-
폴리페놀 코팅 기술로 탈모 예방 가능성 입증
탈모는 전 세계적으로 수억 명이 겪고 있는 문제로 심리적·사회적 영향을 크게 미치고 있다. KAIST 연구진이 천연 폴리페놀(polyphenol)의 일종인 탄닌산이 탈모 예방에 기여할 가능성에 주목하고 연구를 통해 탄닌산이 단순한 코팅제가 아니라, 탈모를 완화시키는 ‘접착 중재자(adhesion mediator)’ 역할을 한다는 점을 밝혀냈다.
우리 대학 화학과 이해신 교수 연구팀이 탄닌산 기반 코팅 기술을 활용해 탈모 완화 기능성 성분을 서서히 방출하는 새로운 탈모 예방 기술을 개발했다고 6일 밝혔다.
탈모에는 안드로겐 탈모증(androgenetic alopecia, AGA) 및 휴지기 탈모(telogen effluvium, TE)가 있는데 유전적, 호르몬적, 환경적 요인이 복합적으로 작용하며, 현재까지도 효과적이면서 부작용이 적은 치료법이 부족한 실정이다.
대표적인 탈모 치료제인 미녹시딜(minoxidil)과 피나스테라이드(finasteride) 는 일정 효과를 보이지만, 장기적인 사용이 필요하고, 체질에 따라 효능이 다르게 나타날 뿐만 아니라 일부 사용자는 부작용을 경험하기도 한다.
이해신 교수 연구팀은 탄닌산이 모발의 주요 단백질인 케라틴과 강하게 결합해 모발 표면에 지속적으로 부착될 수 있음을 입증했으며, 이를 활용해 특정 기능성 성분을 제어된 방식으로 방출할 수 있음을 확인했다.
특히 연구팀은 살리실산(salicylic acid, SCA), 니아신아마이드(niacinamide, N), 덱스판테놀(dexpanthenol, DAL) 등 탈모 완화 기능성 성분을 포함한 조합을 개발하고, 이를 ‘스캔달(SCANDAL)’이라 명명했다. 연구 결과, 탄닌산과 결합된 스캔달 복합체는 수분과 접촉하면 점진적으로 방출되며, 모발 표면을 따라 모낭으로 전달되는 것으로 나타났다.
굿모나의원(원장: 이건민) 연구팀은 탄닌산/스캔달 복합체가 포함된 샴푸를 12명의 탈모 환자에게 7일간 적용한 결과, 임상자 모두에게 유의미한 탈모 감소 효과가 관찰됐다. 실험 결과, 평균적으로 56.2%의 모발 탈락 감소 효과가 나타났으며, 최대 90.2%까지 탈모가 감소하는 사례도 확인됐다.
이는 탄닌산이 모발 표면에서 스캔달 성분을 안정적으로 유지하고, 서서히 방출되면서 모낭까지 전달되는 방식이 탈모 완화에 효과적일 수 있음을 시사한다.
이해신 교수는 “천연 폴리페놀(polyphenol)의 일종인 탄닌산은 강력한 항산화 효과를 가지며, 단백질과 강하게 결합하는 특성이 있어 생체 접착제(bioadhesive) 역할을 할 수 있다는 것을 입증하는데 성공했다.”고 말했다.
이어 이 교수는 “기존 연구에서도 피부 및 단백질 코팅 소재로 활용된 사례가 있지만, 이번 연구는 모발과의 결합 및 탈모 완화 성분 전달을 위한 최초 사례로 교원창업기업 폴리페놀팩토리(주)를 통해 제품화한 ‘그래비티 (Grabity)’샴푸에 적용하였다. 앞으로도 끊어지는 얇은 헤어의 강도를 획기적으로 늘리는 샴푸, 곱슬머리를 펴 주는 제품 등 더 다양한 연구 결과에 따른 제품화를 위해 노력하고 있다”고 강조했다.
