-
현장 진단형 초고속 실시간 유전자 분석기술 개발
우리 대학 바이오및뇌공학과 정기훈 교수 연구팀이 *나노 플라즈모닉 구조를 통해 빠른 열 순환 및 실시간 정량 분석이 가능한 초고속 실시간 중합효소연쇄반응(PCR) 기술을 개발했다고 7일 밝혔다.
☞ 나노 플라즈모닉 구조(Nanostructures for Plasmonic): 빛의 파장보다 작은 크기의 금속나노구조이며, 빛이 표면에 조사될 때 금속 표면과 유전체의 경계에서 빛과 전자가 상호작용을 한다. 주로 바이오 물질의 검출이나 분자진단에 많이 응용된다.
최근 코로나19를 포함한 전염성이 높은 바이러스의 확산을 방지하기 위해 신속하고 정확하게 바이러스를 검출하는 기술이 절실하게 필요하다. 역전사 중합효소연쇄반응(RT-PCR)은 가장 표준화된 코로나19 진단법으로 바이러스 내부의 유전물질인 RNA를 상보적 DNA로 역전사한 후 타겟 DNA를 증폭해 형광 프로브로 검출하는 방법이다. 그러나 기존 RT-PCR은 높은 민감도와 정확도를 갖추지만, 검출 시간이 길고 고가의 대형장비를 갖춘 장소로 검체를 운송한 후 진단하는 등 실시간 현장 대응의 한계가 존재한다.
연구팀이 개발한 `실시간 나노 플라즈모닉 PCR'은 백색 발광다이오드(LED)의 높은 광 흡수율을 갖는 나노 플라즈모닉 기판에 진공 설계된 미세 유체칩을 결합해 소량의 검체를 신속하게 증폭하고 정량적으로 분석해 바이러스를 단시간 내에 정확하게 검출할 수 있다. 이러한 특징을 이용해 공공장소 등 환자 발생 장소에서 병원성 바이러스의 확산 및 해외유입을 차단할 수 있을 것으로 기대된다.
나노 플라즈모닉 기판은 유리 나노기둥 위 금 나노섬 구조로 가시광선 전 영역에서 높은 광 흡수율을 가지므로 백색 LED의 빛을 열에너지로 치환해 빠르게 열을 발생시키고 내보낼 수 있다. 또한 광열 발생장치의 수직적인 온도 구배로 인한 증폭 효율 저하를 해결하기 위해 연구팀은 진공 설계된 미세 유체칩을 결합했다.
이는 샘플 한 방울을 칩에 넣으면 진공이 액체를 마이크로 챔버로 잡아당겨 자동으로 3분 이내에 주입되고, PCR 과정 동안에 발생하는 미세 기포는 공기 투과성 벽을 통해 제거돼 PCR 효율을 높이는 원리다.
연구팀은 SARS-CoV-2 플라스미드 DNA를 사용해 해당 기술을 검증했고, 40싸이클(95도-60도)을 5분 이내에 수행해 타겟 바이러스를 91%의 증폭 효율과 함께 정량적으로 검출했다. 이는 기존 실시간 PCR 시스템의 긴 소요 시간(약 1시간)에 비해 매우 빠르고, 높은 증폭 효율을 보이므로 신속한 현장 진단에 적용되기 적합할 것으로 보인다.
정기훈 교수는 "실질적으로 현장에서 사용 가능한 초고속 분자진단법을 개발했다ˮ며 "이 실시간 나노 플라즈모닉 PCR 기술은 현장에서 분자진단을 위한 차세대 유전자 증폭 플랫폼을 제공할 것이며 바이러스 확산 방지에 기여할 수 있을 것으로 예상한다ˮ라고 말했다.
우리 대학 바이오및뇌공학과 강병훈 박사과정이 주도한 이번 연구 결과는 국제 학술지 `에이씨에스 나노 (ACS Nano)'에 지난 5월 19일 字로 게재됐다. (논문명: Ultrafast and Real-time Nanoplasmonic On-Chip Polymerase Chain Reaction for Rapid and Quantitative Molecular Diagnostics)
한편 이번 연구는 KAIST 코로나19대응 과학기술뉴딜사업단과 한국연구재단 개인연구지원사업, 바이오기술개발사업으로 수행됐다.
2021.06.07
조회수 44644
-
훈트 금속의 새로운 존재 가능성 증명
우리 대학 물리학과 한명준 교수 연구팀이 *`훈트 금속'이라고 알려진 특이 양자 상태의 새로운 존재 가능성을 최초로 증명했다고 1일 밝혔다.
☞ 훈트 금속(Hund metal): 전기저항 없이 전류가 흐르는 초전도 현상을 나타내거나 외부 조건의 미세한 변화에도 물질이 크게 바뀌는 특성을 가져 기존 반도체 소재를 뛰어넘는 응용 가능성으로 주목받는 차세대 신물질이다.
훈트 금속이란 `훈트의 법칙'으로 잘 알려진 독일의 물리학자 `프리드리히 헤르만 훈트(Friedrich Hermann Hund; 1896~1997)'의 이름을 딴 독특한 양자역학적 상태를 띠는 금속을 가리킨다.
학계에서는 일반적으로 알려진 전형적인 금속들을 `페르미 금속(Fermi liquid metal)'이라 부르는데, 이와는 성질이 뚜렷이 구분되는 특이한 금속을 이해하는 것은 오랫동안 학계의 중요한 관심사가 되고 있다.
이러한 특이 금속들에 관한 연구가 고온 초전도 현상이나 양자 임계 현상과 같은 대표적인 물리학의 신비를 이해하는 단서를 줄 것이라 믿고 있기 때문이다. 훈트 금속도 그 가운데 하나로서, 미국의 이론 물리학자들에 의해 최초로 그 개념이 제시된 이래, 미국과 유럽 학자들의 주도하에 지난 10여 년간 활발한 연구가 이뤄지고 있다.
특별히 이 금속 상태는 원자 내에서 전자가 가질 수 있는 양자역학적 상태를 나타내는 `오비탈(orbital)'의 개수가 `3' 이상인 경우가 주로 연구돼왔으며, 그 값이 `2'인 경우에는 나타날 수 없다는 것이 상식으로 여겨졌다.
