< 생명화학공학과 고동연 교수 >
우리 대학 생명화학공학과 고동연 교수 연구팀이 전자빔을 탄소 분리막에 쏘아 0.05nm(나노미터) 이하의 크기 차이를 갖는 기체 혼합물을 효율적으로 분리할 수 있는 기체 분리막을 개발했다고 27일 밝혔다.
탄소 분자체 분리막(carbon molecular sieve membrane)은 기존 고분자 분리막 대비 높은 선택도(selectivity)와 투과도(permeability)를 동시에 충족시켜 유망한 재료로 거론되고 있으나, 매우 작은 크기 차이를 지닌 분자쌍을 효율적으로 분리하는데 어려움을 겪고 있다. 이번 연구는 이와 같은 문제점을 해결하기 위해 탄소 분리막의 (초)미세다공성을 조절하는 새로운 방법으로 전자 조사(electron irradiation)를 제안하며, 연구팀이 개발한 기술은 조사량에 따라 목표 분자를 설정할 수 있는 기술이다.
생명화학공학과 오반석 박사과정 학생이 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션스 (Nature Communications)'에 온라인 게재됐다. (논문명 : Electron-mediated control of nanoporosity for targeted molecular separation in carbon membranes)
여러 화학종이 포함된 혼합물을 고순도로 분리하는 과정은 구성 분자의 끓는점 차이에 기인한 증류법을 활용하며, 이는 분리 공정에 막대한 열에너지 소비를 일으킨다. 특히, 경질 올레핀/파라핀 및 수소/이산화탄소 분리는 각각 고분자 합성 공정과 수소 생산에 핵심적 역할을 하며 사회경제 기반에 필수적이므로 이와 같은 기체 분자쌍을 고효율, 저탄소 분리 공정을 통해 이뤄내는 것이 필요하다.
이번 연구팀이 제안한 탄소 분리막의 전자 조사 조절은 탄소나노튜브 같은 탄소 입자(carbon particle)에 고에너지 전자빔을 조사할 때 독특한 구조가 형성되는 것에 착안해 진행됐다. 높은 에너지를 지닌 전자가 탄소 입자에 조사되면 입자 내에 빈자리(vacancy) 및 틈새(interstitial) 같은 탄소 결함(defects)이 생성되며, 이는 탄소 입자 간 또는 외부 분자와의 결합을 촉진시켜 기존 입자와 구분되는 독특한 탄소 구조가 생성된다.
탄소 분리막 또한 탄소 가닥(strand) 및 판(plate)으로 이뤄져 있기에 전자 조사를 통해 분리막 내의 미세구조를 변화시켜 기공 크기를 원하는 분리 기체쌍에 조절할 수 있다. 또한, 전자 조사는 이미 산업에서 오랫동안 상용화돼 온 기술로써 조사량 제어 및 대량화 용이성 등 여러 측면에서 장점을 지닌다.
< 그림 1. 탄소 분자체 분리막의 형성과정과 전자 조사에 의한 미세구조 변화를 보여주는 모식도 >
이번 연구는 그동안 온도 및 대기 조성 등 열분해(pyrolysis) 조건에만 국한되어 있는 기존의 탄소 분리막 미세다공성 조절방식에서 벗어나 전자 조사를 새로운 조절방식으로 제안한다. 연구팀은 전자빔이 탄소 분리막에 조사되면 분리막 표면의 산소 기능화 및 초미세기공(ultramicropore) 수축이 일어남을 드러냈으며, 조사량 제어를 통해 기공 치수를 설정했다.
특히, 탄소 분리막 내 0.7nm 이하의 초미세기공은 전자 조사량에 따라 0.4nm 혹은 그 이하의 기공 크기 분포를 지니게 되었으며 이는 분리막의 확산 선택적 분리능을 높여 0.05nm 이하의 크기 차이를 지닌 분자쌍을 정밀하게 걸러낼 수 있게 한다. 예를 들어, 낮은 조사량 범위에서(~250kGy, 1kGy=1kJ/kg) 탄소 분리막의 에틸렌/에탄 분리능력이 3배 이상 향상됐고 높은 조사량에서(1000~2000kGy) 수소/이산화탄소 선택도가 80에 이르는 고성능 탄소 분리막이 제시됐다.