화학과 김은우 박사과정이 제1 저자로, 이해신 교수가 교신저자로 참여한 이번 연구 결과는 국제 학술지 ‘어드밴스드 머티리얼 인터페이스Advanced Materials Interfaces’ 1월 6일 온라인판에 게재됐다. (논문명: Leveraging Multifaceted Polyphenol Interactions: An Approach for Hair Loss Mitigation) DOI: 10.1002/admi.202400851
한편 이번 연구는 KAIST 교원 창업 기업인 폴리페놀팩토리(주)의 지원을 받아 수행됐다.
2025.02.06
조회수 3326
-
암세포 발생 순간 되돌리는 분자스위치 발견
조광현 교수 연구팀은 암세포를 죽이지 않고 그 상태만을 변환시켜 정상 세포와 유사한 상태로 되돌리는 암 가역 치료 원천기술을 개발한 바 있다. 이번에는 정상세포가 암세포로 변화되는 순간의 유전자 네트워크에 암 가역화를 유도할 수 있는 분자스위치가 숨겨져 있음을 최초로 밝히는데 성공하였다.
우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 정상세포에서 암세포로 변화하는 순간의 임계 전이(臨界轉移, critical transition) 현상을 포착하고 이를 분석해 암세포를 다시 정상세포로 되돌릴 수 있는 분자스위치를 발굴하는 기술 개발에 성공했다고 5일 밝혔다.
임계 전이란 물이 섭씨 100도에서 증기로 변하는 것처럼 특정 시점에 갑작스러운 상태변화가 일어나는 현상을 말한다. 정상세포가 유전적, 후성유전적 변화의 축적으로 인해 특정 시점에 암세포로 변화되는 과정에도 이러한 임계 전이 현상이 나타난다.
연구팀은 암 발생 과정에서 정상세포가 암세포로 전환되기 직전, 정상세포와 암세포들이 공존하는 불안정한 임계 전이 상태에 놓일 수 있음을 발견하고 이러한 임계 전이 상태를 시스템생물학 방법으로 분석해 암화 과정을 역전시킬 수 있는 암 가역화 분자스위치 발굴 기술을 개발했다. 그리고 이를 대장암세포에 적용해 암세포가 정상세포의 특징을 회복할 수 있음을 분자세포실험으로 확인했다.
암 발생의 임계 전이를 관장하는 유전자 네트워크의 컴퓨터 모델을 단일세포 유전자 발현 데이터로부터 자동 추론해내고 이를 시뮬레이션 분석해 암 가역화 분자스위치를 체계적으로 찾아내는 원천기술을 개발한 것이어서 향후 다른 암종의 가역 치료제 개발에도 응용될 수 있을 것으로 기대된다.
조광현 교수는 "정상세포가 되돌릴 수 없는 암세포 상태로 변화되기 직전의 임계 전이 순간을 포착해 암세포의 운명을 다시 정상세포 상태로 되돌릴 수 있는 분자스위치를 발굴해 낸 것이다ˮ라고 말했다.
이어 “특히 이번 연구에서는 그동안 수수께끼로 여겨졌던 암 발생 과정 이면의 세포 내에 어떠한 변화가 일어나는지를 유전자 네트워크 차원에서 상세히 밝혀냈다”며 “암세포의 운명을 다시 정상세포로 되돌릴 수 있는 중요한 단서가 바로 이러한 변화의 순간에 숨어있다는 것을 처음으로 규명한 연구다”라고 강조했다.
우리 대학 신동관 박사(現 국립암센터), 공정렬 박사, 정서윤 박사과정 학생 등이 참여했으며 서울대학교 연구팀이 대장암 환자 오가노이드(체외배양조직)를 제공해 진행된 이번 연구 결과는 와일리(Wiley)에서 출간하는 국제저널 `어드밴스드 사이언스(Advanced Science)' 1월 22일 字 온라인판 논문으로 출판됐다. (논문명: Attractor landscape analysis reveals a reversion switch in the transition of colorectal tumorigenesis) (DOI: https://doi.org/10.1002/advs.202412503)
한편 이번 연구는 과학기술정보통신부 한국연구재단의 중견연구사업과 기초연구실사업, 그리고 보건복지부 한국보건산업진흥원의 질병중심 중개연구사업의 지원을 통해 수행됐다.