이번 연구는 이와 같은 기존의 통념을 뒤엎는 것으로서, 연구진은 오비탈 수가 `2'인 경우에도 훈트 금속이 발현될 수 있다는 것을 이론적으로 증명했다. 연구진은 통상적인 훈트 금속보다 그 신호가 약하다는 점에서 이를 `약한 훈트 메탈(weak Hund metal)'이라고 이름 붙였으며, 더 나아가 훈트 금속과 관련 상태들을 이해하고 분류하는 기준을 새롭게 제시했다.
이는 기존의 상식을 뒤집는 결과일 뿐 아니라, 지금까지 난항을 겪고 있던 많은 관련 연구들에 새로운 돌파구를 제시할 수 있다는 점에서 큰 주목을 받고 있다.
연구를 주도한 한명준 교수는 “이번 결과는 논문을 심사한 심사위원들조차 처음에는 받아들이기 어려워했을 만큼 획기적이다”며, “관련 실험 데이터나 현상들을 이해하는 새로운 틀을 마련한 기초 이론 연구로서, 최근까지 학계가 어려움을 겪고 있던 초전도와 관련된 여러 문제를 해결하는 토대가 될 수 있을 것으로 기대한다”고 연구의 의미를 설명했다.
우리 대학 물리학과 이시헌 연구원이 제1 저자로 참여하고 미국 브룩헤이븐 국립 연구소(Brookhaven National Laboratory)의 최상국 박사와 함께 진행한 이번 연구 결과는 물리학 분야 최고 권위지 `피지컬 리뷰 레터스(Physical Review Letters)'에 5월 17일 字 온라인 출판됐다. (논문명: Hund Physics Landscape of Two-Orbital Systems)
한편, 이번 연구는 한국연구재단의 중견연구자 지원사업과 미래소재 디스커버리사업의 지원을 받아 수행됐다.
2021.06.02
조회수 52061
-
다공성 유기 골격구조체를 이용한 하이브리드 전지 개발
우리 대학 화학과 변혜령, 김우연 교수 공동연구팀이 유기 분자로 이루어진 다공성 골격구조체를 이용해 높은 사이클 성능을 가지는 리튬-유기 하이브리드 전지를 개발했다고 20일 밝혔다.
변 교수 연구팀은 두 개의 질소 원소가 이중 결합을 가지는 아조(azo, N=N) 그룹을 레독스(산화․환원) 코어로 가지면서 벤조싸이아졸 링커로 분자들을 엮어 거대한 다공성 구조체를 설계했다. 이러한 거대 유기체 전극은 현재 무기 산화물 기반의 전극을 대체해 유연하고 가벼운 전지의 개발에 활용될 것으로 전망된다.
우리 대학 화학과 비크람 싱아(Vikram Singh) 박사와 김재욱 박사가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 에너지 머터리얼즈(Advanced Energy Materials)' 5월 11권 17호에 지난 6일 字 출판됐다. (논문명 : Thiazole-linked covalent organic framework promoting fast two-electron transfer for lithium-organic batteries)
이번 연구는 유기 분자들을 디자인해 거대 골격체로 만들 때 조절되는 분자 간의 상호작용 및 전자구조를 이용해 화학적 안정성, 불용성, 그리고 전기/이온 전도성을 향상할 수 있음을 증명했다. 그리고 6분에 한 번씩 충전․방전하는 빠른 속도에서도 약 1,000 사이클 이상 구동이 가능한 유기계 전극을 개발할 수 있었다.
유기 골격구조는 유기 단분자들의 공유 결합을 통해 2차원 필름을 형성하고 이들이 파이-파이 결합으로 3차원으로 성장할 수 있는 다공성 결정체다. 골격구조의 디자인은 분자 간의 상호작용 및 안정성을 극대화하고 수 나노미터 크기의 기공 채널을 규칙적으로 형성해 이온들의 이동을 원활하게 할 수 있어 유망한 유기 전극체로 디자인할 수 있다.
리튬-이온 전지의 전극으로 활용할 유기 골격구조체는 리튬 이온과 전기화학 반응을 할 수 있는 레독스 코어와 다공성 골격체를 형성하는 링커로 구성되어 있다. 공동연구팀은 레독스 코어로 낮은 전위에서 *2개의 전자전달(2e-)이 가능한 아조(azo)그룹을 사용했다.
(※ 기존의 리튬-이온 전지는 일반적으로 전자전달 수가 1보다 작다. 요즘 개발되는 차세대 전지의 경우 에너지 밀도를 높이기 위해 다중 전자전달이 가능한 물질을 찾고 있으며, 아조 그룹이 그중 하나다. R-N=N-R + 2e- + 2Li+ R-LiN-NLi-R, 형식전위: 1.65 V vs. Li/Li+, 여기서 R은 분자 링커)
벤조싸이아졸 링커를 포함하는 유기 골격구조는 다른 물질과는 달리 2전자 전달이 동시에 빠르게 발생해 우수한 충․방전 율속 특성 및 긴 사이클 성능이 평가됐다. 이는 벤조싸이아졸이 가지는 비 편재화 전자의 결합구조가 유기 전극의 안정성을 높이기 때문이다. 연구팀은 실시간 라만 분광 관찰을 통해 전극에서 아조 그룹의 가역적인 전기화학 반응을 직접적으로 증명할 수 있었다.
이와 함께 공동연구팀은 밀도범 함수 계산을 통해 두 개의 리튬(Li) 이온이 아조 그룹과 빠르게 회합(association)함을 증명했다. 아울러 벤조싸이아졸 기반의 아조 유기 골격구조체가 가지는 약 3나노미터(nm) 이하의 다공성 채널로 리튬(Li)이온이 골격체 내부까지 쉽게 통과할 수 있어 이온 전도성 또한 확보함을 실험적으로 규명했다.
공동연구를 주도한 변혜령 교수는 "아조 화합물 기반의 유기 골격구조체는 리튬-하이브리드 전지의 높은 율속 특성 및 긴 사이클 성능을 증명해, 향후 유기 기반 가볍고 휘어지는 전극의 실용화 가능성을 제시한다ˮ며 "개발한 벤조싸이아졸 기반의 유기 골격체 구조의 디자인은 향후 다양한 유기 전극 개발 시 유연한 디자인을 제공할 수 있을 것으로 기대된다ˮ고 말했다.