연구팀은 그동안 분리에 어려움을 겪었던 여러 기체 혼합물을 전자 조사된 탄소 분리막을 이용해 성공적으로 분리했으며, 분리막의 상용화와 더불어 분리막의 적용 범위를 획기적으로 확대할 가능성을 보였다. 경질 올레핀/파라핀 분리는 전 세계 에너지 소비의 약 0.3%를 차지할 만큼 많은 에너지가 소모되는 공정이지만 수많은 소재의 원료로 활용되므로 해당 공정을 저비용, 저에너지 공정으로 전환 시키는 것이 초미의 관심사다.
< 그림 2. 전자 조사 후 탄소 분리막의 초미세기공 크기 분포의 변화 및 조사량에 따른 분리 범용성을 드러낸 모식도 >
연구를 주도한 생명화학공학과 고동연 교수는 "2018년부터 시작된 수소 경제 도입 및 활성화에 따라 에너지 효율적인 수소 생산은 국가의 해외 의존도를 낮추고 에너지 안보 확보와 연관되어 중요성이 날로 커지고 있다ˮ며 "전자 조사를 통한 분리막 기반의 분리 공정을 확대 적용할 수 있다면 산업계의 글로벌 경쟁력 강화와 국가 에너지 안보 확립에 이바지할 수 있을 것으로 기대한다ˮ고 연구의 의의를 설명했다.
한편 이번 연구는 과학기술정보통신부의 재원으로 한국연구재단 기초연구사업과 삼성전자 미래기술육성센터의 지원을 받아 수행됐다. (No. NRF-2021R1C1C1012014, SRFC-MA1902-08)
분자의 크기와 모양에 따라 분자를 구별할 수 있는 분리막 공정*은 기존의 열 분리 공정(예: 증류법)보다 훨씬 적은 에너지를 소비하며 화학 산업의 탄소 배출량을 줄일 수 있는 잠재력을 가지고 있다. *분리막 공정: 분리막은 물질의 크기나 흡수력에 따라서 특정 물질을 선택적으로 통과시키거나 배제하는 역할을 하는 선택적 장애물로 분리막을 이용한 분리 공정은 기존의 공정과 달리 많은 에너지를 사용하지 않고도 화합물들을 효율적으로 분리할 수 있음 우리 대학 생명화학공학과 고동연, 임성갑 교수 공동연구팀이 기존에 분리하기 어려웠던 크기의 활성 제약 분자들을 매우 높은 선택도로 분리할 수 있는 초박막 분리 기술을 세계 최초로 개발했다고 29일 밝혔다. 분리막은 산업계 전반에 사용되는 유기용매들을 분리하는데 저에너지, 저탄소 해결법을 제공할 수 있어 비교적 짧은 상업화 역사에도 불구하고 석유화학, 반도체, 재생합성연료(E-Fuel), 바이오 제약 분야 등 폭넓은 분야에 응용되고 있
2024-04-29한국 연구진이 고분자 구조를 체계적으로 튜닝해 기체 혼합물에서 이산화탄소를 선택적으로 투과시키는 고효율 멤브레인(분리막) 제조 기술을 개발했다. 이를 통해 수많은 화학 산업 및 환경 분야에서도 넓게 적용이 가능하여 탄소중립 구현에 크게 기여할 것으로 기대된다. 우리 대학 생명화학공학과 배태현 교수 연구팀이 고분자 분리막의 구조와 화학적 특성을 전략적으로 제어해 높은 효율로 이산화탄소를 분리 제거할 수 있는 기술을 개발했다고 22일 밝혔다. 멤브레인(분리막)은 목표 물질을 선택적으로 투과시키는 박막으로 정의되며, 저에너지 분리 기술로 주목을 받아 왔다. 하지만 기존의 고분자 분리막은 치밀한 구조를 가져 활용이 제한되는 단점이 있어 이를 대체하기 위해, 일정한 미세 기공을 갖는 소재를 분리막으로 활용해 기체의 투과 선택성을 높이려는 연구가 많이 수행됐다. 하지만 기존의 분자체 분리막들은 양산에 어려움이 있고 제조 과정이 복잡하며 강도가 부족해 실제 공정에 사용하기에 적합하지
