-
정밀한 시각적 판단을 추론한 새로운 인공지능 가속칩 개발
우리 대학 전기및전자공학부 윤찬현, 김주영 교수 연구팀이 설명 가능한 인공지능(eXplainable AI, XAI) 기법을 처리하기 위한 노이즈(잡음)에 강한 다중 피라미드 활성화 맵 기반 주의집중 구조가 탑재된 인공지능 칩을 설계하고, 삼성전자 DS부문의 지원으로 설명가능 뉴로프로세싱 유닛(이하 EPU, Explainable neuro-Processing Unit)을 개발했다고 24일 밝혔다.
설명가능 인공지능이란 사람이 이해할 수 있고 신뢰할 수 있는 설명을 제공할 수 있는 인공지능 기법이다. 기존의 수학적 알고리즘으로 학습되는 인공지능은 학습예제에 편향되어 신뢰할 수 없거나, 수천억개의 매개변수를 사람이 이해할 수 없다는 문제점을 해결하기 위해, 왜 인공지능이 특정 결과를 추론했는지 판단근거를 설명할 수 있도록 개발되었다. 설명가능한 인공지능은 어떤 이유에 의해서 인공지능의 의사결정에 큰 영향을 주었는지 설명할 수 있다는 점에서 기존의 인공지능보다 정확성, 공정성, 신뢰성을 보장할 수 있다는 특징을 가진다.
공동연구팀은 다중 규모 및 다중물체의 특징 추출 구조인 피라미드형 신경망 구조에서 추론 결과에 영향을 주는 인공지능 내부의 신경층별 활성화되는 정도를 복합적으로 해석할 수 있는 인공지능 모델과 이를 가속처리 특화된 채널 방향 합성곱 연산 및 정확도를 유지하는 EPU칩을 구현했다.
다중 규모 및 다중물체 특징 추출에 특화된 피라미드형 인공지능 모델에서 설명 시각화 구현을 위해서는 추론 과정의 역방향으로 모든 합성곱 층별 활성화 맵에서 모델 파라미터의 변화도를 추출할 수 있는 구조가 요구된다.
그러나 역전파 계산 과정은 기존의 추론처리 가속을 위한 인공지능 칩 설계와 달리 이전 파라미터 및 상태를 기억해야 하며 이는 한정된 온 칩 메모리 크기 및 인공지능 모델 전체를 특정한 용도에 맞게 주문 제작(ASIC; Application Specific Integrated Circuit)해 구현하기에는 물리적 한계가 있다.
또한, 피라미드형 구조의 설명 가능한 인공지능 모델은 설명성 보장을 위한 N개 층의 활성화 맵으로부터 기울기 기반의 클래스 활성 맵핑 시각화 처리 각각 필요해 복잡도를 높이는 문제가 있다. 그리고, 입력의 매우 작은 노이즈에도 클래스 활성화 맵핑 시각화 설명이 완전히 달라져 설명 가능한 인공지능 모델의 신뢰도 저하가 큰 문제점이었다.
전기및전자공학부 윤찬현 교수 연구팀은 문제해결을 위해(그림1 참조) 설명 가능한 인공지능의 다중 활성화 맵 고유의 특성 정보를 융합해 전역 주의 집중 맵을 생성하는 네트워크 구조와 입력 이미지 노이즈에 강건한 모델 생성을 위한 상호학습 방법을 개발해, 단일 활성화 맵 기반 주의집중 맵 생성 기술에 비해 설명성 지표를 최대 6배가량 높였다.
또한, 다중 스케일의 다양한 주의집중 맵들의 상호 보완적인 특성을 일원화된 주의집중 맵으로 정교하게 재구성함으로써 사람이 해석 가능한 수준의 정밀한 설명성을 제공할 수 있게 했다. 이번 연구 성과를 통해 위성 영상과 같이 객체 크기 변화가 큰 이미지 분석에서 인공지능 모델의 설명성을 크게 향상할 수 있을 것으로 기대된다고 연구팀 관계자는 설명했다.
전기및전자공학부 김주영 교수 연구팀은 제안된 설명 가능한 인공지능 모델을 가속하기 위해 기존 모델의 추론과 역전파 과정에 더해 활성화 맵 생성까지 처리할 수 있는 XAI 코어를 개발하고, 다양한 연산 태스크를 유연하게 분할해 동시에 처리할 수 있는 멀티 데이터 플로우 방식을 제안했다. 또한, 많은 0 값을 포함하는 활성화 맵의 특성을 활용해, 연속된 0을 건너뛸 수 있는 새로운 데이터 압축 포맷을 제안하고 이를 지원하는 가속 유닛을 개발해 최대 10배 이상의 활성화 맵을 칩 내부에서 처리할 수 있도록 했다.
연구팀이 개발한 EPU 칩은 광학 위성, 전천후 관측 영상레이더(Synthetic Aperture Radar) 위성 등 특수 목적과 고정밀 인공지능 영상처리시스템에 적용할 수 있으며, 저지연‧저전력으로 인공지능 시스템의 판단 근거에 대한 설명성을 획기적으로 높일 수 있을 것으로 기대된다. 연구팀은 EPU 칩 개발 후속 연구를 진행할 계획이다.
2022.08.25
조회수 5872
-
인공지능 활용 고용량 배터리 소재 역설계 기술 개발
우리 대학 신소재공학과 홍승범 교수 연구팀이 우리 대학 조은애 교수, 변혜령 교수, 이혁모 교수, 신종화 교수, 육종민 교수, 그리고 미국의 르하이 대학교(Lehigh University), 죠수아 C 에이가(Joshua C. Agar) 교수와 협업해 기존 문헌에 발표된 실험값들을 추출하는 데이터 마이닝 과정과 이런 실험값들을 입력변수로 하는 다변수 선형회귀 모형을 기반으로 배터리 소재 역설계 머신러닝(기계학습) 모델을 수립했다고 23일 밝혔다.
인공지능은 고차원의 변수 공간에서 각 매개변수 간의 정량적인 상관관계를 신속하고 정확하게 추출할 수 있다. 이를 공정-구조-물성 간의 상관관계를 기반으로 발전하는 신소재공학에 적용하면 신소재 개발 시간을 단축할 수 있으며, 이런 이유로 많은 연구자가 인공지능을 신소재 개발에 활용하려고 노력하고 있다. 특히, 배터리 소재 개발에 인공지능을 활용하는 예가 가장 많은데, 주로 제1 원리 계산(양자화학에 기반한 계산법으로 계산 시 다른 경험적 수량을 전혀 사용하지 않음)과 머신러닝을 융합해 수많은 전극 소재 조합을 대량으로 스크리닝하는 기술 개발이 주를 이루고 있다.
그런데, 인공지능을 활용해서 새로운 배터리 소재를 탐색하고, 탐색한 소재를 합성 및 특성 평가에 있어 가장 큰 문제점은 데이터의 신뢰성과 양이다. 제1 원리 계산으로 예측한 값들은 실험으로 검증이 돼야 하며, 실험데이터의 경우 실험실마다 편차가 있고, 중요한 공정변수들을 공개하지 않은 경우가 많아 인공지능이 학습할 수 있는 데이터의 크기가 한정적이라는 문제가 대두되고 있다.
연구팀은 배터리 양극재 원료조성, 1차 및 2차 소결 온도와 시간 등의 공정 변수와 컷오프 전위 및 충․방전률과 같은 측정 변수, 그리고 1차 및 2차 입자의 크기와 같은 구조 변수, 마지막으로 충․방전 용량과 같은 성능 변수 간의 상관관계를 정량적으로 수립했고, 이를 활용해 요구되는 에너지 용량에 맞는 합성 조건을 찾는 알고리즘을 개발했다.
홍 교수 연구팀은 고니켈 함량 양극재 관련 논문 415편 안에 발표된 주요 변수들을 추출하고, 그중 16% 정도의 정보가 기입되지 않음을 발견했으며, 머신러닝 기법 중에서 k-최근접 이웃 알고리즘(k-nearest neighbors (KNN)), 랜덤 포레스트(random forest (RF)), 연쇄등식을 이용한 다중대치(multiple imputations by chained equations (MICE))를 활용해 빠진 정보를 예측하여 기입했다. 그리고, 가장 신뢰도가 높은 MICE를 선택해 얻은 입력 데이터 셋을 기반으로 주어진 공정 및 측정 변수에 대해서 성능 변수를 예측하는 순방향 모델을 얻었다.