한편, 이번 연구는 삼성전자 미래기술육성센터와 한국연구재단, KISTI 국가슈퍼컴퓨팅센터의 지원을 받아 수행됐다.
2021.05.20
조회수 41939
-
디스플레이 구동 가능한 OLED 전자 섬유 개발
우리 대학 전기및전자공학부 최경철 교수 연구팀이 정보 출력이 가능한 유기발광다이오드(OLED) 전자 섬유를 개발했다고 12일 밝혔다.
전자 섬유는 실제 입을 수 있는 형태의 소자로서 기존 2차원 평면 소자와는 다르게 인체의 다양한 움직임에 순응하고 뛰어난 착용성과 휴대성을 제공할 수 있는 섬유의 1차원 구조 덕분에 차세대 폼 팩터(form-factor)로 주목받고 있다. 특히나 빛을 방출하는 전자 섬유는 패션, 기능성 의류, 의료, 안전, 차량 디자인 등 다양한 응용 잠재력에 많은 주목을 받고 있다.
하지만 지금까지의 발광 전자 섬유 연구는 디스플레이로 활용되기엔 부족한 전기광학적 성능을 보여 왔거나 단순히 소자 단위로만 연구가 진행 또는 종횡비가 긴 2차원 평면 단위에서 연구가 이루어져 응용 기술 개발에 어려움이 있었다.
최경철 교수 연구팀은 OLED 전자 섬유 디스플레이 구현을 위해 높은 전기광학적 성능 구현과 함께 주소 지정 체계 구축에 주목했다. 연구팀은 먼저 300 마이크로미터(µm) 직경의 원통형 섬유 구조에 적합한 RGB 인광 OLED 소자 구조를 설계했고 연구팀이 보유한 원천기술인 딥 코팅 공정을 활용해 평면 OLED 소자에 버금가는 수준의 OLED 전자 섬유를 개발했다.
특히 고효율을 얻을 수 있는 인광 OLED를 섬유에 성공적으로 구현해 최고 1만 cd/m2(칸델라/제곱미터) 수준의 휘도, 60 cd/A(칸델라/암페어) 수준의 높은 전류 효율을 보였다. (이는 기존 기술 대비 약 5배 이상의 전류 효율에 해당하는 수치다.)
연구팀은 아울러 OLED 전자 섬유를 기반으로 안정적인 디스플레이 구동을 위해, OLED 전자 섬유 위에 접촉 영역을 설계해 직조된 주소 지정 체계를 구축했다. 그리고 문자와 같은 정보를 디스플레이 해 실제 입을 수 있는 기능성을 확인했다.
최 교수 연구팀 관계자는 이 전자 섬유가 디스플레이라는 표시 장치 관점에서 반드시 요구되는 밝은 밝기와 낮은 전력 소모를 위한 높은 전류 효율, 낮은 구동 전압, 그리고 주소 지정성을 갖췄다고 밝혔다.
이번 연구를 주도한 최 교수 연구팀의 황용하 박사과정은 "섬유 기반 디스플레이 구현을 위해 필수적으로 요구되는 요소 기술들을 구현하는 데 집중했다ˮ며 "전자 섬유가 가진 뛰어난 착용성과 휴대성을 제공함과 동시에 디스플레이 기능성을 구현해 패션, 기능성 의류 등 다양한 응용 분야에 적할 수 있을 것이라 기대된다ˮ고 말했다.
최경철 교수 연구팀의 황용하 박사과정이 제1 저자로 주도한 이번 연구 결과는 나노 분야의 권위 있는 국제 학술지 `어드밴스드 펑셔널 머터리얼즈(Advanced Functional Materials)' (피인용지수(IF) 16.836) 2월 4일 字로 온라인 게재됐으며, 5월 3일 字로 전면 표지 논문(Front Cover)으로 게재됐다. (논문명: Bright-Multicolor, Highly Efficient, and Addressable Phosphorescent Organic Light-Emitting Fibers: Toward Wearable Textile Information Displays)
한편, 이번 연구는 산업통상자원부 전자부품산업핵심기술개발사업과 LG디스플레이의 지원을 받아 수행됐다.
2021.05.12
조회수 48608
-
유전자 가위를 이용한 새로운 유전자 돌연변이 검출 기술 개발
우리 대학 생명화학공학과 박현규 교수 연구팀이 유전자 가위로 불리는 *크리스퍼(CRISPR-Cas9) 시스템에 의해서 구동되는 *EXPAR 반응을 이용해 유전자 돌연변이를 검출하는 신기술을 개발했다고 11일 밝혔다.
☞ 크리스퍼 (CRISPR-Cas9): 유전자 편집 기술로 DNA를 가위로 자르듯이 특정 부위를 자를 수 있으며, 가이드 RNA(guideRNA)와 Cas9 단백질로 구성된다. 안내자 역할을 하는 guideRNA가 특정 유전자의 위치를 찾아가는 역할을 하고, Cas9 단백질이 유전자를 잘라내는 가위 역할을 한다.
☞ EXPAR: 엑스파(Exponential amplification reaction, EXPAR) 기술은 약 30분의 짧은 반응 시간 내 최대 1억(108)배의 표적 핵산 증폭 효율을 구현함으로써, 높은 활용 가능성을 보유한 기술이다. 구체적으로, EXPAR 기술은 절단 효소 인식 염기서열(템플릿의 중심)과 표적 핵산 상보 염기서열(템플릿의 양 말단)이 수식된 템플릿과 표적 핵산의 혼성화 반응 후, 절단 효소와 DNA 중합 효소의 작용으로 인해 이중가닥 DNA 산물이 지수함수적으로 증폭되는 기술이다.