2025.02.05
조회수 4811
-
펨토초보다 짧은 순간 전이상태 분자구조를 밝히다
즈웨일 교수(1999년 노벨화학상)가 창출한 펨토화학을 통해 화학반응 중 일어나는 분자구조 변화를 실시간에서 관측할 수 있는 길이 열렸지만, 엄밀한 의미에서 에너지에 따른 전이상태 (Transition-State) 구조 변화를 직접 관측한 예는 매우 드물다. KAIST 연구진은, 광분해 화학반응 전이상태의 분자구조 변화를 분광학 기법*으로 정확하게 측정하는데 세계 최초로 성공했다.
*분광학 기법: 빛과 분자의 상호작용을 통해 양자역학적 분자구조를 정확하게 알아냄
우리 대학 화학과 김상규 교수 연구팀이 화학반응의 전이상태 (Transition-State) 구조를 실험적으로 밝히는 데 성공했다고 4일 밝혔다.
화학반응 속도론이 개발되면서, 가장 중요한 핵심으로 자리잡은 개념이 ‘전이상태 (Transition-State)’다. 전이상태 이론(Transition State Theory, 이하 TST) 에서는 반응물과 생성물 중간에 위치한 전이상태의 분자구조 및 동역학적 특성에 의해 반응속도, 생성물의 상대적 수율, 에너지 분포 등이 결정된다. TST는 지난 1세기 동안, 모든 환경에서의 연소, 유기, 생화학 반응 등에 널리 응용 되어온 가장 보편적인 반응속도론이다.
그러나, 전이상태는 펨토초(10-15 second)보다 더 짧은 시간 동안만 존재하므로, 전이상태를 직접 실험적으로 관찰하는 것은 매우 어려운 일이며 항상 도전적인 과제로 남아있었다.
김상규 교수 연구팀에서 관측한 전이상태는 특별한 의미를 갖는다. 분광학적 기법을 통해, 분자가 전이상태로 접근하면서 가지는 구조 변화를 매우 정확하게 측정할 수 있었던 첫 번째 예라는 점이다.
분광학 기법으로 측정된 정확한 전이상태 분자구조 변화에 따라 관찰된 반응속도의 급격한 변화를 통해서, 분자구조와 화학반응성 간 긴밀한 상관관계도 아울러 증명되었다.
김상규 교수는 “복잡한 분자의 화학반응에서 전이상태에 접근하면서 급격하게 변화하는 분자구조를 분광학 및 반응동역학 기법으로 밝힌 것은 처음이며, 향후 많은 이론 및 실험적 연구를 촉진할 것으로 기대된다. 특히, 전이상태 구조는 특정 화학반응을 선택적으로 빠르게 할 수 있는 고효율 촉매 설계에 가장 근원적인 정보를 제공할 것이다.”라고 말했다.
이번 연구 결과는 김정길 박사 (제 1 저자), 강민석 박사과정 학생, 윤준호 박사(現 LG화학)가 공동 저자로 2025년 1월 ‘네이처 커뮤니케이션즈(Nature Communications, Vol. 16, 210) 에 대표적(Featured) 연구 성과로 발표됐다.
또한 매우 이례적으로 분광학 분야 최고 권위자인 MIT의 로버트 필드(Robert Field) 교수 및 이스라엘 벤구리온 대학 바라밴 (Baraban) 교수가 공동작성한 하이라이트 커멘트(Nature Communications, 16, 76)를 통해, 이번 연구 결과가 가지는 독창성과 시사성, 중요성 및 향후 실험물리화학 분야에서의 임팩트가 강조됐다.
한편 이번 연구는 한국연구재단의 중견연구사업 및 기초과학 4.0 중점연구소 (자연과학연구소)에서 지원받아 수행됐다.
2025.02.04
조회수 1679
-
AI로 우주용 전기추력기 개발·고성능 예측
홀추력기는 스페이스X의 스타링크(Starlink) 군집위성이나 NASA의 사이키(Psyche) 소행성 탐사선 등과 같은 여러 고난이도 우주 임무에 활용되는, 플라즈마*를 이용한 고효율 추진 장치로, 핵심적인 우주기술 중 하나다. KAIST 연구진이 인공지능 기법을 사용해 개발한 큐브위성용 홀추력기를 올해 11월에 예정된 누리호 4차 발사에서 큐브위성인 K-HERO에 탑재돼 우주에서 성능 검증을 진행할 예정이라고 밝혔다.