이어서 입자 군집 최적화(particle swarm optimization, PSO) 알고리즘을 활용하여 주어진 성능 변수에 대응하는 공정 및 측정 변수를 추출하는 역방향 모델을 수립했고, 이 모델을 검증하기 위해 소재를 실제로 합성하여 타깃 용량인 200, 175, 150 mAh/g과 11% 정도의 오차를 보여 상당히 정확하게 역설계할 수 있음을 입증했다.
교신 저자인 홍승범 교수는 "인공지능을 활용해 대량의 논문 및 특허 내에 있는 공정-구조-물성 변수들을 자동으로 분류하고 실험값들을 추출해 각 변수 간의 다차원 상관관계를 기반으로 모델을 수립하는 것이 차세대 배터리 소재의 역설계의 핵심ˮ이라며 "향후 데이터 마이닝 기술, 머신러닝 기술 그리고 공정 자동화 기술을 융합하는 것이 미래의 신소재공학ˮ이라고 말했다.
신소재공학과 치 하오 리오우(Chi Hao Liow) 박사가 제1 저자로 참여한 이번 연구는 국제 학술지 `나노에너지(Nano Energy)'에 게재됐다. (논문명: Machine learning assisted synthesis of lithium-ion batteries cathode materials)
한편 이번 연구는 KAIST 글로벌 특이점 사업의 지원을 받아 수행됐다.
2022.08.23
조회수 6992
-
심각한 염증 부작용 없앤 새로운 알츠하이머병 치료제 개발
우리 대학 생명과학과 김찬혁, 정원석 교수 공동연구팀이 알츠하이머병에 대한 새로운 형태의 단백질 치료제를 개발했다고 22일 밝혔다.
연구팀은 세포 포식작용에 관여하는 단백질을 응용한 `Gas6 융합단백질'을 제작하고 이를 통해 알츠하이머병을 유발하는 베타 아밀로이드 플라크(단백질 응집체)를 제거할 수 있는 새로운 형태의 치료제를 개발했다. 기존의 베타 아밀로이드를 표적으로 하는 항체 기반 치료제가 불확실한 치료 효과와 더불어 심각한 부작용을 일으키는 것이 보고되고 있는 가운데, 이를 근본적으로 극복할 수 있는 새로운 방식의 치료제를 연구팀은 제작한 것이다. 또한 해당 접근법은 향후 다양한 퇴행성 뇌 질환 및 자가면역질환 치료에 폭넓게 응용될 수 있을 것으로 기대된다.
생명과학과 박사과정 정현철, 이세영 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 메디슨 (Nature Medicine)' 8월 4일 字 온라인 출판됐다. (논문명 : Anti-inflammatory clearance of amyloid beta by a chimeric Gas6 fusion protein).
알츠하이머병은 기억상실과 인지장애를 동반하는 노인성 치매의 대표적 원인이다. 최근 국내 언론에 잘못 알려진 바와는 달리, 알츠하이머병은 뇌에 쌓이는 베타 아밀로이드 응집체 (비정상적으로 39~43개의 아미노산으로 잘려진 아밀로이드 조각들의 응집체)에 의한 시냅스 손상과 세포 독성으로 발병한다는 것이 학계 및 의료계의 정설이다. 이러한 정설에 의구심이 일었던 것은 아직까지 수많은 노력에도 불구하고 베타 아밀로이드를 제거하는 알츠하이머병 치료제가 성공적으로 개발되지 못했기 때문이었다. 최근 베타 아밀로이드를 표적으로 하는 항체 기반 치료제인 아두헬름이 사상 처음으로 알츠하이머병의 근원 치료제로써 2021년 6월 미국에서 FDA 승인이 이뤄졌으나, 치료 효과 및 부작용에 관한 논란이 여전히 지속되고 있다.
아두헬름과 같은 항체 기반의 치료제를 처방받은 알츠하이머병 환자들에게서 나타나는 가장 큰 부작용은 뇌 부종 (ARIA-E) 및 뇌 미세혈관출혈 (ARIA-H)이다. 이러한 부작용은 뇌 염증과 밀접하게 관련돼 있는데, 이는 항체 기반 치료제들이 면역세포에서 발현되는 Fc 수용체를 통해 필연적으로 염증반응을 일으키기 때문으로 알려져 있다. 이 Fc 수용체는 다른 한편으로는 면역세포가 항체에 의한 포식작용을 통해 베타 아밀로이드 응집체를 제거하는데 필수적인 기능을 한다. 따라서 심각한 염증 부작용을 근본적으로 예방하면서 베타 아밀로이드 응집체를 효과적으로 제거하는 치료제를 개발하는 것은 알츠하이머병 치료의 오랜 딜레마였다.
연구팀은 이러한 문제를 기존 항체의 틀에서 벗어나 새로운 기전의 단백질 치료제를 디자인함으로써 해결했다. 우리 몸에는 끊임없이 죽어 나가는 세포들을 제거하기 위한 특수한 포식작용 경로가 존재하는데, 연구팀은 이에 관여하는 Gas6라는 단백질을 인위적으로 조작해 베타 아밀로이드를 표적으로 하는 융합단백질을 제작했다. 연구팀은 실험을 통해 이 융합단백질(anti-Abeta-Gas6)이 뇌 안에서 선택적으로 베타 아밀로이드를 제거함과 동시에 염증반응을 오히려 억제한다는 것을 증명했다.
또한 알츠하이머 질병 쥐 모델을 통해 연구팀이 개발한 융합단백질이 미세아교세포와 별아교세포를 동시에 활용해 뇌 속에 축적된 베타 아밀로이드의 양을 현저하게 줄이는 것을 발견했다. 이는 기존의 항체 치료제가 미세아교세포를 통해서만 베타 아밀로이드를 줄일 수 있는 것에 비해 뚜렷한 이점으로 보인다. 동시에 연구팀은 Gas6 융합단백질이 항체 치료제에 의해서 더 악화되는 미세아교세포에 의한 과도한 시냅스 제거 현상을 획기적으로 억제할 수 있음을 밝혔다. 더 나아가, Gas6 융합단백질을 주입한 알츠하이머 질병 쥐 모델에서는 손상된 인지능력 및 기억력이 항체 치료제보다도 높은 수준으로 회복되는 결과도 확인했다.
추가로 기존의 항체 기반 치료제를 처방받은 알츠하이머 환자에게서 나타났던 부작용인 뇌 미세혈관 출혈도, Gas6 융합단백질을 주입한 알츠하이머 질병 쥐 모델에서는 현저하게 감소하는 것을 연구팀은 증명했다.
따라서 연구팀이 개발한 융합단백질은 새로운 형태의 작용기전을 적용한 최초의 알츠하이머 질병 치료제이며, 이러한 형태의 치료제는 다양한 퇴행성 뇌 질환 및 자가 면역질환에 적용될 수 있을 것으로 기대된다.
연구팀은 "지금까지 많은 항체 기반 치료제가 성공하지 못했던 이유는 뇌 조직 및 혈관에 쌓이는 베타 아밀로이드가 올바른 방식으로 청소되지 않았기 때문ˮ이라며 "Gas6 융합단백질을 통해서는 베타 아밀로이드가 염증반응 없이 청소되기 때문에 부작용이 낮을 뿐만 아니라 높은 인지기능의 향상도 기대할 수 있을 것ˮ이라고 말했다.
연구팀은 이번 Gas6 융합단백질 치료기술을 기반으로 2021년 8월에 일리미스테라퓨틱스(Illimis Therapeutics, 대표이사: 박상훈)를 설립했고, 향후 이를 통해 베타 아밀로이드를 표적으로 하는 알츠하이머 치료제(GAIA-Abeta, ILM01) 개발뿐 아니라, 표적을 타우 등으로 치환하는 치료제도 개발하여 다양한 확장 및 임상 개발을 계획하고 있다.
한편 이번 연구는 KAIST 글로벌 특이점 사업(프렙과제) 및 치매극복연구개발사업단 (KDRC, 단장: 묵인희)의 지원을 받아 수행됐다.
2022.08.22
조회수 7471
-
세계 최초 개인정보 보호 기술이 적용된 인공지능(AI) 반도체 개발
우리 대학 전기및전자공학부 유민수 교수 연구팀이 세계 최초로 `차등 프라이버시 기술이 적용된 인공지능(AI) 어플리케이션(Differentially private machine learning)'의 성능을 비약적으로 높이는 인공지능 반도체를 개발했다고 19일 밝혔다.