우리 대학 생명화학공학과 송자연, 김수현 박사가 공동 제1 저자로 참여한 이번 연구는 영국왕립화학회가 발행하는 국제학술지 `나노스케일 (Nanoscale)'에 2021년도 15호 표지(Back cover) 논문으로 지난달 14일 선정됐다. (논문명: A novel method to detect mutation in DNA by utilizing exponential amplification reaction triggered by the CRISPR-Cas9 system)
일반적으로 유전자 돌연변이를 검출하기 위해 중합 효소 연쇄 반응(PCR)을 이용한다. 하지만, 현재까지 개발된 유전자 돌연변이 검출기술들은 낮은 특이도, 낮은 검출 성능, 복잡한 검출 방법, 긴 검출 시간 등의 단점들을 지니고 있다.
연구팀은 이러한 현행 기술의 한계를 극복하기 위해서, 크리스퍼 (CRISPR-Cas9) 시스템을 활용해 검출 특이도를 높이고 EXPAR 등온 증폭 반응을 통해 검출 민감도를 크게 향상시켜서 표적 유전자 돌연변이를 고감도로(검출 한계: 437 aM (아토몰라, Attomolar)) 30분 이내에 검출하는 데 성공했다. 이는 기존 기술 대비 증폭효율 약 10만 배 증가, 검출 시간 약 50% 감소에 해당하는 수치다.
연구팀은 2개의 Cas9/sgRNA 복합체로 구성된 크리스퍼(CRISPR-Cas9) 시스템으로 유전자 돌연변이의 양 끝단을 절단했다. 절단된 짧은 이중 나선 유전자 돌연변이가 EXPAR 반응을 구동시키고 EXPAR 반응 생성물을 통해서 형광 신호가 발생하도록 설계함으로써 표적 유전자 돌연변이를 고감도로 매우 정확하게 검출했다.
연구팀은 이 기술을 통해서, 염색체 DNA 내 HER2와 EGFR 유전자 돌연변이를 성공적으로 검출할 수 있었다. 이러한 유전자 돌연변이는 유방암 및 폐암의 발생에 관여할 뿐만 아니라 특정 치료 약제에 대한 반응을 예측하기 위해서 대표적으로 활용되는 중요한 바이오 마커다.
박현규 교수는 "이번 기술은 CRISPR-Cas9 시스템에 크리스퍼 (CRISPR-Cas9) 시스템에 의해서 구동되는 EXPAR 반응을 이용하여 암 등 다양한 질병에 관여되는 유전자 돌연변이를 고감도로 검출함으로써, 다양한 질병을 조기 진단하고 환자 맞춤형 치료를 구현하는 데 크게 활용될 수 있다ˮ라고 이번 연구의 의의를 설명했다.
한편 이번 연구는 한국연구재단의 지원을 받아 중견연구자지원사업과 글로벌 프런티어지원사업의 일환으로 수행됐다.
2021.05.11
조회수 30172
-
땀 검사로 건강 상태를 진단할 수 있는 전자소자 개발
우리 대학 전기및전자공학부 권경하 교수 연구팀이 성균관대학교 화학공학과 김종욱 박사과정 연구원(지도교수:김태일 교수, 성균관대학교 화학공학/고분자 공학부)과 땀의 체적 유량 및 총 손실을 실시간으로 측정하는 무선 전자 패치를 개발했다고 6일 밝혔다.
이 기술은 미국 노스웨스턴대 존 로저스 교수, 보스턴 소재 웨어리파이(Wearifi)사와 특허 출원 진행 중이며, 해당 연구 결과는 국제 학술지 `네이처 일렉트로닉스(Nature Electronics)'에 지난 3월 말 발표됐다. (논문명 : An on-skin platform for wireless monitoring of flow rate, cumulative loss and temperature of sweat in real time)
땀은 비침습적으로 수집할 수 있는 생체 유체로, 침습적인 혈액 채취와 비교해 채취하기가 쉽다는 분명한 이점을 제공한다. 이에 일상에서 실시간으로 땀 수집 및 성분 분석을 제공할 수 있는 웨어러블 기술에 대한 수요가 증가하고 있다.
땀과 화학 시약의 변색 반응을 이용해 다양한 생체 지표 수집이 가능하지만, 정확한 측정(발색)을 하려면 땀의 유량과 총 손실을 실시간으로 측정하는 것이 핵심적으로 요구된다. 이에 연구팀은 땀의 정량적 속도 및 체적 측정이 가능한 웨어러블 무선 전자 패치를 개발했고, 변색 반응을 이용해 땀 성분 분석이 가능한 미세 유체 시스템과 통합했다.
그 결과, 연구팀은 땀 내 염화물, 포도당 및 크레아틴 농도, 수소이온지수(pH) 및 체적 유량을 동시에 측정하는 데 최초로 성공했다. 측정한 지표는 낭포성 섬유증, 당뇨병, 신장 기능 장애, 대사성 알칼리증 진단 등에 활용할 수 있다.
연구팀은 땀이 수집되는 짧고 정교한 미세 유체 채널 외벽에 저전력 열원을 배치해 채널을 통과하는 땀과 열 교환을 유도했다. 땀의 유속이 증가함에 따라 열원의 하류와 상류의 온도 차이가 증가하는 것에 착안, 상·하류 온도 차이와 땀의 배출 속도 간의 정확한 관계를 규명했다. 그 결과, 생리학적으로 유의미하다고 인정되는 0~5마이크로리터/분(μl/min) 범위의 땀 속도를 정확하게 측정하는 데 성공했다. 웨어러블 패치로 측정한 데이터는 블루투스 통신이 가능한 스마트폰 앱을 통해 실시간 확인이 가능하다.
이 패치는 미세 유체 채널을 통과하는 땀과 전자 회로가 완전히 분리되어, 기존 유속 측정 기기들의 유체와의 접촉으로 인한 부식 및 노후화에 취약하다는 단점을 극복했다. 또한, 얇고 유연한 회로 기판 인쇄 기법과 신축성 있는 실리콘 봉합 기술을 접목해 다양한 굴곡을 가진 피부 위에 편안하게 부착할 수 있도록 제작됐다. 땀 배출로 인한 피부 온도 변화를 실시간으로 감지하는 센서도 부착돼 있어 다양한 응용 분야에서 활용이 기대된다.
권경하 교수는 "개발된 무선 전자 패치는 개인별 수분 보충 전략, 탈수 증세 감지 및 기타 건강 관리에 폭넓게 활용할 수 있다ˮ면서 "피부 표면 근처의 혈관에서 혈류 속도를 측정하거나, 약물의 방출 속도를 실시간으로 측정해 정확한 투여량을 계산하는 등 체계화된 약물 전달 시스템에도 활용할 수 있을 것ˮ이라고 말했다.