*플라즈마(plasma)는 기체가 높은 에너지로 가열되어 전하를 띄는 이온과 전자로 분리된 물질의 네 가지 상태 중 하나로 우주 전기추진 뿐만 아니라 반도체 및 디스플레이 제조공정과 살균장치 등에 널리 활용되고 있다.
우리 대학 원자력및양자공학과 최원호 교수 연구팀이 인공위성이나 우주탐사선의 엔진인 홀 전기 추력기(홀추력기, Hall thruster)의 추력 성능을 높은 정확도로 예측할 수 있는 인공지능 기법을 개발했다고 3일 밝혔다.
홀추력기는 연비가 높아 적은 추진제(연료)를 사용하고도 위성이나 우주선을 크게 가속할 수 있으며, 소모 전력 대비 큰 추력을 발생시킬 수 있다. 이러한 장점을 바탕으로, 추진제 절약이 중요한 우주 환경에서 군집위성의 편대비행 유지, 우주쓰레기 감축을 위한 궤도이탈 기동, 혜성이나 화성 탐사와 같은 심우주 탐사를 위한 추진력 제공 등 다양한 임무에 폭넓게 활용되고 있다.
최근 뉴스페이스 시대에 접어들어 우주산업이 확장됨에 따라 우주 임무가 다양해지고 있고 이에 맞는 홀추력기 수요가 증가하고 있다. 각각의 고유한 임무에 최적화된 고효율 홀추력기를 신속하게 개발하기 위해서는 설계단계에서부터 추력기의 성능을 정확하게 예측하는 기법이 필수적이다.
그러나 기존의 방식들은 홀추력기 내에서 복잡하게 일어나는 플라즈마 현상을 정밀하게 다루지 못하거나, 특정 조건에 한정돼, 성능 예측 정확도가 낮은 한계가 있었다.
연구팀은 홀추력기의 설계, 제작, 시험의 반복 작업에 걸리는 시간과 비용을 획기적으로 줄이는 인공지능을 기반으로 한 정확도가 높은 추력기 성능 예측기법을 개발했다.
2003년부터 국내에서 전기추력기 개발 연구를 처음으로 시작해 관련 연구개발을 주도하고 있는 최원호 교수팀은 자체적으로 개발한 전기추력기 전산 해석 도구를 활용해 생성한 18,000개의 홀추력기 학습데이터를 기반으로 인공신경망 앙상블 구조를 도입해 추력 성능 예측에 적용했다.
양질의 학습데이터를 확보하기 위해 개발된 전산 해석 도구는 플라즈마 물리 현상과 추력 성능을 모델링한다. 전산 해석 도구의 정확성은, 연구팀이 국내 최초로 개발한 10개의 홀추력기로 수행된 100여 개의 실험 데이터와 비교해 평균오차가 10% 이내로 정확도가 높은 것으로 검증됐다.
학습된 인공신경망 앙상블 모델은 홀추력기의 설계 변수에 따라 높은 정확도로 단지 수초 내로 짧은 시간 안에 추력기 성능을 예측할 수 있는 디지털트윈 모델로 작동한다.
특히 기존에 알려진 스케일링 법칙으로는 분석하기 어려웠던 연료 유량이나 자기장과 같은 설계 변수에 따른 추력과 방전전류와 같은 성능지표 변화를 상세히 분석할 수 있다.
연구팀은 이번에 개발한 인공신경망 모델이 자체 개발한 700W급 및 1kW급 홀추력기에서 평균오차 5% 이내, 미 공군연구소에서 개발한 5kW급 고전력 홀추력기에 대해 평균오차 9% 이내의 정확도를 보여주었다. 이번 연구로 개발한 인공지능 예측기법이 다양한 전력 크기의 홀추력기에 폭넓게 적용할 수 있는 것을 입증했다.