빅데이터 및 인공지능 기술의 발전과 함께 구글, 애플, 마이크로소프트 등 클라우드 서비스를 제공하는 기업들은 전 세계 수십억 명의 사용자들에게 인공지능 기술을 기반으로 여러 가지 서비스(머신러닝 애즈 어 서비스, ML-as-a-Service, MLaaS)를 제공하고 있다. 이러한 서비스 중에는, 대표적으로 유튜브나 페이스북 등에서 시청자의 개별 취향에 맞춰 동영상 콘텐츠나 상품 등을 추천하는 `개인화 추천 시스템 기술(예- 딥러닝 추천 모델, Deep Learning Recommendation Model)' 이나, 구글 포토(Photo) 와 애플 아이클라우드(iCloud) 등에서 사진을 인물 별로 분류해주는 `안면 인식 기술 (예- 합성곱 신경망 네트워크 안면 인식, Convolutional Neural Network based Face Recognition)' 등이 있다.
이와 같은 서비스는 사용자의 정보를 대량으로 수집해, 이를 기반으로 인공지능 알고리즘의 정확도와 성능을 개선한다. 이 과정에서 필연적으로 많은 양의 사용자 정보가 서비스 제공 기업의 데이터 센터로 전송되고, 민감한 개인정보나 파일들이 저장되고 사용되는 과정에서 정보가 유출되는 문제가 발생하기도 한다.
또한 이러한 문제는 최근 주목받는 대형 인공지능 모델의 경우에 더 쉽게 발생하는 경향이 있으며, 실제 구글에서 사용하는 대화형 인공지능 모델인 GPT-2의 경우, 특정 단어들을 이야기했을 때 사용자의 개인정보 등을 유출하는 문제를 보였다. [참고1] 유사사례로서 국내에서 2020년 화제가 되었던 스캐터랩의 인공지능 챗봇 이루다의 경우에도 비슷한 문제가 불거진 적이 있다. [참고2]
[참고1] https://ai.googleblog.com/2020/12/privacy-considerations-in-large.html
[참고2] https://n.news.naver.com/mnews/article/092/0002243051?sid=105
이에 애플, 구글, 마이크로소프트 등 빅 테크 기업에서는 `차등 프라이버시 (differential privacy)' 기술을 크게 주목하고 있다. 차등 프라이버시 기술은 학습에 사용되는 그라디언트(gradient, 학습 방향 기울기)에 잡음(노이즈)를 섞음으로써 인공지능 모델로부터 사용자의 개인정보를 유출하는 모든 종류의 공격을 방어할 수 있다.
하지만 이러한 장점에도 불구하고, 차등 프라이버시 기술 적용 시, 기존 대비 어플리케이션의 속도와 성능이 크게 하락하는 문제 때문에 아직까지 범용적으로 널리 적용되지는 못했다. 이는 차등 프라이버시 머신러닝 학습 과정이 일반적인 머신러닝 학습과 다른 특성을 보이고, 이로 인해 기존의 하드웨어에서 효과적으로 실행되지 않아 메모리 사용량, 학습 속도 및 하드웨어 활용도 (hardware utilization) 측면에서 비효율적이기 때문이다.
이에 유민수 교수 연구팀은 차등 프라이버시 기술의 성능 병목 구간을 분석해 해당 기술이 적용된 어플리케이션의 성능을 크게 시킬 수 있는 `차등 프라이버시 머신러닝을 위한 인공지능(AI) 반도체 칩'을 개발했다. 유민수 교수팀이 개발한 인공지능 반도체는 외적 기반 연산기와 덧셈기 트리 기반의 후처리 연산기 등으로 구성돼 있으며, 현재 가장 널리 사용되는 인공지능 프로세서인 구글 TPUv3 대비 차등 프라이버시 인공지능 학습 과정을 3.6 배 빠르게 실행시킬 수 있고, 엔비디아의 최신 GPU A100 대비 10배 적은 자원으로 대등한 성능을 보인다고 연구팀 관계자는 설명했다. 또한 이번 개발을 통해서 기존 하드웨어의 한계로 널리 쓰이지 못했던 차등 정보보호 기술의 대중화에 도움을 줄 수 있을 것으로 기대된다고 전했다.
우리 대학 전기및전자공학부 박범식, 황랑기 연구원이 공동 제1 저자로, 윤동호, 최윤혁 연구원이 공동 저자로 참여한 이번 연구는 미국 시카고에서 열리는 컴퓨터 구조 분야 최우수 국제 학술대회인 `55th IEEE/ACM International Symposium on Microarchitecture(MICRO 2022)'에서 오늘 10월 발표될 예정이다. (논문명 : DiVa: An Accelerator for Differentially Private Machine Learning)
또한 이번 연구는 지금까지는 없던 차등 프라이버시가 적용된 인공지능 반도체를 세계 최초로 개발했다는 점에서 의의가 있으며, 차등 프라이버시 인공지능 기술을 대중화해 인공지능 기반 서비스 사용자들의 개인정보를 보호하는 데에 큰 도움을 줄 수 있을 것으로 보인다. 또한, 가속기의 성능 향상은 인공지능 연구 효율을 높여 차등 프라이버시 인공지능 모델의 정확도 개선에도 기여할 것으로 보인다.
한편 이번 연구는 한국연구재단, 삼성전자, 그리고 반도체설계교육센터 (IDEC, IC Design Education Center)의 지원을 받아 수행됐다.
2022.08.19
조회수 8802
-
디지털 펜으로 ´쓱쓱´ 그려 움직이는 3D 형상 ´뚝딱´ 만드는 시스템 개발
우리 대학 산업디자인학과 배석형 교수 연구팀이 종이 위에 그림을 그리는 듯한 펜 드로잉과 장난감을 손으로 다루는 듯한 멀티터치 제스처만으로 `움직이는 3D 스케치'를 쉽고 빠르게 만들 수 있는 새로운 시스템을 개발했다고 18일 밝혔다.
한때 공상과학 영화의 전유물이었으나 기술의 발전 덕분에 일상에서도 접할 수 있게 된 접이식 드론, 변신형 자동차, 다족 보행 로봇처럼 여러 움직이는 부분과 관절로 이뤄진 제품은 디자인할 때 형태뿐만 아니라 구조, 자세, 동작까지 동시에 고려해야 하므로 전문가도 많은 어려움을 겪는다.
기존의 3D 캐드(CAD) 소프트웨어는 정교한 형상 작업에 특화돼 있어 움직이는 모델 하나를 제작하는 데에도 많은 시간과 노력을 요구하는데, 특히 이는 다양한 가능성을 넓고 빠르게 탐색해야 하는 디자인 초기 과정에서 심각한 병목과 비용을 초래한다.
반면, 배 교수 연구팀은 모든 디자인은 종이 위에 펜으로 빠르게 그린 2D 스케치로부터 출발한다는 점에 주목하고 디자이너가 디지털 태블릿 위에 디지털 펜으로 자유롭게 표현한 2D 스케치로부터 입체 형상을 생성하는 `3D 스케칭' 기술을 개발해 왔다.
이번 연구에서 연구팀은 생성 중인 3D 스케치를 마치 장난감을 다루듯 두 손으로 조작할 수 있는 직관적인 멀티터치 제스처를 설계 및 구현함으로써 순식간에 살아 움직이는 입체 형상을 만들 수 있는 `움직이는 3D 스케칭' 기술을 완성했다(그림 1, 2).
우리 대학 산업디자인학과 이준협 박사과정 학생이 제1 저자로 참여한 해당 연구는 컴퓨터 그래픽스 분야 제1위 국제 학술지인 `ACM 트랜잭션 온 그래픽스(ACM Transactions on Graphics, 피인용지수: 7.403)'에 게재됐으며, 이와 연동돼 8월 초 캐나다 밴쿠버에서 개최된 최대 규모의 국제학술대회인 ACM 시그래프 2022(ACM SIGGRAPH 2022, h5-색인: 103)에 발표됐다(논문명: Rapid Design of Articulated Objects).
이번 시그래프(이하 SIGGRAPH)에는 전 세계 유수의 대학교 연구진, 마블(Marvel), 픽사(Pixar), 블리자드(Blizzard)와 같은 세계적인 애니메이션 사, 영화사, 게임사, 록히드 마틴(Lockheed Martin), 보스턴 다이내믹스(Boston Dynamics)와 같은 첨단 제조사를 비롯해, 메타(Meta), 로블록스(Roblox)와 같은 메타버스 관련 기업 관계자 1만여 명이 참가한 것으로 알려졌다.