한편, 이번 연구는 한국연구재단의 뇌과학원천기술개발사업의 지원을 받아 수행됐다.
2021.05.06
조회수 27065
-
이상수 교수팀, iF 디자인 어워드 금상 포함 8개상 석권
우리 대학 이상수 산업디자인학과 교수가 이끄는 디자인팀이 세계 최고 권위의 디자인 공모전인 'iF 디자인 어워드 2021(International Forum Design Award 2021)'에서 최고상인 금상(Gold Award)을 비롯해 총 8개의 상을 받았다.
이 교수팀의 이번 성과는 우리 대학이 iF 디자인 어워드에서 금상을 받은 최초의 사례로 산학 연계 수업을 통해 수상작을 배출했다는 점에서 특히 주목할 만하다. 금상을 수상한 얼라인(ALINE, 정은희, 남서우, 박수연, 황영주, Edwin Truman, 이선옥, 최다솜 학생 참여)은 최근 화두로 떠오르고 있는 ESG 투자(사회적책임투자)를 기반으로 디자인됐다. 새로운 개념으로 투자할 수 있게 도와주는 모바일 애플리케이션 솔루션으로 수익률을 중심으로 판단하던 기존의 방식에서 벗어나 사용자의 가치관을 반영해 투자와 소비를 유도하는 서비스다. 심사위원단은 "정제된 사용자경험(UX) 디자인을 통해 투자 및 소비의 새로운 장을 열었다”고 평가했다.
이뿐만이 아니라 iF 디자인어워드 2021의 서비스디자인 부문 표지 작품으로 게재된 것과 동시에 iF가 지구의 날을 맞아 발행한 '2020-2021 지속 가능한(sustainable) 소비를 위한 디자인 10선'에도 선정되는 등 많은 관심을 받았다.
또한, 대학에서 구성된 디자인팀이 학생 부문이 아닌 일반 기업 경쟁 부문에 참가해 한 번에 8개의 상을 수상한 것 역시 국제적으로도 극히 이례적인 성과로 평가받고 있다. 이상수 교수팀은 52개국 1만여 개 작품이 출품된 올해 공모전에서 서비스 디자인 부문 3개, 사용자 인터페이스(UI) 부문 2개, 사용자 경험(UX) 부문 2개, 커뮤니케이션 부문 1개 등 4개 부문에 걸쳐 총 8개의 상을 받았다. 특히, 금상은 1만여 개의 경쟁 작품 중에서 75개의 출품작에만 주어지는 최고 등급의 상이라는 점에서 이 교수팀의 이번 성과는 더욱 큰 의미를 가진다. 그밖에, 서비스 디자인 부문에서는 부모와 자녀가 함께하는 투자 서비스 핀토(Pinto, 김영우, 김태륜, 조해나 학생 참여), UI부문에서는 멘탈 어카운팅을 반영한 인터페이스 디자인 아쿠아(Aqua, 정기항, 신동욱, 최성민, 임현승 학생 참여), 커뮤니케이션 부문에서는 주식 선물 모바일 애플리케이션 스톡박스(Stockbox, 김병재, 박찬형, 신준범, 이민하, 김우석 학생 참여) 등이 본상을 받았다.
이번 성과를 이끈 이상수 교수는 2020년 NH투자증권-KAIST UX디자인 연구센터를 개소해 새로운 투자 서비스 및 UX디자인을 목표로 연구해왔다. 이 교수(NH투자증권-KAIST UX디자인 연구센터장)는 "KAIST 산업디자인학과 학생들이 세계 최고 수준의 디자인 역량을 갖췄다는 것을 입증받아 기쁘다”라고 소감을 전했다. 이어, "디자인이 단순히 사용자를 즐겁게 만드는 것에 그치는 것이 아니라 더 좋은 사회를 만드는데 기여할 수 있도록 앞으로도 최선을 다할 것ˮ 이라고 수상 소감을 밝혔다.
이상수 교수는 매년 산학 연계 수업을 통해 산업 현장에서 쓰일 수 있는 실질적인 디자인 교육을 지향하고 있으며, 지난 2018년에도 네이버와의 협업을 통해 레드닷 디자인 어워드에서 본상 3개를 한 번에 수상하며 주목받은 바 있다. 한편, iF 디자인 어워드는 레드닷, IDEA 디자인상과 더불어 세계 3대 디자인상으로 손꼽히는 권위 있는 시상식이다. 제품·패키지·커뮤니케이션·서비스디자인·사용자 경험(UX)·사용자 인터페이스(UI)·콘셉트·인테리어·건축 등 총 9개 부문에서 디자인 차별성과 영향력 등을 종합적으로 평가해 수상작을 선정하고 있다.
2021.05.04
조회수 26827
-
암 면역치료를 위한 새로운 세포사멸 유도체 개발
우리 대학 생명화학공학과 김유천 교수와 한양대학교 생명공학과 윤채옥 교수 공동연구팀이 암 치료에 이용되는 면역항암제인 면역관문억제제와 협력 효과를 내는 *펩타이드 기반의 면역원성 세포사멸 유도체를 개발했다고 27일 밝혔다.
☞ 펩타이드(peptide): 아미노산이 2~50개 정도 결합된 물질을 뜻하며, 아미노산이 50개 이상 결합된 물질이 단백질이다.
연구팀이 개발한 펩타이드는 암세포 내의 미토콘드리아 외막을 붕괴시켜 활성산소 농도를 높이고, 이를 통해 형성된 산화적 스트레스가 소포체를 자극해 면역원성 세포사멸을 유도한다.
우리 대학 생명화학공학과 정성동 박사와 한양대학교 생명공학과 정보경 박사가 공동 제1 저자로 참여하고, 한양대학교 생명공학과 윤채옥 교수가 공동 교신저자로 참여한 이번 연구 결과는 국제 학술지 `어드밴스드 사이언스 (Advanced Science)' 4월 7일 字 표지논문(Back cover)으로 게재됐다. (논문명 : Immunogenic Cell Death Inducing Fluorinated Mitochondria-Disrupting Helical Polypeptide Synergizes with PD-L1 Immune Checkpoint Blockade).
