< 사진 1. 전산학부 안성진 교수 >
우리 대학 전산학부 안성진 교수 연구팀이 미국 럿거스(Rutgers) 대학교와 공동연구를 통해 사람의 라벨링 없이 스스로 영상 속 객체를 식별할 수 있는 인공지능 기술을 개발했다고 1일 밝혔다. 이 모델은 복잡한 영상에서 각 장면의 객체들에 대한 명시적인 라벨링 없이도 객체를 식별하는 최초의 인공지능 모델이다.
기계가 주변 환경을 지능적으로 인지하고 추론하기 위해서는 시각적 장면을 구성하는 객체들과 그들의 관계를 파악하는 능력이 필수적이다. 하지만 이 분야의 연구는 대부분 영상의 각 픽셀에 대응하는 객체의 라벨을 사람이 일일이 표시해야 하는 지도적 학습 방식을 사용했다. 이 같은 수작업은 오류가 발생하기 쉽고 많은 시간과 비용을 요구한다는 단점이 있다.
이에 반해 이번에 연구팀이 개발한 기술은 인간과 유사하게 환경에 대한 관측만으로 객체의 개념을 스스로 자가 학습하는 방식을 취한다. 이렇게 인간의 지도 없이 스스로 객체의 개념을 학습할 수 있는 인공지능은 차세대 인지 기술의 핵심으로 기대돼왔다.
비지도 학습을 이용한 이전 연구들은 단순한 객체 형태와 배경이 명확히 구분될 수 있는 단순한 장면에서만 객체를 식별하는 단점이 있었다. 이와 달리 이번에 안성진 교수 연구팀이 개발한 기술은 복잡한 형태의 많은 객체가 존재하는 사실적인 장면에도 적용될 수 있는 최초의 모델이다.
이 연구는 그림 인공지능 소프트웨어인 DALL-E와 같이 텍스트 입력을 통해 사실적인 이미지를 생성할 수 있는 이미지 생성 연구에서 영감을 얻었다. 연구팀은 텍스트를 입력하는 대신, 모델이 장면에서 객체를 감지하고 그 객체의 표상(representation)으로부터 이미지를 생성하는 방식으로 모델을 학습시켰다. 또한, 모델에 DALL-E와 유사한 트랜스포머 디코더를 사용하는 것이 사실적이고 복잡한 영상을 처리할 수 있게 한 주요 요인이라고 밝혔다.
< 그림 1. 안성진 교수 연구팀이 개발한 기술이 복잡한 상황에서 객체의 개념을 스스로 학습하는 장면 >
연구팀은 복잡하고 정제되지 않은 영상뿐만 아니라, 많은 물고기가 있는 수족관과 교통이 혼잡한 도로의 상황을 담은 유튜브 영상과 같이 복잡한 실제 영상에서도 모델의 성능을 측정했다. 그 결과, 제시된 모델이 기존 모델보다 객체를 훨씬 더 정확하게 분할하고 일반화하는 것을 확인할 수 있었다.
연구팀을 이끈 안성진 교수는 "인간과 유사한 자가 학습 방식으로 상황을 인지하고 해석하는 혁신적인 기술ˮ이라며 "시각적 상황인지 능력을 획기적으로 개선해 지능형 로봇 분야, 자율 주행 분야뿐만 아니라 시각적 인공지능 기술 전반에 비용 절감과 성능향상을 가져올 수 있다ˮ고 말했다.
이번 연구는 미국 뉴올리언스에서 지난 11월 28일부터 개최되어 12월 9일까지 진행 예정인 세계 최고 수준의 기계학습(머신러닝) 학회인 제36회 신경정보처리학회(NeurIPS)에서 발표됐다.
우리 대학 전기및전자공학부 심현철 교수 연구팀이 2025년 4월 12일 아랍에미리트(UAE) 정부 후원으로 개최된 아부다비 자율 레이싱 대회(Abu Dhabi Autonomous Racing League, 이하 A2RL)의 드론 챔피언십 리그( Drone Championship League, 이하 DCL)에서 세계 3위를 차지하였다. 아부다비 국립 전시 센터 마리나(ADNEC Marina) 대회장에서 개최된 본 선 대회에서는 2024년 가을 예선을 통해 선발된 14개 팀들이 참가해 실력을 겨뤘다. 참가팀들은 ▲최단 비행시간 경연(AI Grand Challenge), ▲4대동시 자율비행, ▲양쪽에서 마주 보면서 고속으로 비행하는 드래그 레이싱, ▲AI 대 인간 조정사 대결 등 총 4개 부문에서 경합을 벌였다. 그 중 8개 팀이 최단 비행시간 경연 준결승에 진출했고, 이 중 KAIST는 네덜란드 델프트공대(TU Delft), UAE 기술혁신연구소(TII), 체코 공과대학(Czec
2025-04-18효소는 세포 내에서 일어나는 생화학적 반응을 촉매하는 단백질로, 세포의 대사 과정에서 핵심적인 역할을 수행한다. 이에 따라 새로운 효소의 기능을 규명하는 것은 미생물 세포공장 구축에서 핵심적인 과제다. KAIST 연구진이 인공지능(AI)을 활용해 자연에 존재하지 않는 새로운 효소를 설계함으로써, 미생물 세포공장 구축을 가속화하고 신약·바이오 연료 등 차세대 바이오산업의 개발 가능성을 크게 높였다. 우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 AI를 활용한 효소 기능 예측 기술의 발전 과정과 최신 동향을 정리하고, AI가 새로운 효소를 찾고 설계하는데 어떤 역할을 해왔는지 분석하여 ‘인공지능을 이용한 효소 기능 분류’를 발표했다. 이상엽 특훈교수 연구팀은 이번 연구에서 머신러닝(Machine learning)과 딥러닝(Deep learning)을 활용한 효소 기능 예측 기술의 발전 과정을 체계적으로 정리·분석하여 제공했다.