배 교수 연구팀의 기술 논문(Technical Paper) 성과는 SIGGRAPH에서 유망한 신기술을 현장에서 시연하는 `이머징 테크놀로지(Emerging Technologies)' 프로그램에 초청됐을 뿐만 아니라, 그중에서도 Top 3 우수 기술로 선정, 특별 강연으로 소개됐다. 제2 저자인 KAIST 산업디자인학과 김한빛 박사과정 학생이 불과 10분 만에 유려한 형태의 동물 로봇을 그리고 움직여서 입체 동영상을 완성하는 모습은 현장에 모인 청중의 감탄을 자아냈고 심사위원단이 선정한 우수 전시상(Honorable Mention)을 수상하는 영광을 얻었다(그림 3).
이번 SIGGRAPH에서 기조연설을 맡은 에드윈 캐트멀(Edwin Catmull) 픽사 공동 창업자 / 前 회장도 이 연구를 두고 "매우 훌륭한 업적이자(really excellent work), 픽사의 창의력 넘치는 디자이너들에게 필요한 도구(the kind of tool that would be useful to Pixar's creative model designers)ˮ라며 높이 평가했다.
연구를 지도한 배석형 교수는 "디자이너가 생각하고 작업하는 방식에 가까이 다가갈수록 효과적인 디자인 도구를 만들 수 있다ˮ며, "직관적인 상호작용 방식을 통해 여러 상이한 알고리즘을 하나의 조화로운 시스템으로 통합하는 것이 핵심ˮ이라고 강조했다. 또한 "학생 개개인이 디자이너인 동시에 엔지니어를 지향하는 KAIST 산업디자인학과만의 융합적인 토양이기에 가능한 연구였다ˮ고 덧붙였다.
3D 공간에서 자유자재로 움직이는 입체 형상과 같은 수준 높은 창의적 결과물을 기존 방식에 비교할 수 없을 만큼 쉽고 빠르게 생성할 수 있어서 가까운 미래에 콘텐츠 산업, 제조 산업, 나아가 메타버스 산업의 디자인 실무 혁신에 크게 기여할 것으로 기대된다.
한편, 이번 연구는 과학기술정보통신부 및 한국연구재단의 지원을 받아 수행됐다.
- 웹사이트(다양한 움직이는 3D 스케치 예시 수록): https://sketch.kaist.ac.kr/publications/2022_siggraph_rapid_design
- ACM SIGGRAPH 2022 특별 강연(한글 자막 있음): https://www.youtube.com/watch?v=rsBl0QvSDqI
2022.08.18
조회수 9801
-
미생물 이용해 고효율 루테인 생산 기술 최초 개발
우리 대학 생명화학공학과 박선영 박사(現 LG화학)와 은현민 박사과정생을 포함한 이상엽 특훈교수 연구팀이 `루테인을 생산하는 미생물 균주 개발'에 성공했다고 17일 밝혔다.
루테인(lutein)은 눈을 산화 손상과 자외선으로부터 보호하며, 주로 계란의 난황과 과일 등에 함유된 영양물질이다. 루테인은 노안, 백내장 등의 예방 및 치료 효과가 있어 눈 영양제로 많이 판매되며, 이외에도 화장품과 동물사료에도 사용되고 있다. 노령화와 전자기기 사용 시간 증가에 따라 루테인 수요와 시장 규모는 빠르게 증가하는 추세다.
해당 연구 결과는 국제 학술지인 `네이쳐 카탈리시스(Nature Catalaysis)'에 8월 4일 게재됐다.
※ 논문명 : Metabolic engineering of Escherichia coli with electron channeling for the production of natural products
※ 저자 정보 : 이상엽(한국과학기술원, 교신저자), 박선영(한국과학기술원, 제1저자, 현 LG화학), 은현민 (한국과학기술원, 제2저자), 이문희(한국과학기술원, 제3저자) 포함 총 4명
현재 시장에 공급되고 있는 루테인은 주로 금잔화(marigold) 꽃에서 추출해 생산되지만, 금잔화 꽃의 재배에는 대지와 시간, 노동이 많이 요구된다는 점에서 대량으로 공급하기에 비효율적이다. 그 대안으로 화학적 합성 방법도 제시돼왔지만, 비대칭적인 화학 구조와 다양한 이성질체의 존재로 인해 이 또한 비효율적이다.
이러한 문제를 해결하기 위해 루테인을 친환경적이며 고효율로 생산하는 미생물 세포 공장을 개발하려는 노력이 이뤄지고 있다. 시스템 대사공학은 효과적인 미생물 균주 개발을 위해 필요한 핵심 전략으로, 우리 대학 이상엽 특훈교수가 창시한 연구 분야다.
이상엽 특훈교수 연구팀은 미생물의 대사회로를 조작하는 기술인 대사공학을 이용해 대장균 내 루테인 생산 대사회로를 구축했으며, 이로써 값싼 바이오매스의 주원료인 글리세롤을 탄소원으로 사용해 고부가가치의 루테인을 생산하는 대장균 균주를 개발했다고 연구팀 관계자는 설명했다.
연구팀은 개발한 대장균 균주에 추가로 시스템 대사공학 기술과 대사회로의 전자 채널링 전략을 도입함으로써 대장균으로부터 루테인을 고효율로 생산할 수 있는 기술 개발에 성공했다.
대사회로 상 여러 생화학적 반응에 관여하는 효소는 원하는 목표 화학물질로의 대사 흐름을 방해하기에 그동안 루테인을 특정량 이상으로 생산할 수 없었다. 연구진은 병목 단계의 효소들을 그룹화해 세포 내 효소 주변의 기질들과 전자들의 농도를 높일 수 있는 기질 채널링 및 전자 채널링 효과를 만들었으며, 그 결과 루테인 생산을 위한 대사 흐름이 강화되면서 대장균을 이용해 루테인을 고효율로 생산하는 데 성공했다.
연구팀은 또한 동일한 전자 채널링 전략을 사용해 대장균에서 자몽의 향기 성분인 누카톤(nootkatone)과 항노화 천연화합물인 아피게닌(apigenin) 등을 생산하는 데 성공했다.
연구에 참여한 박선영 박사는 “천연자원으로부터의 비효율적인 추출법을 대체할 수 있는 미생물 기반의 고효율 루테인 생산 기술을 개발했다는 점에 의의가 있다”며 “이번 기술을 활용해 미생물 기반의 의약품, 영양 보조제 등의 제품을 만드는 데 한 단계 앞으로 나아갈 수 있을 것”이라고 밝혔다.
이번 연구는 이상엽 특훈교수 연구팀에 의해 과학기술정보통신부가 지원하는 기후환경연구개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발 과제’와 농촌진흥청이 지원하는 농업미생물사업단(단장 장판식)의 ‘카로티노이드 생산 미생물 세포공장 개발’ 과제(과제책임자 국립농업과학원 김수진 박사)의 지원을 받아 수행됐다.
2022.08.17
조회수 6597
-
상용 디젤로부터 수소 생산 가능한 개질 촉매 개발
우리 대학 기계공학과 배중면 교수, 이강택 교수와 한국에너지기술연구원(KIER) 이찬우 박사 공동 연구팀이 상용 디젤로부터 수소 생산이 가능한 고활성, 고내구성 디젤 개질 촉매 개발에 성공했다고 16일 밝혔다.
연료 개질(fuel reforming)은 탄화수소로부터 촉매 반응을 통해 수소를 추출하는 수소 생산 기술이다. 액체 연료인 디젤은 수소 저장 밀도가 높고 운반과 저장이 쉽다는 장점이 있어 디젤 개질을 통한 수소 공급 장치를 헤비트럭의 보조전원장치, 잠수함의 공기불요추진체계 등 모바일 연료전지 시스템에 적용하고자 하는 연구가 지속돼왔다.
그러나 디젤은 고 탄화수소의 혼합물로 긴 사슬 구조의 파라핀, 이중 결합을 갖는 올레핀, 벤젠 고리 구조를 갖는 방향족 탄화수소를 포함하고 있어 고 탄화수소를 효과적으로 분해하기 위한 높은 활성도의 촉매가 요구된다. 그뿐 아니라, 촉매의 성능 저하 요인인 코킹 및 열 소결에 대해 강한 내구성을 갖는 촉매가 요구돼 디젤 개질 기술 활용에 어려움을 겪어왔다.