면역관문억제제는 T세포(CTLA-4, PD-1)나 암세포(PD-L1)에 발현된 면역세포의 활성을 저해하는 면역관문을 차단해서 면역세포의 작용을 활발하게 하는 치료제다. 2011년 미국 식품 의약국에 최초로 승인을 받은 후, 다양한 면역관문억제제가 환자들에게 이용되고 있다.
하지만 면역관문억제제도 몇 가지 한계점을 가지고 있다. 먼저 이 치료법은 모든 환자에게 효과가 있는 것이 아니라 10~40% 정도의 환자에게만 효과가 있다. 그리고 기존에 존재하는 항암 능력을 갖춘 T세포가 필요하다는 단점이 있다.
연구팀은 이러한 문제점들을 해결하기 위해 항암 면역반응을 유도하는 면역원성 세포사멸 유도체와 면역관문억제제를 병용투여 해 문제점을 해결하고자 했다.
연구팀은 펩타이드 기반의 면역원성 세포사멸 유도체가 미토콘드리아 외막 붕괴를 통해 세포 내의 활성산소를 과잉생산하고, 이렇게 생성된 산화적 스트레스가 소포체를 자극해 최종적으로 면역원성 세포사멸을 유도하는 것을 검증했다.
또한, 동물실험을 통해 펩타이드와 면역관문억제제인 anti-PD-L1을 병용 투여했을 때, 단독 투여에 비해 종양 억제 능력이 향상되고, 활성화된 면역반응을 통해 폐로의 전이가 줄어드는 것을 확인했다.
연구를 주도한 김유천 교수는 "이번 새로운 면역원성 세포사멸 유도체 개발을 통해, 기존 면역관문억제제의 낮은 반응률을 보이는 암에서 치료 효과를 높일 수 있는 다양한 방법을 제시할 것으로 기대한다ˮ고 말했다.
한편, 이번 연구는 한국연구재단 중견연구자사업과 기초연구실 사업을 통해 수행됐다.
2021.04.27
조회수 28177
-
김성용 교수, UN 제2차 세계 해양 환경 평가 보고서 공동 발간
우리 대학 김성용 기계공학과 교수가 공동저자로 참여한 국제연합(United Nations, UN)의 제2차 세계해양환경평가(Second World Ocean Assessment; WOA II) 보고서가 4월 22일 발간됐다.
세계해양환경평가 보고서는 전 세계 해양환경의 현재 상태를 종합적이고 통합적인 과학정보로 기술한 문서로 ʻ국제연합의 지속가능한 발전을 위한 국제해양과학 10개년 계획(United Nations Decade of Ocean Science for Sustainable Development)ʼ을 실질적으로 수행하는 중요한 보고서로 꼽힌다. 유엔(UN)은 각국 정부가 해양환경을 보호하기 위한 공동의 노력을 강화하고 정책결정자들의 의사결정을 지원하기 위해 사회경제적인 측면을 포함한 전 지구적 차원의 해양환경을 평가 및 보고하는 ʻ정규과정(Regular Process)ʼ을 수행해오고 있다. 2009년 열린 제64차 유엔총회에서 정규과정 1차 주기(2010~2014)를 승인해 ʻ제1차 세계해양환경평가(First World Ocean Assessment) 보고서ʼ가 2015년 완성됐다. 김 교수는 1차 보고서의 전문가 그룹으로 참여한 데 이어 2016년부터 4년간 진행된 2차 주기(2016-2020) 세계해양환경평가 보고서 제작에 공동 저자로 참여해 전 세계 300여 명의 다학제간 전문가들과 의견을 공유했다. 총 28장으로 구성된 보고서 중 김 교수는 제5장 해양의 물리적 및 화학적 상태과 제9장 기후 대기 변화에 따른 영향 등 2개의 장을 공동 집필했다.이번 보고서는 전 세계의 해양 환경을 평가하기 위해 추진력(Drivers)-압력(Pressure)-상태(State)-영향(Impact)-반응(Response) 등을 종합한 ʻDPSIRʼ의 개념을 적용한 것이 특징이다. 이를 통해, 전 세계 해양을 환경·경제·사회적 측면을 통합하여 분석했으며, 각 지역 해양환경 특성을 구체화한 유일한 보고서로 평가받고 있다.
또한, 유엔(UN)의 모든 회원국이 해양 평가 및 정책을 결정할 때 가장 먼저 반영해야 할 내용이 담겨 있어 현재까지 발간된 해양 관련 보고서 중 영향력이 가장 큰 학술적 성과로 꼽히고 있다.
김 교수는 "전 지구적인 기후변화, 미세플라스틱, 후쿠시마 원전 오염수의 방류가 화두가 되는 시점에서 국가 간의 경계가 없이 전 세계 영향을 주는 해양에 관해 많은 관심과 연구가 필요하다ˮ라고 강조하며 "본 보고서가 각 국가의 해양상태를 판단하고 정책 입안에 기초자료가 되길 바란다.ˮ라고 소감을 전했다. 김 교수가 공동 저자로 참여한 보고서는 유엔(UN) 홈페이지에서 자세한 내용을 확인할 수 있다.
제2차 세계 해양 환경 평가 보고서 자세히 보기 (클릭☞) https://www.un.org/regularprocess/woa2launch
2021.04.26
조회수 24521
-
초대규모 그래프 프로세싱 시뮬레이션 기술 개발
우리 대학 연구진이 오늘날 정보통신(IT) 분야에서 광범위하게 사용되는 그래프 타입의 데이터를 실제로 저장하지 않고도 알고리즘을 계산할 수 있는 `그래프 프로세싱 시뮬레이션'이라는 신개념 기술을 세계 최초로 개발하는 데 성공했다. 데이터를 저장할 필요가 없어 1조 개 간선의 초대규모 그래프도 PC 한 대로 처리가 가능하다.
우리 대학 전산학부 김민수 교수 연구팀은 1조 개 간선의 초대규모 그래프에 대해 데이터 저장 없이 알고리즘을 계산할 수 있는 신개념 기술을 세계 최초로 개발했다고 23일 밝혔다.