2024-04-22기후변화 대응을 위한 친환경 공정 기술 개발의 필요성이 확대됨에 따라 화학 및 제약 산업에서의 저에너지 분리 공정은 지속가능한 개발에 있어 중추적 역할을 담당하고 있다. 특히, 제약 산업의 경우 고품질의 의약품 제조를 위해 고순도의 유기용매 사용이 필수적이며, 이에 따라 유기용매의 고효율 분리 공정에 대한 요구가 꾸준히 증가하고 있는 실정이다. 우리 대학 생명화학공학과 최민기 교수 연구팀이 2차원 다공성 탄소 기반의 유기용매 정제용 초고성능 나노여과막을 개발했다고 3일 밝혔다. 기존의 유기용매 분리 공정은 혼합물을 이루는 물질 간의 끓는점 차이를 이용하여 분리하는 증류법이 사용되어 대용량의 혼합물을 끓여야 하는 만큼 막대한 에너지가 소모되는 단점이 있었다. 반면, 분리막 기술은 단순히 압력을 가하는 것만으로 유기용매의 선택적 투과가 가능하고 유기용매보다 크기가 큰 입자들을 효과적으로 제거할 수 있다. 특히, 열이 가해지지 않으므로 공정에서 요구되는 에너지 및 비용을 절
2023-04-03우리 대학 생명화학공학과 고동연 교수 연구팀이 새로운 미래지향적인 패러다임의 분리막 기반 원유정제 기술에 대한 Perspective 기사를 Science지에 게재했다. 글로벌 탄소중립을 달성을 위한 탈탄소화(Decarbonization)가 산업계의 화두인 현재 기존 석유화학 공정의 에너지 효율성을 높이고 탄소를 덜 배출할 수 있는 새로운 기술에 대한 요구가 크다. 즉, 원유를 끓는점 차이에 따라 정제하는 분별 증류 공정에 전 세계적으로 막대한 양의 에너지가 소비되기 때문에 이를 대체할 수 있는 기술이 필요한 실정이다. 최근 고동연 교수 연구팀을 포함해 전 세계의 연구팀들이 이와 같은 에너지-탄소 저감 문제를 해결할 수 있는 기술로 원유를 구성하는 분자를 크기와 모양에 따라 상온에서 연속적으로 분리막을 통해 분리할 수 있는 기술에 대해 연구하고 있다. 분리막 기술은 기존의 증류법보다 약 10배 정도 낮은 에너지를 소비하며 석유화학공정의 탄소배출량을 극적으로 줄일 수 있는 기술이
2022-06-03우리 대학 생명화학공학과 고동연 교수 연구팀이 상온에서 크기 차이 0.1 나노미터(nm) 이하의 액상 유기물질을 직접 분리할 수 있는 유기용매 정삼투 시스템을 개발했다고 12일 밝혔다. 액체 혼합물의 대규모 분리 공정은 주로 물질의 끓는점 차이를 이용하는 증류법을 이용하는데, 이때 전 세계적으로 막대한 양의 에너지가 소비된다. 특히, 석유화학 산업의 기초가 되는 액상 탄화수소들은 섬유, 플라스틱 등 일상생활과 밀접한 소재 개발에 필수적이기 때문에 이들을 저에너지, 저탄소 공정을 통해 분리하는 새로운 미래지향적인 패러다임이 필요하다. 연구진이 개발한 초미세 다공성 탄소 분리막은 위와 같은 에너지 문제를 해결할 수 있는 기술로, 액상 탄화수소를 크기와 모양에 따라 상온에서 연속적으로 분리할 수 있는 기술이다. 생명화학공학과 서혁준 석박사통합과정 학생이 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 사이언스(Advanced Science)' 에 온라인 게재됐으며,
2021-08-13