연구팀은 용출(산화물 지지체에 이온 형태로 고용시킨 활금속을 열처리를 통해 금속나노입자 형태로 지지체 상에 고르게 성장시키는 방법) 현상을 통해 합금 나노입자를 형성하도록 촉매를 설계함으로써 고활성, 고내구성 디젤 개질 촉매를 개발하는 데 성공했다. 용출된 금속 나노입자는 지지체와 강한 상호작용을 갖는 특성이 있어 고온에서 높은 분산도를 유지할 수 있고, 이종 금속 간 합금을 형성해 상승효과로 촉매 성능 향상을 노릴 수 있다는 점에서 착안했다.
연구팀은 산화환원반응 촉매의 지지체로 흔히 쓰이는 세리아(CeO2)의 격자 내 백금(Pt)과 루테늄(Ru)을 미량 침투시킨 다성분계 촉매를 제조하기 위해 용액 연소 합성법을 도입했다. 이 촉매는 디젤 개질 반응 환경에 노출되었을 때 백금과 루테늄이 지지체 표면으로 용출된 후 백금-루테늄 합금 나노입자를 형성한다.
연구팀은 촉매 분석뿐만 아니라 밀도범함수 이론 기반 계산을 통해 활금속의 용출 및 합금 형성에 대한 거동을 에너지적 관점에서 규명하는데 성공했다. 백금-루테늄 합금 촉매를 사용해 기존 단일 금속 촉매와 개질 성능을 비교해 본 결과, 개질 활성도가 향상돼 저온(600oC, 기존 800oC)에서도 100%의 연료전환율을 보였으며, 장기 내구성 평가(800oC, 200시간)에서 성능 열화 없이 상용 안정적으로 상용 디젤로부터 수소를 생산하는데 성공했다.
우리 대학 기계공학과 이재명 박사과정이 제1 저자로, 한국에너지기술연구원 연창호 박사과정, 기계공학과 오지우 박사, 한국에너지기술연구원 한광우 박사, 기계공학과 유정도 박사, 한국기초과학지원연구원 윤형중 박사가 공저자로 참여했으며, 한국에너지기술연구원 이찬우 박사, 기계공학과 이강택 교수, 배중면 교수가 교신저자로 참여한 이번 연구는 환경·재료·화학 분야 국제 학술지 `어플라이드 카탈리시스 비: 인바이러멘탈, Applied Catalysis B: Environmental'(IF 24.319, JCR분야 0.93%)에 지난 6월 17일 字 온라인판에 게재됐다(논문명: Highly Active and Stable Catalyst with Exsolved PtRu Alloy Nanoparticles for Hydrogen Production via Commercial Diesel Reforming).
배중면 교수는 "상용 디젤로부터 수소를 안정적으로 생산할 수 있다는 점에서 매우 의미있는 성과이며, 초기 수소 경제 사회에서 모바일 연료전지 시스템의 활용성 제고에 크게 이바지할 것으로 기대된다ˮ며, "이번 연구에서의 촉매 설계에 대한 접근법은 개질 반응뿐만 아니라 다양한 분야에서 응용 및 적용될 수 있을 것이다ˮ라고 말했다.
이번 연구는 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행됐다.
2022.08.16
조회수 7463
-
인공지능 기반 약물 가상 스크리닝 기술로 신규 항암 치료제 발굴 성공
우리 대학 생명과학과 김세윤 교수 연구팀이 `약물 가상 스크리닝 기술을 이용한 신규 항암 치료제 개발'에 성공했다고 12일 밝혔다.
이번 연구 결과는 국제 학술지인 `세포 사멸과 질병(Cell Death & Disease)'에 지난 7월 12일 字 온라인 게재됐다.
※ 논문명 : Lomitapide, a cholesterol-lowering drug, is an anticancer agent that induces autophagic cell death via inhibiting mTOR
※ 저자 정보 : 이보아 (한국과학기술원, 공동 제1 저자), 박승주 (한국과학기술원, 공동 제1 저자), 이슬기 (한국과학기술원, 제2 저자), 오병철 (가천대학교 의과대학, 공동 저자), 정원석 (한국과학기술원, 공동 저자), 손종우 (한국과학기술원, 공동 저자), 김세윤 (한국과학기술원, 교신저자), 포함 총 10명
`엠토르(mTOR)'라고 알려진 신호전달 단백질은 많은 암세포에서 활성이 비정상적으로 높아져 있으며 또한 암뿐만 아니라 당뇨, 염증 및 노화와 같은 다양한 질병에서 핵심적인 역할을 한다. 특히 암을 유발하는 다양한 신호전달 경로가 엠토르 단백질을 통해 매개되기 때문에 많은 제약사에서 항암 치료제 개발의 목적으로 엠토르 저해제 개발에 많은 투자를 하고 있다.
자가포식(autophagy, 오토파지)으로 알려진 생명 현상은 세포 내 엠토르 단백질에 의해 활성 조절이 정교하게 매개되는 것으로 잘 알려져 있다. 자가포식이란 `세포가 자기 살을 먹는다'는 의미로, 영양분이 과도하게 부족하거나 세포 내외적 스트레스 조건에 처한 경우, 세포가 스스로 내부 구성물질들을 파괴해 활용함으로써 세포 내 항상성을 유지하는 일종의 방어기전이다.
이러한 자가포식 활성의 조절은 양날의 칼과 같이 작용하는 것으로 알려져 있으며, 이는 암, 당뇨와 같은 질환의 발생 및 치료에 이용 가능하다고 주목받고 있다. 암세포에 과도하게 활성화돼있는 엠토르 단백질의 활성을 저해하면 자가포식을 과도하게 증가시킬 수 있으며 이를 통해 암세포의 세포 사멸이 유도될 수 있다는 사실이 알려져 있으며 이를 바탕으로 자가포식 강화에 기반한 항암제 약물의 개발전략이 제시되고 있다.
이에 김세윤 교수 연구팀은 단백질의 3차원적 구조를 활용해 화합물과 표적 단백질 사이의 물리적 상호작용을 모델링하는 유효 결합 판별 기술에 기반한 약물 재창출 전략으로 엠토르 억제성 항암제 개발 연구를 수행했다.
약물 재창출은 이미 안전성이 검증된 FDA 승인 약물 또는 임상 진행 중인 약물군을 대상으로 새로운 적응증을 찾는 신약 개발 방식이다. 이 전략은 전통적으로 10년 이상 소요되는 신약 개발의 막대한 시간과 투자를 혁신적으로 단축할 수 있는 미래 시대 신약 개발전략이다.
연구팀은 FDA 승인 약물 또는 임상 시험 중인 약물에 기반한 데이터베이스를 통해 3,391종의 약물 라이브러리를 활용했다. 라이브러리의 모든 약물을 실험적으로 검증하기에는 연구비용과 시간이 많이 소요되므로, 3차 구조 모델링을 통한 유효 결합 판별 기술을 적용해 엠토르 활성 저해능력을 보이는 약물만 신속하게 스크리닝했다.
연구팀은 엠토르 단백질의 활성을 담당하는 효소 활성부위의 3차 구조 분석과 인공지능 기반 유효 결합 판별 기술을 도입해 후보 물질 발굴의 정확도와 예측도를 높이는 데 성공했다. 그리고 3차 구조를 타깃으로 약물 결합 분석 모듈을 도입해 가상 스크리닝의 정확도와 예측도를 높이는 데 성공했다. 이번 연구를 통해 개발된 기술의 가장 큰 특징은 타깃 단백질과 약물 간의 3차 구조 정보를 이용해 많은 양의 후보 성분들을 빠르고 정확하게 분석하고 결합 여부를 예측할 수 있는 것이다.
우리 대학 생명과학과 이보아 박사, 박승주 박사는 현재 가족성 고콜레스테롤혈증(familial hypercholesterolemia) 치료제로서 임상에서 판매, 활용되고 있는 로미타피드(lomitapide) 약물의 엠토르 활성 억제 가능성을 예측했다. 연구팀은 생화학적 및 세포 생물학적 분석을 통해 로미타피드에 의한 엠토르 효소활성의 억제효능을 검증하는 데 성공했다. 대장암, 피부암 등의 암세포에 로미타피드를 처리할 경우, 암세포의 엠토르 활성이 효과적으로 억제되고 이후 과도한 자가포식이 유도됨으로써 암세포 사멸효과가 발생함을 다각적으로 확인해 로미타피드의 항암 효능을 확립했다.