최원호 교수는 “연구팀에서 개발한 인공지능 기반 성능 예측기법은 정확도가 높아 인공위성과 우주선의 엔진인 홀추력기의 추력성능 분석과 고효율 저전력 홀추력기 개발에 이미 활용되고 있다. 이 인공지능 기법은 홀추력기 뿐만 아니라 반도체, 표면 처리 및 코팅 등 다양한 산업에서 활용되는 이온빔 소스의 연구개발에도 접목될 수 있다”라고 밝혔다.
또한, 최교수는 “연구팀의 실험실 창업기업으로 전기추진 전문기업인 코스모비㈜와 함께 인공지능 기법을 사용해 개발한 큐브위성용 홀추력기는 올해 11월에 예정된 누리호 4차 발사에서 3U(30x10x10 cm) 큐브위성인 K-HERO에 탑재돼 우주에서 성능 검증을 진행할 예정”이라고 설명했다.
원자력및양자공학과(우주탐사공학학제전공) 박재홍 박사과정 학생이 제1 저자로 참여한 이번 연구 결과는 국제적으로 저명한 인공지능 다학제 학술지인 ‘어드밴스드 인텔리전트 시스템(Advanced Intelligent Systems)’에 2024년 12월 25일에 온라인 게재됐으며, 저널 표지논문(front cover)으로 채택돼 혁신성을 인정받았다.
이번 연구는 한국연구재단 스페이스파이오니어사업(200mN급 고추력 전기추진시스템 개발)의 지원을 받아 수행됐다.
(논문 제목: Predicting Performance of Hall Effect Ion Source Using Machine Learning, DOI: https://doi.org/10.1002/aisy.202400555)
2025.02.03
조회수 2257
-
백금 1/10 줄인 촉매로 수전해 셀 생산 성공
수전해 셀은 물을 전기화학적으로 분해해 수소를 생산하는 기술로, 탄소 중립 시대를 위한 필수적인 에너지 변환 기술이지만 산업적 활용을 위해서는 고가의 백금 사용량이 크게 요구되는 한계가 있었다. 한국 연구진이 백금 사용량을 1/10로 줄여 수전해 셀의 경제성을 높이는데 성공했다. 이번 연구에서 측정한 수전해 셀 성능은 미국 에너지부(Department of Energy, DOE)가 제시한 수전해 셀 성능 및 귀금속 사용량의 2026년 목표치를 유일하게 충족시켰다고 평가받았다.
우리 대학 생명화학공학과 이진우 교수 연구팀이 화학과 김형준 교수 연구팀과 공동연구를 통해 음이온 교환막 기반 수전해 셀의 성능과 안정성을 획기적으로 높이는 고성능 고안정성 귀금속 단일 원자 촉매를 개발했다고 31일 밝혔다.
연구팀은 귀금속 촉매의 열화 메커니즘을 역이용하는 ‘자가조립원조 귀금속 동적배치’전략을 개발했다. 이 방법은 1,000℃ 이상의 고온에서 귀금속이 자발적이고 선택적으로 탄화물 지지체에 단일원자로 분해돼 안정적으로 담지되는 합성 기술이다. 이를 통해, 상용 백금 촉매 대비 1/10 수준의 백금 사용량으로도 더 높은 성능과 안정성을 구현했다.
단일 원자 촉매는 금속 원자가 지지체 표면에 고립된 형태로 담지돼 높은 귀금속당 촉매 효율을 나타내지만, 기존 저온 환원법에서는 촉매 성능 및 안정성 확보에 한계가 있었다.
연구팀은 귀금속 전구체와 고분자 사이의 분자적 상호작용 및 귀금속-지지체 사이의 상호작용을 응용해 자가조립원조 귀금속 동적배치라는 새로운 단일 원자 촉매합성 메커니즘을 제시했다. 또한, 연구팀은 이 합성 기술을 통해 백금뿐만 아니라 이리듐, 팔라듐, 로듐 등 다양한 귀금속 단일 원자 촉매에도 적용 가능성을 입증했다.
개발된 백금 단일 원자 촉매의 경우, 염기 조건 수소 생성반응에서 높은 안정성을 가지며 높은 밀도의 귀금속 활성점을 통해 우수한 수소 생산 성능을 보였다. 이 결과 상용 백금 촉매 대비 5배 높은 귀금속당 수소 생산 성능을 구현할 수 있었다.
