분석이 가능한 측정 플랫폼 개발
우리 대학 신소재공학과 정우철 교수, 기계공학과 이강택 교수와 충남대학교 김현유 교수 공동 연구팀이 촉매 반응점 탐색 및 각 지점의 활성을 정량적으로 측정할 수 있는 금속 나노입자 기반 분석 플랫폼 개발에 성공했다고 28일 밝혔다.
촉매란 반응 과정에서 소모되거나 변하지 않으면서 반응 속도를 빠르게 만드는 물질을 말하며, 반응에 참여하지만 소모되지 않기 때문에 소량만 있어도 반응 속도에 지속적으로 영향을 미칠 수 있는 물질이다. 반응을 빠르게 하는 촉매 반응은 더 적은 활성화 에너지를 필요로 하기 때문에 다양한 산업에 활용되고 있다. 백금 등을 이용해 화석 연료의 연소로 인해 발생하는 배기가스의 해로운 부산물을 분해하는 반응을 예로 들 수 있다.
연구팀은 균일한 크기의 금속 나노입자 합성 기술과 3차원 전자 단층촬영 기법을 활용해 촉매 핵심 반응점인 금속-가스-산화물 및 금속-가스상 접합 계면의 수를 정량적으로 분석했으며, 이 같은 결과를 측정된 촉매 반응성과 연계시키는 방식으로 촉매 반응 활성도의 정량적 분석이 가능한 측정 플랫폼을 설계했다. 이러한 기술은 특정 반응에 활용이 제한되지 않기 때문에 향후 여러 촉매 반응 분야에 폭넓게 응용 및 적용될 수 있을 것으로 기대된다.
신소재공학과 이시원, 하현우 박사후연구원, 기계공학과 배경택 박사과정생 공동 제1 저자로 참여한 이번 연구는 재료화학분야 국제 학술지 `켐(Chem, IF=22.804)'에 12월 23일 자 온라인판에 게재됐다. (논문명 : A measure of active interfaces in supported catalysts for high-temperature reactions).
금속 나노입자 촉매는 매우 적은 양으로 우수한 촉매 활성을 보일 수 있다는 가능성으로 에너지·환경 등 여러 분야에서 큰 관심을 받고 있다.
하지만 나노입자로 구성된 촉매 소재는 높은 작동온도에서 서로 응집되는 특성이 있으며 이는 결과적으로 촉매 활성을 저해하는 한계로 작용한다. 그뿐만 아니라, 실제 반응 작동 환경에서 금속 입자 촉매의 구체적인 반응 활성 지점이 어디인지, 각 지점에서의 반응활성도는 얼마나 되는지 그 양을 정량적으로 비교·분석할 수 있는 기술이 없어 해당 분야 발전에 한계가 있었다.
연구팀은 문제 해결을 위해 균일한 크기로 금속 나노입자 촉매를 합성해 입자의 구조를 제어하는 데 성공했으며, 이를 산화물 막으로 감싸는 코팅기술을 적용해 고온에서 나노입자가 응집되는 현상을 해결했다. 여기에 3차원 전자 단층촬영 기법, 스케일링 관계식, 그리고 밀도범 함수 이론을 적용하고 이를 다양한 조건에서 측정한 반응성과 연계시킴으로써 구체적인 반응 지점 및 활성을 규명했다.
연구팀은 이번 연구에서 대표적 귀금속 촉매인 백금과 고온 촉매 반응인 메탄산화반응을 활용했으나, 이번 기술은 향후 소재 종류 및 반응 종류에 상관없이 다양한 분야에 폭넓게 응용 및 적용될 수 있다.
정우철 교수는 "이번 연구를 통해서 주어진 반응에 대한 금속 나노입자 촉매의 반응 특성을 정량적으로 분석할 수 있는 고신뢰성 측정 플랫폼을 구축했다ˮ며, "이는 앞으로 우수한 복합촉매 소재 선별 등 촉매설계 종합 솔루션을 제공하는 데 활용될 것으로 기대한다ˮ 라고 말했다.
우리 대학 물리학과 양용수 교수, GIST 김봉수 교수 연구팀에서도 공동으로 참여한 이번 연구는 한국연구재단 나노·소재원천기술개발사업의 지원을 받아 수행됐다.
2021.12.28
조회수 8767