또한 대장암 환자로부터 유래한 암 오가노이드(organoid)에 로미타피드를 처리할 경우, 기존의 화학 항암 치료제 대비 우수한 암세포 사멸 능력을 보였다. 나아가 최근 차세대 고형암 치료용 항암 전략으로 주목받고 있는 면역관문억제제(immune checkpoint inhibitor)와 로미티피드를 병행할 경우, 면역관문억제제의 단독 처리 대비 비약적으로 개선된 시너지 항암효과를 나타냄을 동물모델 연구를 통해 검증하는 데 성공했다.
연구팀이 발굴한 로미타피드의 항암 효능 성과는 향후 엠토르 억제 및 자가포식 기반 항암제 개발 및 임상적 활용에 적극 활용될 것으로 기대된다.
이러한 연구성과는 벤처창업으로 연계돼 이보아 박사, 박승주 박사, 이슬기 박사는 인공지능 기반 신약개발 전문기업 `에아스텍'을 공동창업했으며 중소벤처기업부 팁스(TIPS) 창업지원 프로그램에 선정되는 등 활발한 연구개발을 수행하고 있다.
한편 이번 연구는 한국연구재단 중견연구자지원사업, 선도연구센터, 창의도전연구사업 및 KAIX 포스트닥펠로사업의 지원을 받아 수행됐다.
2022.08.12
조회수 8197
-
항체를 활용한 신개념 생체 형틀법 최초 개발
우리 대학 신소재공학과 장재범 교수 연구팀이 다세포 생물이 갖는 특정 단백질 구조체를 활용할 수 있는 새로운 개념의 생체 형틀법을 최초로 개발했다고 10일 밝혔다. 긴 시간 동안 특정 기능에 최적화된 생명체가 갖는 복잡하고 정교한 구조체를 형틀로 삼아 이를 모방한 무기물 구조체를 만드는 방법을 생체 형틀법 이라고 한다. 이는 에너지, 광학, 마이크로로봇 분야 등에 응용돼왔다.
장 교수 연구팀은 항원-항체 반응에 착안해 특정 단백질을 항체로 표적화한 뒤, 항체에 붙어 있는 1.4 나노미터(nm) 크기의 금 입자에서 다양한 금속 입자들을 성장시킴으로써 특정 단백질 구조체를 모방한 금속 구조체를 합성하는 데 성공했다. 개발된 생체 형틀법은 일반적인 항원-항체 반응과 금속 입자 성장법을 기반으로 하기 때문에 다양한 생명체에 폭넓게 응용 및 적용될 수 있을 것으로 기대된다.
신소재공학과 송창우, 송대현 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 머티리얼즈(Advanced Materials)'에 7월 7일 字 온라인 출판됐다. (논문명 : Multiscale Functional Metal Architectures by Antibody-Guided Metallization of Specific Protein Assemblies in Ex Vivo Multicellular Organisms).
생명체가 갖는 특정 기능에 최적화된 다양한 구조체들은 복잡하고 계층적 구조를 기반으로 하여 인공적인 합성 방법을 통해 재현하기 어렵다. 따라서 이러한 생체 구조체를 형틀로 해 동일한 모양의 무기물 구조체를 합성하는 생체 형틀법이 개발돼왔으며, 합성된 생체 재료들은 촉매, 에너지 저장 및 생산, 센서 등 다양하게 활용돼왔다.
하지만 개발된 생체 형틀법 중 특정 단백질 구조체를 형틀로 사용한 경우는 적으며, 있다 하더라도 바이러스나 효모와 같은 단세포 생물의 특정 단백질 구조체를 형틀로 활용한 연구들 뿐이었다.
생명체의 특정 단백질 구조체를 활용하는 생체 형틀법은 원하는 생체 구조체만을 활용 가능하며 합성하고자 하는 생체 재료의 목적에 맞는 단백질을 선택해 사용할 수 있다는 장점이 있다.
연구팀은 기존의 생체 형틀법 한계를 해결을 위해 특정 단백질을 이미징할 때 활용하는 항원-항체 반응을 생체 형틀법에 적용했다.
연구팀이 사용한 항체는 1.4 나노미터(nm) 크기의 금 입자가 달려있고 이는 금속 입자 성장을 위한 종자(seed) 역할을 하게 되어 특정 단백질을 표적화한 항체로부터 다양한 금속 입자를 성장시킬 수 있다.
연구팀은 인간 세포 내부의 미세소관, 미토콘드리아, 핵, 세포막, 세포질에 존재하는 특정 단백질에서만 금 입자를 성장시키는 데 성공했으며, 세포 수준뿐만 아니라 조직 수준인 쥐의 뇌, 신장, 심장에서도 개발한 방법을 적용할 수 있다는 것을 보였다.
나아가 연구팀은 금 입자뿐만 아니라 은, 금-백금, 금-팔라듐 입자를 세포 내부 미세소관 구조체를 따라 합성함으로써 합성된 세포를 액상 반응의 촉매로 활용 가능하다는 것을 증명했다. 또한, 세포 표면에 철 입자를 성장시킨 후 자석으로 조절할 수 있음을 보여 향후 이러한 금속 입자가 성장된 세포들을 조절하거나 군집 행동을 구현하는 것이 가능함을 보였다.
연구팀이 개발한 신개념 생체 형틀법은 다세포 생물뿐만 아니라 항체 염색이 가능한 식물, 균류, 바이러스 등의 생명체에도 활용 가능해 다양한 생체 구조체를 모방한 생체 재료 합성에 이용될 것으로 기대된다.
제1 저자인 송창우 박사과정은 "이번 연구는 기존의 생체 형틀법으로 구현할 수 없었던 다세포 생물의 특정 구조체를 모방한 금속 구조체를 합성한 최초의 사례이며, 이를 통해 생체 형틀법을 활용할 수 있는 생체 구조체의 범위를 넓혔다ˮ 라며 "합성된 생체 재료는 이번 연구에서 보여준 촉매뿐만 아니라 전기화학 및 바이오센서에도 활용 가능할 것으로 예상된다ˮ 라고 말했다.
한편 이번 연구는 한국연구재단 과학난제도전 융합연구개발사업, 우수신진연구사업, 뇌과학원천기술개발사업 등의 지원을 받아 수행됐다.
2022.08.10
조회수 7233
-
나노 크기 인공 지문으로 복제불가 사물인터넷 보안, 인증 원천기술 개발
우리 대학 신소재공학과 김상욱 교수 연구팀이 DGIST 로봇및기계전자공학과 김봉훈 교수, 성균관대 화학공학/고분자공학부 권석준 교수와 공동연구를 통해 사람의 지문과 같이 매번 다른 형태를 형성하는 무작위적인 분자조립 나노 패턴을 이용한 새로운 IoT(사물인터넷) 보안/인증 원천기술을 개발했다고 9일 밝혔다.
최근 IoT 기술이 발전함에 따라 다양한 기기들이 인터넷을 통해 연결된 초연결 시대가 도래하고 있다. 그러나 IoT 기기들의 해킹 사례가 빈번하게 보고되고 있으며, IoT 기술을 안전하게 사용할 수 있느냐에 대한 의문이 제기되는 실정이다.
우리 주위에 흔히 사용되는 인증 방법으로 사람의 지문이나 핸드폰 등에서 제공해주는 QR 패턴을 들 수 있다. 사람의 지문은 모든 사람에게 다르게 형성되므로 각 개인을 식별하기 위한 인증 매체로 오래전부터 사용돼왔으나, 그 크기가 눈에 보일 정도로 커서 쉽게 복제할 수 있다는 단점을 가지고 있다.
반면 최근까지도 코로나 방역에 큰 역할을 했던 QR코드는 사용할 때마다 매번 다른 패턴을 형성하므로 복제가 어렵지만, 새로이 패턴이 생길 때마다 무선통신으로 등록을 해야 하므로 에너지 소모가 크고 개인의 프라이버시가 침해되는 문제점이 지적되기도 했다.
이번에 공동연구팀이 개발한 인증기술은 김상욱 교수가 세계 최초/최고기술을 인정받고 있는 분자조립 나노 패턴 기술을 이용해 서로 다른 모양을 가지는 수십억 개의 나노 패턴을 저비용으로 만들어낼 수 있으며, 높은 보안 수준을 유지하면서도 초고속 인증이 가능하다. 또한 연구팀은 나노 크기의 소형화를 통해 눈에 보이지 않는 투명소자나 초소형 장치 또는 개미 혹은 박테리아에도 부착함으로써 미생물 인식 칩으로써의 활용 가능성도 제시했다.