연구팀은 개발 촉매의 상용성 평가를 위해 음이온 교환막 기반 수전해 셀에 적용했다. 개발된 백금 단일 원자 촉매는 상용 백금 촉매 대비 1/10 백금 사용량에도 불구하고 그를 능가하는 3.38A/cm2 (@ 1.8 V)의 높은 성능을 기록했으며, 1A/cm2의 산업용 전류밀도에서도 우수한 안정성을 나타냈다. 특히 이 성능은 미국 에너지부(Department of Energy, DOE)가 제시한 수전해 셀 성능 및 귀금속 사용량의 2026년 목표치를 충족시키는 유일한 음이온 교환막 기반 수전해 셀 성능으로 평가받는다.
제1 저자인 김성빈 연구교수는 "이번 기술은 수전해 셀의 원가를 크게 절감시키며 이번 연구에서 제시된 자가조립원조 귀금속 동적배치 전략은 수전해 셀뿐만 아니라 다양한 귀금속 기반 촉매 공정에도 응용할 수 있어 산업적 파급력이 클 것으로 보인다“고 말했다.
생명화학공학과 김성빈 연구교수가 주도하고, UNIST 에너지화학공학과 신승재 교수, KIST 수소연료전지센터 김호영 박사가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `에너지 인바이론멘탈 사이언스 (Energy & Environmental Science)' 1월 18권에 출판됐으며, 후면 표지논문(inside back cover)으로 선정됐다.
(논문명 : Self-assembly-assisted dynamic placement of noble metals selectively on multifunctional carbide supports for alkaline hydrogen electrocatalysis) DOI: 10.1039/D4EE04660A
한편 이번 연구는 한국연구재단의 나노미래소재원천기술개발사업, 중견연구자지원사업, 미래소재디스커버리사업 및 한국슈퍼컴퓨팅센터의 지원을 받아 수행됐다.
2025.02.03
조회수 1190
-
버려지는 이산화탄소를 되살릴 수 있다면
세계적으로 기후 변화와 탄소 배출 문제의 심각성이 대두되면서 이산화탄소(CO2)를 화학 연료와 화합물 등의 자원으로 전환해서 활용하는 기술이 절실한 상황이다. 우리 대학 화학과 박정영 교수 연구팀이 한국재료연구원 나노재료연구본부 박다희 박사 연구팀과 공동연구를 통해 이산화탄소(CO2) 전환 효율을 크게 향상하는 촉매 기술을 개발했다.
기존의 이산화탄소(CO2) 전환 기술은 높은 에너지를 소비하는 것에 비해 효율은 낮아 상용화가 어렵다. 특히, 단원자 촉매(SACs)는 촉매 합성이 복잡하고, 금속 산화물 지지체(촉매 입자를 안정적으로 유지하거나 내구성을 높이는 역할)와 결합 안정성을 유지하기 어려워 촉매 성능이 떨어졌다.
이러한 한계를 극복하기 위해 연구팀은 단일 및 이중 단원자 촉매 기술을 개발하고 간단한 공정으로 촉매 효율을 높이는 기술을 선보였다. 본 성과는 이중 단원자 촉매(DSACs)로 금속 간 전자 상호작용을 적극 활용해 기존보다 50% 이상 높은 전환율과 우수한 선택성(촉매가 원하는 생성물을 많이 생성할 수 있도록 유도하는 능력)을 구현했다.
본 기술은 금속 산화물 지지체 내 산소 공공(Oxygen Vacancy)과 결함 구조를 정밀하게 제어해 이산화탄소(CO2) 전환 반응의 효율과 선택성을 획기적으로 높이는 촉매 설계 기술이다. 산소 공공이 촉매 표면에 이산화탄소가 잘 흡착되도록 돕고, 단원자 및 이중 단원자는 수소(H2)가 흡착되도록 돕는다. 산소 공공과 단원자 및 이중 단원자가 함께 작용하면서 이산화탄소(CO2)가 수소(H2)와 만나 원하는 화합물로 쉽게 전환되는 것이다. 특히, 이중 단원자 촉매(DSACs)는 두 금속 원자 간의 전자 상호작용을 적극 활용해 반응 경로를 조절하고 효율을 극대화했다.