오늘날 웹, SNS, 인공지능, 블록체인 등의 광범위한 분야들에서 그래프 타입의 데이터에 대한 다양한 알고리즘들의 연구가 매우 중요하다. 그러나 그래프 데이터의 복잡성으로 인해 그 크기가 커질 때 막대한 규모의 컴퓨터 클러스터가 있어야만 알고리즘 계산이 가능하다는 문제가 있다.
김 교수 연구팀은 이를 근본적으로 해결하는 T-GPS(Trillion-scale Graph Processing Simulation)라는 기술을 개발했다. 이 T-GPS 기술은 그래프 데이터를 실제로 디스크에 저장하지 않고도 마치 그래프 데이터가 저장돼 있는 것처럼 알고리즘을 계산할 수 있고, 계산 결과도 실제 저장된 그래프에 대한 알고리즘 계산과 완전히 동일하다는 장점이 있다.
그래프 알고리즘은 그래프 처리 엔진 상에서 개발되고 실행된다. 이는 산업적으로 널리 사용되는 SQL 질의를 데이터베이스 관리 시스템(DBMS) 엔진 상에서 개발하고 실행하는 것과 유사한 방식이다.
지금까지는 그래프 알고리즘을 개발하기 위해 먼저 합성 그래프를 생성 및 저장한 후, 이를 다시 그래프 처리 엔진에서 메모리로 적재해 알고리즘을 계산하는 2단계 방법을 사용했다. 그래프 데이터는 그 복잡성으로 인해 전체를 메모리로 적재하는 것이 요구되며, 그래프의 규모가 커지면 대규모 컴퓨터 클러스터 장비가 있어야만 알고리즘을 개발하고 실행할 수 있다는 커다란 단점이 있었다.
김 교수팀은 합성 그래프와 그래프 처리 엔진 분야에서 국제 최고 권위의 학술대회에 매년 논문을 발표하는 등 세계 최고의 기술력을 보유하고 있으며, 그 기술들을 바탕으로 기존 2단계 방법의 문제를 해결했다.
그래프 데이터상에서 그래프 알고리즘이 계산을 위해 접근하는 부분을 짧은 순간 동안 실시간으로 생성해, 마치 그래프 데이터가 존재하는 것처럼 알고리즘을 계산하는 것이다. 이때 그래프 데이터를 아무렇게 실시간 생성하는 것이 아니라 합성 그래프 모델에 따라 생성하고 저장한 것과 동일하도록 실시간 생성하는 것이 핵심 기술 중 하나다.
또한, 그래프 처리 엔진이 실시간으로 생성되는 그래프를 실제 그래프처럼 인식하고 알고리즘을 완전히 동일하게 계산하도록 엔진을 수정한 것이 또 다른 핵심 기술이다.
김민수 교수 연구팀은 T-GPS 기술을 종래의 2단계 방법과 성능을 비교한 결과, 종래의 2단계 방법이 11대의 컴퓨터로 구성된 클러스터에서 10억 개 간선 규모의 그래프를 계산할 수 있었던 반면, T-GPS 기술은 1대의 컴퓨터에서 1조 개 간선 규모의 그래프를 계산할 수 있어 컴퓨터 자원 대비 10,000배 더 큰 규모의 데이터를 처리를 할 수 있음을 확인했다. 또한, 알고리즘 계산 시간도 최대 43배 더 빠름을 확인했다.
교신저자로 참여한 김민수 교수는 "오늘날 거의 모든 IT 분야에서 그래프 데이터를 활용하고 있는바, 연구팀이 개발한 새로운 기술은 그래프 알고리즘의 개발 규모와 효율을 획기적으로 높일 수 있어 산업적 측면에서 파급 효과가 매우 클 것으로 기대한다ˮ 라고 말했다.
이번 연구에는 김 교수의 제자이자 캐나다 워털루 대학에 박사후 연구원으로 재직 중인 박힘찬 박사가 제1 저자로, 김 교수가 교신저자로 참여했으며 지난 22일 그리스 차니아에서 온라인으로 열린 데이터베이스 분야 최고 국제학술대회 중 하나인 IEEE ICDE에서 발표됐다. (논문명 : Trillion-scale Graph Processing Simulation based on Top-Down Graph Upscaling).
한편, 이 연구는 한국연구재단 선도연구센터 사업 및 중견연구자 지원사업, 과기정통부 IITP SW스타랩 사업의 지원을 받아 수행됐다.
2021.04.23
조회수 24757
-
남택진 교수팀, 레드닷 어워드 2021 대상 수상
우리 대학 남택진 산업디자인학과 교수팀이 세계 최대 규모의 디자인 공모전인 독일 ʻ레드닷 디자인 어워드(Red Dot Design Award) 2021ʼ 제품디자인 부문에서 대상(best of the best award)을 받았다. 수상작은 남 교수팀이 개발한 ʻ코로나 중증 환자 치료용 이동형 감염병동(mobile clinic module, MCM)ʼ이다. 올해 공모전에는 60여 개국에서 총 7천8백여 개의 작품이 출품돼 제품 디자인·커뮤니케이션 디자인·콘셉트 디자인 등 3개 분야에서 경쟁을 펼쳤다. 주최 측은 "수상작들이 자동차·로봇·의료 기술·포장에 이르기까지 디자인을 통해 현대 사회가 가진 문제를 해결하고 인류의 생활 수준을 향상하는 데 중요한 역할을 했다ˮ라고 밝혔다. 특히, 남 교수팀의 이동형 감염병동은 "제품 디자인이 감염병 확산을 방지하는 일에 얼마나 가치 있게 기여할 수 있는지를 보여줬다ˮ라고 평가했다.
이동형 감염병동의 쾌거는 이뿐만이 아니다. 레드닷 디자인 어워드(Red Dot Design Award)와 함께 세계 최고 권위의 디자인 공모전으로 손꼽히는 iF 디자인 어워드(International Forum Design Award) 2021에서도 제품·실내건축·사용자인터페이스·사용자경험 등 총 4개 분야에서 본상을 수상했다.