공동연구팀이 개발한 기술은 복제 방지를 위한 다양한 하드웨어 인증시스템에 유용할 뿐만 아니라, 기존 소프트웨어 인증과 달리 전자기 펄스(EMP) 공격과 같은 최첨단 무기 체계에도 내구성이 있어 향후 군사 및 국가 안보 등에도 활용성이 높을 것으로 전망된다. 나아가 이상적인 난수 생성 소재 (true random number generator)로서의 활용성도 기대된다.
신소재공학과 김상욱 교수, DGIST 로봇및기계전자공학과 김봉훈 교수, 성균관대 화학공학/고분자공학부 권석준 교수가 공동 교신저자 및 KAIST 신소재공학과 졸업생인 김장환 박사가 제1 저자로 참여한 이번 연구는 전자공학 분야 최고 권위 학술지인 `네이처 일렉트로닉스(Nature electronics, JCR 상위 0.18 %)'에 7월 26일 字 게재됐다. (논문명 : Nanoscale physical unclonable function labels based on block co-polymer self-assembly).
또한 공동연구팀은 기술 개발 과정에서 국내 특허, 미국 특허, 유럽 특허 및 PCT를 출원해 이번 기술의 지적 재산권을 확보했다고 밝혔다. 해당 특허는 KAIST 교원 창업 회사인 `(주)소재창조'를 통해 사업화를 진행할 계획이다.
한편 이번 연구는 한국창의연구재단의 지원을 받아 수행됐다.
2022.08.09
조회수 8048
-
노화된 뇌에서 생겨난 비정상적 별아교세포 '아프다(APDA)' 발견
우리 연구진이 노화 및 치매 뇌에서 기억 중추인 해마 특이적으로 비정상적 별아교세포가 생겨나는 것을 최초로 관찰하고 그 원인을 규명했으며 이들은 신경 세포의 연결점인 시냅스의 숫자 및 기능 유지에 악영향을 줄 수 있음을 밝혔다. 이는 노화에 따른 인지 기능 저하를 일으키는 새로운 원인을 제시해 뇌 기능 회복에 활용이 기대된다.
우리 대학 생명과학과 정원석 교수와 이은별 박사, 정연주 박사 연구팀이 노화된 뇌에서 기존에 알려지지 않은 새로운 종류의 별아교세포를 발견했고, 이들이 세포 내 단백질 항상성이 손상돼 시냅스 생성 및 제거와 같은 기본적 능력이 결여돼있음을 밝혀 노화 관련 네이처 자매지인 `네이처 에이징(Nature Aging)'에 공개했다고 8일 밝혔다.
정원석 교수 연구팀은 이전 연구를 통해 비신경세포인 별아교세포가 신경세포의 시냅스를 만들 수도 또는 제거할 수도 있음을 밝힌 바 있다. 하지만, 이 같은 별아교세포의 기능이 노화 과정에서 어떻게 변화하는지는 알려지지 않았다.
☞ 시냅스(synapse): 뉴런(신경세포) 간 또는 뉴런과 다른 세포 사이의 접합 관계나 접합 부위를 말한다. 뉴런이 모여 있는 곳, 즉 뇌와 척수에 집중되어 있다.
연구팀은 노화된 뇌에서 별아교세포의 기능 변화를 이해하고자 단일 세포RNA 시퀀싱을 수행했고, 그 결과 기존에 노화 및 질병 뇌에서 존재한다고 알려진 염증성 별아교세포가 아닌 새로운 종류의 별아교세포가 존재함을 발견했다.
흥미롭게도 이들은 뇌에서 단기 기억을 저장한다고 알려진 해마에서만 노화 과정에서 선택적으로 생겨났으며, 이들 세포 내에는 불필요한 단백질을 제거하는 기전으로 알려진 자가포식(autophagy) 과정에서 생겨나는 오토파고좀(autophagosome)이 무분별하게 축적돼 있음을 밝혔다. 오토파고좀은 자가포식 과정에서 생겨나는 주머니 형태의 세포 소기관으로 세포내 불필요한 물질을 제거하기 위한 자가포식소체를 일컫는다. 이 같은 특징을 나타내기 위해서 연구진들은 중의적인 표현으로 새로 발견한 별아교세포를 `아프다(APDA: AutoPhagy-Dysregulated Astrocyte)' 세포로 명명했다.
별아교세포는 미세한 잔가지들을 통해서 수만 개의 시냅스를 감싸고 있으며, 글루타메이트(glutamate) 및 가바(GABA)와 같은 신경 전달 물질 및 다양한 이온들의 농도를 조절하는 역할을 수행함이 알려져 있다. 놀랍게도 APDA 세포들에서는 다양한 단백질들이 본래 위치에서 벗어나 오토파고좀에 갇혀 있는 현상이 발견됐으며 이로 인해 별아교세포가 시냅스를 만들거나 제거하는 능력이 모두 상실돼있음을 발견했다.
연구진은 자가포식 작용이 비정상적으로 조절되고 있음에 착안해 자가포식 작용에 영향을 주는 다양한 기전을 연구한 결과, 노화가 진행될수록 해마에 존재하는 별아교세포에서만 엠토르 (mTOR: 세포의 성장과 분열을 조절하는 단백질 합성의 신호체계)와 프로테아좀 (proteasome: 단백질 분해 효소 복합체) 활성도가 크게 감소함을 확인하였다. 이 두 기전은 원래 자가포식 작용을 제어하는 기전으로 알려져 있었는데 노화가 진행됨에 따라 다른 세포보다도 별아교세포에서 엠토르와 프로테아좀 기능이 감소함에 따라 자가포식 작용이 무분별하게 발생함을 밝힌 것이다. 그뿐만 아니라 이렇게 만들어진 오토파고좀들이 원래는 리소좀(lysosome)에 의해 분해돼 제거되나, APDA 세포들은 리소좀의 활성마저도 감소해 있음을 보였다.
이로써 세포 내 단백질 항상성을 조절하는 중요한 세 가지 기전 (엠토르, 프로테아좀, 리소좀)들이 모두 해마에 존재하는 별아교세포에서 노화에 따라 선택적으로 감소함에 따라, APDA 세포가 생겨남을 연구진은 보였다. 연구진은 실제 노화가 일어나지 않은 9개월령 쥐에게서도 엠토르 및 프로테아좀을 약물로써 감소시켰을 때 인위적으로 노화된 뇌에서 발견되는 APDA 세포를 만들 수 있음을 확인했다.
놀랍게도 연구진은 이러한 비정상적인 APDA 세포의 주변에 있는 시냅스들이 제대로 배열돼 있지 못하고 또한 그 숫자가 감소해 있음을 발견해 노화된 뇌에서 발생하는 시냅스 손상 및 뇌인지 기능 저하가 비정상적인 기능을 가진 APDA 세포에서 기인 할 수 있음을 제시했다. 또한 연구진은 치매 모델 쥐에서는 이 같은 APDA 세포가 정상 쥐의 노화 과정에서 보다 훨씬 더 빨리 해마에서 생겨남을 발견해 이들이 치매에서 나타나는 인지 기능 저하에도 역할을 할 수 있음을 보였다.
현재 노화된 뇌나 퇴행성 뇌 질환에서 교세포의 연구는 주로 염증성 교세포와 이들의 역할에 집중돼왔다. 연구팀의 이번 발견은 노화 및 치매 뇌에서 염증성 별아교세포와는 전혀 다른 종류의 비정상적 별아교세포가 존재함을 밝힌 첫 번째 연구 결과이며, 이들이 시냅스의 항상성을 무너뜨릴 수 있음을 제시했다.
연구팀은 이번 연구가 현재 노화를 극복하기 위해 엠토르를 전체적으로 억제하려는 현재 패러다임이 오히려 비정상적인 APDA 세포의 생성을 촉진할 수도 있음을 시사한다고 언급하며, 향후 연구에서는 노화 극복 방안이 세포 특이적으로 세분화돼야 함을 강조했다.
우리 대학 생명과학과 이은별 박사과정 학생과 정연주 박사 후 연구원이 공동 제1 저자로 참여하고, 정원석 교수가 교신저자로 참여한 이번 연구는 국제학술지 `네이쳐 에이징 (Nature Aging)'에 지난 8월 1일 자로 온라인 공개됐으며 (논문명: A distinct astrocyte subtype in the aging mouse brain characterized by impaired protein homeostasis), 같은 저널에 News & Views (Astrocytic traffiic jams in the aging brain)에도 소개됐다.
한편, 이번 연구는 삼성미래기술육성재단과 치매극복연구개발사업단의 도움을 받아 진행됐다.