연구팀은 에어로졸 분무 열분해법(Aerosol-Assisted Spray Pyrolysis)을 적용해 간단한 공정으로 촉매를 합성하고 대량 생산 가능성도 확보했다. 이는 복잡한 중간 과정 없이 액체 상태의 재료를 에어로졸(안개 같은 작은 입자)로 만든 후 뜨거운 챔버에 보내면 촉매가 완성되는 간단한 공정 방식이다. 해당 방식은 금속 산화물 지지체 내부에 금속 원자를 균일하게 분산시키고, 결함 구조를 정밀하게 조절할 수 있도록 돕는다. 이처럼 금속 산화물 지지체의 결함 구조를 정밀하게 제어함으로써 단일 및 이중 단원자 촉매를 안정적으로 형성하고 이중 단원자 촉매(DSACs)를 활용해 기존 단일 원자 촉매 사용량을 약 50% 줄이면서도 이산화탄소(CO2) 전환 효율을 기존 대비 약 두 배 이상 향상시키고, 99% 이상의 높은 선택성을 구현했다.
본 기술은 화학 연료 합성, 수소 생산, 청정에너지 산업 등 다양한 분야에 활용할 수 있다. 또한, 촉매 합성법(에어로졸 분무 열분해법)이 간단하고 생산 효율도 높아서 상용화될 가능성이 매우 크다.
연구책임자인 박다희 선임연구원은 "본 기술은 이산화탄소(CO2) 전환 촉매의 성능을 획기적으로 향상하는 동시에 간단한 공정을 통해 상용화를 가능하게 한 중요한 성과”라며, "탄소중립 실현을 위한 핵심 기술로 활용될 수 있을 것으로 기대된다.”라고 밝혔다. 또한 박정영 교수는 “본 연구는 새로운 종류의 단원자 촉매를 상대적으로 쉽게 합성할 수 있어 다양한 화학 반응에 쓰일 수 있고, 온실가스로 인한 지구온난화 문제 해결에 가장 시급한 연구 분야인 이산화탄소 분해/활용 촉매개발에 중요한 단초를 제공한다.”라고 언급했다.
본 연구는 한국재료연구원의 주요사업과 과학기술정보통신부, 산업통상자원부, 국가과학기술연구회의 지원을 받아 수행되었다. 연구 결과는 촉매 및 에너지 분야에서 권위 있는 저널인 어플라이드 카탈러시스 비: 인바이런멘탈 앤 에너지(Applied Catalysis B: Environmental and Energy(JCR 상위 1%, IF 20.3))에 온라인 게재됐다.
*논문(Applied Catalysis B: Environmental and Energy)
DOI 주소 https://doi.org/10.1016/j.apcatb.2024.124987
2025.01.23
조회수 1653
-
원하는 소재 개발 인공지능 모퓨전(MOFFUSION)으로
최근 생성형 인공지능은 텍스트, 이미지, 비디오 생성 등 다양한 분야에서 널리 사용되고 있지만, 소재 개발 분야에서는 아직 충분히 활용되지 못하고 있다. 이러한 상황에서 KAIST 연구진이 구조적 복잡성을 지닌 다공성 소재를 생성하는 인공지능 모델을 개발하여, 사용자가 원하는 특성의 소재를 선택적으로 생성할 수 있게 되었다.
우리 대학 생명화학공학과 김지한 교수 연구팀이 원하는 물성을 가진 금속 유기 골격체(Metal-Organic Frameworks, MOF)를 생성하는 인공지능 모델을 개발했다고 23일 밝혔다.
김지한 교수 연구팀이 개발한 생성형 인공지능 모델인 모퓨전(MOFFUSION)은 금속 유기 골격체의 구조를 보다 효율적으로 표현하기 위해, 이들의 공극 구조를 3차원 모델링 기법을 활용해 나타내는 혁신적인 접근 방식을 채택했다. 이 기법을 통해 기존 모델들에서 보고된 낮은 구조 생성 효율을 81.7%로 크게 향상시켰다.