2025-04-17빅데이터와 인공지능 기반의 건설재료 품질관리 혁신 기술 제시 우리 대학 건설및환경공학과 김재홍 교수 연구팀은 시멘트 분산제의 성능을 정밀하게 평가할 수 있는 자동화 실험 시스템을 개발했다. 이 시스템은 기존 수작업 실험의 한계를 극복하고, 데이터 사이언스와 머신러닝 기법을 활용해 시멘트 기반 재료의 품질 관리를 혁신적으로 개선할 수 있는 길을 열었다. 건설재료 품질관리의 도전과제 콘크리트는 전 세계에서 가장 많이 생산되는 공학 재료지만, 시멘트와 골재 같은 원재료가 지역마다 성질이 달라 품질과 성능의 변동성이 크다. 따라서 콘크리트 재료의 성능 시험에는 많은 수의 샘플이 필요하며, 이는 노동 집약적인 작업으로 이어진다. 김재홍 교수는 "건설재료는 다른 공학 재료에 비해 변동성이 매우 크기 때문에, 재료의 성능평가 신뢰성을 높이려면 충분한 양의 데이터가 필요합니다. 이를 위해서는 많은 수의 샘플을 제조하고 테스트해야 하는데, 기존의 수작업 방식으로는 단순히 품질 검증을 위한
2025-04-14우리 대학은 세계적인 미디어 아티스트인 문화기술대학원 이진준 교수와 글로벌 아티스트 지드래곤(G-DRAGON)과의 협업을 통해, 지난 4월 9일 KAIST 우주연구원에서 실시한 세계 최초로 미디어아트를 기반으로 한 '우주 음원 송출 프로젝트'를 성공적으로 추진했다. 이번 프로젝트는 KAIST와 갤럭시코퍼레이션과 추진 중인‘AI 엔터테크 연구센터’의 일환으로 제안된 것이다. 갤럭시코퍼레이션 소속 아티스트이자 KAIST 기계공학과 초빙교수로 활동 중인 가수 지드래곤(본명 권지용)의 메세지와 음원을 세계 최초로 우주로 송출하는 프로젝트이다. 과학기술, 예술, 대중음악이 결합된 융복합 프로젝트로, KAIST의 첨단 우주 기술과 이진준 교수의 미디어아트 작품, 그리고 지드래곤의 음성과 음원(홈스윗홈, HOME SWEET HOME)이 하나로 연결된 새로운 형태의 ‘우주 문화 콘텐츠’ 실험이다. 이번 협업은 ‘인간 내면의 우주를
2025-04-10우리 대학은 인공지능(AI) 엔터테크 기업 갤럭시코퍼레이션(대표 최용호)과 함께 ‘AI 엔터테크 연구센터’ 설립을 위한 현판식을 KAIST 본원에서 개최한다. 이번 협력은 KAIST가 추진해 온 예술 융합 연구 전략의 일환으로, 과학기술을 기반으로 한 창의적 문화 콘텐츠 개발을 통해 미래형 K-Culture를 주도하려는 노력의 연장선에 있다. KAIST는 단순한 기술 개발을 넘어, 감성 기술과 문화적 상상력의 융합을 통해 콘텐츠 산업의 지평을 넓히는 ‘테크-아트(Tech-Art)’ 융합 모델을 지속적으로 실현해 오고 있다. 앞서 KAIST는 세계적인 소프라노 조수미 초빙석학교수와의 협력으로 ‘조수미 아트&테크 연구센터’를 설립하고, AI 기반의 인터랙티브 공연 기술, 몰입형 콘텐츠 등 예술과 공학의 융합 연구를 선도해왔다. 이번 ‘AI 엔터테크 연구센터’ 설립은 K-콘텐츠 산업의 기술
2025-04-09