2022.08.08
조회수 7422
-
KAIST, 인공지능 반도체 생태계를 선도하다
인공지능 반도체(이하 AI 반도체)가 국가적인 전략기술로 두드러지면서 KAIST의 관련 성과도 주목받고 있다. 과학기술정보통신부는 지난해 2030년 세계 AI 반도체 시장 20% 점유를 목표로 인공지능 반도체 지원사업에 본격적으로 착수한 바 있다. 올해에는 산학연 논의를 거쳐 5년간 1조 200억 원을 투입하는 `인공지능 반도체 산업 성장 지원대책'으로 지원을 확대했다. 이에 따라 AI 반도체 전문가 양성을 위해 주요 대학들의 행보도 분주해졌다.
KAIST는 반도체와 인공지능 양대 핵심 분야에서 최상급의 교육, 연구 역량을 쌓아 왔다. 반도체 분야에서는 지난 17년 동안 메사추세츠 공과대학(이하 MIT), 스탠퍼드(Stanford)와 같은 세계적인 학교를 제치고 국제반도체회로학회(이하 ISSCC, International Solid State Circuit Conference)에서 대학 중 1위를 지켜 왔다는 점이 돋보인다. ISSCC는 1954년 설립된 반도체 집적회로 설계 분야 세계 최고 권위 학회다. 참가자 중 60% 이상이 삼성, 퀄컴, TSMC, 인텔을 비롯한 산업계 소속일만큼 산업적인 실용성을 중시해서 `반도체 설계 올림픽'이라는 별명도 있다.
KAIST는 ISSCC에서 채택 논문 수 기준 매년 전 세계 대학교 중 1~2위를 유지했다. 최근 17년간 평균 채택 논문 수를 살펴보면 압도적인 선두다. 해당 기간 채택된 KAIST의 논문은 평균 8.4편으로, 경쟁자인 MIT(4.6편)와 캘리포니아대학교 로스앤젤레스(UCLA)(3.6편)에 비해 두 배 가까운 성과다. 국내에서는 반도체 설계 분야 부동의 1위인 삼성에 이어 종합 2위 자리를 유지하고 있다. 그럴 뿐만 아니라 ISSCC와 쌍벽을 이루는 집적회로 분야 학술대회인 초고밀도집적회로학회에서도 KAIST는 2022년 전 세계 대학 중 1위를 기록했다.
KAIST의 연구진들이 반도체 산업 핵심 분야 전반에서 신기술을 발표해 연구의 질적인 수준도 높다. 전기및전자공학부 정명수 교수 연구팀은 고성능 저전력을 추구하는 현재 업계의 수요에 대응해 전력 공급 없이도 동작을 유지하는 컴퓨터를 개발했다. 소재 분야에서는 신소재공학과의 박병국 교수 연구팀이 기존의 메모리에 비해 동작 속도가 10배 이상 빠른 `스핀궤도토크 자성메모리' 소자를 개발해서 기존 `폰노이만 구조'의 한계를 극복하는 방안을 제시하기도 했다.
이처럼 현재 반도체 산업의 주요 과제에 솔루션을 제공하는 한편으로 미래의 새로운 반도체 분야를 선점하는 데 필요한 신기술 개발도 활발하다. 암호 및 비선형 연산 분야에서 차세대 컴퓨팅으로 주목받는 양자컴퓨팅 분야에서는 전기및전자공학부 김상현 교수 연구팀이 3차원 집적 기술을 세계 최초로 선보였다. 신경계의 원리를 활용해 인공지능 분야에서 발군의 성능을 보일 것으로 기대되는 뉴로모픽 컴퓨팅에서는 전기및전자공학부 최신현 교수 연구팀이 신경세포를 모사하는 차세대 멤리스터를 개발 중이다.
인공지능 분야에서도 비약적으로 성장했다. 인공지능 분야의 양대 세계 최고 권위 학회인 국제머신러닝학회(ICML)과 인공신경망학회(NeurIPS) 논문 수 기준으로 KAIST는 2020년 세계 6위, 아시아에서는 1위를 기록했다. KAIST의 순위는 2012년부터 꾸준히 우상향 그래프를 그려 8년만에 37위에서 6위로, 무려 31계단이나 도약했다. 2021년에는 인공지능 분야 톱 학회 11개에 발표된 한국 논문 중 약 40%에 달하는 129편이 KAIST에서 나왔다. KAIST의 이러한 활약에 힘입어 2021년 한국은 글로벌 인공지능 톱 학회 등재 논문 수 기준으로 미국, 중국, 영국, 캐나다, 독일에 이어 6위에 올랐다.
내용 면에서도 KAIST의 인공지능 연구는 최전선에 있다. 전기및전자공학부 유회준 교수 연구팀은 모바일기기에서 인공지능 실시간 학습을 구현해 에지 네트워크의 단점을 보완했다. 인공지능을 구현하려면 데이터 축적관 막대한 양의 연산이 필요한데, 이를 위해 고성능 서버가 방대한 연산을 담당하고 사용자 단말은 데이터 수집과 간단한 연산만 하는 `에지 네트워크'가 사용된다. 유 교수의 연구는 사용자 단말에 학습 능력을 부여함으로써 인공지능의 처리 속도와 성능을 크게 높일 수 있다.
지난 6월에는 전산학부 김민수 교수 연구팀이 초대규모 인공지능 모델 처리에 꼭 필요한 솔루션을 제시했다. 연구팀이 개발한 초대규모 기계학습 시스템은 현재 업계에서 주로 사용되는 구글의 텐서플로우(Tensorflow)나 IBM의 시스템DS 대비 최대 8.8배나 빠른 속도를 달성할 수 있을 것으로 기대된다.
KAIST는 반도체와 인공지능이 결합된 AI 반도체 분야에서도 주목할만한 성과를 내고 있다. 2020년 전기및전자공학부 유민수 교수 연구팀은 세계 최초로 추천시스템에 최적화된 AI 반도체를 개발하는 데 성공했다. 인공지능 추천시스템은 방대한 콘텐츠와 사용자 정보를 다룬다는 특성상 범용 인공지능 시스템으로 운영하면 병목현상으로 성능에 한계가 있다. 유민수 교수팀은 `프로세싱-인-메모리(이하 PIM, Processing-In-Memory)' 기술을 기반으로 기존 시스템 대비 최대 21배 빠른 속도를 낼 수 있는 반도체를 개발했다. PIM은 처리할 데이터를 임시로 저장하기만 하던 `램'에서 연산까지 수행해 효율을 높이는 기술이다. PIM 기술이 본격적으로 상용화되면 메모리 분야에서 강세인 한국 기업의 AI 반도체 시장 경쟁력이 비약적으로 높아질 것으로 기대된다.
KAIST는 그간의 성과에 안주하지 않고 인공지능 및 반도체, 그리고 AI 반도체 분야 초격차를 유지하고자 다각적인 노력을 기울이고 있다. 1990년 국내 최초로 인공지능연구센터를 설립한 데 이어 2019년에는 김재철AI대학원을 개설해 전문인력을 양성 중이다. 2020년에는 인공지능과 반도체 연구를 융합해 ITRC 인공지능반도체시스템 연구센터가 출범했으며, 2021년에는 인공지능을 다양한 분야에 접목하는 `AI+X' 연구를 활성화하고자 김재철AI대학원과 별도로 AI 연구원을 설립했다.
KAIST는 이러한 노력으로 축적된 내적 역량을 바탕으로 네이버 등 기업과 공동연구센터를 설립하는 한편, 화성시와 같은 지자체와 협력해 동시다발적인 전문인력 양성에 나섰다. 지난 2021년에는 삼성전자와 함께 반도체시스템공학과 설립 협약을 체결하고 새로운 반도체 전문인력 교육과정을 준비하고 있다. 새로 설립되는 반도체시스템공학과는 2023년부터 매년 100명 내외의 신입생을 선발하고, 이들이 전문역량을 꽃피울 수 있도록 학생 전원에게 특별장학금을 지급할 예정이다. 또한 산업계와의 긴밀한 협력을 통해 삼성전자 견학과 인턴십, 공동 워크숍을 지원해 현장에 밀착한 교육을 제공할 예정이다.
KAIST는 국내 반도체 분야 박사 인력의 25%, 박사 출신 중견 및 벤처기업 CEO의 20%를 배출하며 한국 반도체 산업 생태계가 성장하는 데 중대한 공헌을 했다. 본격적으로 열린 AI 반도체 경쟁 체제를 앞두고 KAIST가 다시 산업 생태계의 구심점 역할을 할지 귀추가 주목된다.
2022.08.04
조회수 14915