이로써, 남 교수팀의 이동형 음압병동은 국제 권위의 디자인 공모전을 연이어 석권하며 기능성·경제성·효용성뿐만 아니라 독창적 디자인과 심미성까지 갖춘 의료 시설로서 가치를 인정받게 됐다.
이동형 음압병동은 고급 의료 설비를 갖춘 음압 격리 시설로 신속하게 변형하거나 개조해 사용할 수 있도록 디자인됐다. 음압 프레임·에어 텐트·기능 패널 등의 각 모듈을 조합해 단시간 내에 음압 병동이나 선별진료소 등을 구축할 수 있다. 또한, 소규모의 장비와 인력으로도 관리·이송·설치가 가능해 기존의 조립식 병동 대비 경제적·시간적 효율을 높인 것이 가장 큰 특징이다. 남택진 교수팀은 작년 7월부터 KAIST 코로나 대응 과학기술 뉴딜사업(단장 배충식)의 일환으로 이동형 음압병동을 개발했다. 조스리 스튜디오·20Plus 등과 협력해 디자인을 진행했고 신성이엔지가 제작을 담당했다. 배상민(산업디자인학과)·이태식(산업및시스템 공학과)·김형수(기계공학과) 교수 등이 자문했으며, 석현정(산업디자인학과), 박해원·김성수(기계공학과), 한동수(전산학과) 교수 등이 감염병원 서비스 주제로 연구에 참여했다. 현재 한국 원자력의학원·제주도 백신 접종센터에 시제품이 설치돼 코로나 환자 및 백신 접종자들을 대상으로 시범 운영 중이다. 향후, 건양대 병원 등으로 적용 범위를 확대해나갈 예정이다. 디자인 총괄한 남택진 교수는 "현실 세계의 문제를 발견하고 해결하여 책임지는 디자이너가 더 많아지기를 바란다ˮ라고 수상 소감을 전했다. 이어, 남 교수는 "MCM의 생산 효율성과 안정된 운영을 위해 엔지니어링 디자인 측면을 개선하는 연구를 진행 중이며, 빠른 시일 내에 상용화와 수출이 이뤄질 수 있도록 박차를 가할 예정이다ˮ라고 전했다. KAIST 코로나 대응 과학기술 뉴딜사업단은 KAIST의 과학기술 역량을 기반으로 감염 예방·보호·진단·치료 등 감염병의 전 주기에 대응하는 치료 분야에서 산·학·연·병이 협력해 방역 요소기술 개발과 과학기술 기반의 방역 시스템을 구축하는 연구를 수행하고 있다.
2021.04.19
조회수 43902
-
고체 전해질 내부 나노 단위 영상화 성공
오늘날 리튬이온전지는 휴대용 전자 장비와 전기차를 비롯한 각종 이동 수단에 필수적인 에너지 저장 매체로 사용되고 있다. 폭발적인 수요에 발맞춰 리튬이온전지의 에너지 용량, 충전 속도 등의 전기화학적 특성을 향상하려는 연구들이 가속화되고 있다.
그러나 기존의 전기화학 특성 평가 방법은 소재 혹은 소자 특성의 평균값을 측정하는 것에 집중되어 있기에, 나노미터 수준의 미시세계에서 벌어지고 있는 현상들을 이해하기에는 충분하지 않다. 따라서 전기화학 특성에 대한 통합적인 이해를 위해 미시적 수준에서 공간 분해능을 가진 분석 기술의 개발은 필수적이다.
우리 대학 신소재공학과 홍승범 교수 연구팀이 원자간력 현미경(Atomic force microscope, AFM)의 한 모드인 전기화학 변위 현미경(Electrochemical strain microscopy, ESM)을 이용해 리튬이온전지 소재 내부의 이온 이동 특성을 나노미터 수준에서 정량적으로 측정하는 방법을 개발했다고 13일 밝혔다.
전기화학 변위 현미경은 나노 크기의 탐침에 전압을 가했을 때, 이온의 이동이 유발하는 시료 표면의 변형(displacement)을 측정하는 기술로서 이 변형을 발생시킨 이온의 양과 이온의 이동도 등을 간접적으로 측정할 수 있게 도와주는 기술이다.
홍 교수 연구팀은 비행시간형 2차 이온 질량 분석법(Time-of-flight secondary ion mass spectroscopy, ToF-SIMS)과 유도결합 플라즈마 분광분석기(Inductively coupled plasma optical emission spectrometer, ICP-OES)를 이용해 고체 전해질 시료의 깊이에 따른 이온 분포를 정량적으로 계산하고, 전기화학 변위 현미경 결과와의 캘리브레이션(calibration, 계측기 등의 눈금을 표준기 등을 사용해 바로잡는 일)에 성공했다.
이후, 연구진에 의해 고안된 직류 전압 펄스(pulse)를 시료의 깊이에 따라 가했으며, 전기장에 의해 표면으로 이동했다가 다시 내부 쪽으로 확산하는 이온을 전기화학 변위 현미경으로 영상화했다. 특히, 해당 펄스를 설계하는 과정에서 기존 전기화학 변위 현미경 사용에 대한 오류를 지적하고, 개선된 사용 방법에 대해 안내했다. 그 결과, 연구팀은 시간 및 거리의 함수로 이온의 이동 과정을 영상화하는 데 성공했으며, 이 결과를 이용해 깊이 및 이온의 농도에 따라 변화하는 확산계수 값을 정량적으로 보여줬다.
홍승범 교수는 "이온의 움직임을 나노미터 수준에서 정량적으로 관찰할 수 있는 방법론이 다양한 이온 거동의 메커니즘을 규명하는데 기여할 것ˮ이라며, "추후 다양한 실제 소자 구동 환경을 모사한 상태에서 이번 방법론을 적용하는 후속 연구를 진행할 것ˮ이라고 설명했다.
우리 대학 신소재공학과 박건 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 ACS 어플라이드 에너지 머티리얼스(ACS Applied Energy Materials)에 게재됐다. (논문명: Quantitative Measurement of Li-Ion Concentration and Diffusivity in Solid-State Electrolyte)
한편 이번 연구는 과학기술정보통신부·한국연구재단 거대과학연구개발사업 및 KAIST 글로벌특이점연구 지원으로 수행됐다.
2021.04.13
조회수 60987