또한, 모퓨전은 생성 과정에서 사용자가 원하는 특성을 다양한 형태로 표현하여 인공지능 모델에 입력할 수 있는 특징이 있다. 연구진은 사용자가 원하는 물성을 숫자, 카테고리, 텍스트 등 다양한 형태로 입력할 수 있으며, 데이터 형태와 관계없이 높은 생성 성능을 보임을 확인했다.
예를 들어, 사용자가 생성하고자 하는 물질의 특성값을 텍스트 형태(예:“30 g/L의 수소 흡착량을 갖는 구조”)로 모델에 입력하면, 모델은 이에 상응하는 물질을 선택적으로 생성한다. 이러한 특징은 소재 개발에 있어 인공지능 모델의 활용성과 편의성을 크게 개선하는 요소로 작용한다.
김지한 교수는 “원하는 물성의 소재를 개발하는 것은 소재 분야의 가장 큰 목표이며 오랜 연구 주제”라며, “연구팀이 개발한 기술은 인공지능을 활용한 다공성 소재 개발에 있어 큰 발전을 이뤘으며, 앞으로 해당 분야에서 생성형 인공지능의 도입을 촉진할 것”이라고 말했다.
우리 대학 생명화학공학과 박준길 박사, 이유한 박사가 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)'에 지난 1월 2일 게재됐다. (논문명 : Multi-modal conditional diffusion model using signed distance functions for metal-organic frameworks generation) (https://doi.org/10.1038/s41467-024-55390-9)
한편 이번 연구는 과학기술정보통신부의 탑-티어 연구기관 간 협력 플랫폼 구축 및 공동연구 지원사업, 나노 및 소재기술 개발사업, 그리고 한국연구재단 (NRF) 중견연구자 지원사업의 지원을 받아 수행됐다.
2025.01.23
조회수 1989
-
암 발생 현상 등 유전자 발현 조절 원리 규명
다양한 암 발생과 암전이 현상, 줄기세포로부터의 조직 분화 및 발생, 신경 세포의 활성화 과정 등을 근본적으로 일으키는 유전자 발현 조절 단백질의 핵심 유전자 발현 네트워크를 발견했다. 우리 연구진은 이 발견을 기초로 하여 혁신적인 치료 기술 개발에 활용 가능성을 높였다.
우리 대학 생명과학과 김세윤 교수, 이광록 교수, 조원기 교수 공동연구팀이 동물 세포의 유전자 발현을 조절하는 핵심적인 원리를 규명했다고 22일 밝혔다.
이노시톨 대사 효소에 의해 만들어지는 이노시톨 인산 대사체는 진핵 세포의 신호전달 시스템에 필요한 다양한 이차 신호전달물질로 작용하며 암, 비만, 당뇨, 신경계 질환들에 폭넓게 관여한다.
연구팀은 이노시톨 대사 시스템의 핵심 효소인 IPMK 단백질이 동물 세포의 핵심 유전자 발현 네트워크의 중요한 전사 활성화 인자로 작용함을 규명했다.
포도당과 유사한 영양소로 알려진 이노시톨의 대사 반응에 핵심적으로 작용하는 효소인 IPMK 단백질(inositol polyphosphate multikinase)은 유전자 발현을 직접적으로 조절하는 기능을 가지고 있다. 특히 IPMK 효소는 동물 세포의 대표적인 전사 인자(transcription factor)인 혈청 반응 인자(serum response factor, 이하 SRF)에 의한 유전자 전사 과정에 중요하다고 보고된 바 있으나 작용하는 기전에 대하여 알려진 바는 없었다.
SRF 전사 인자는 최소 200~300여 개의 유전자 발현을 직접적으로 조절하는 단백질로서, 동물 세포의 성장과 증식, 세포 사멸, 세포의 이동성 등을 조절하며 심장과 같은 장기 발생에 필수적이다.
연구팀은 IPMK 단백질이 SRF 전사 인자와 직접적으로 결합한다는 사실을 발견하고 이를 통해 SRF 전사 인자의 3차원적 단백질 구조를 변화시킨다는 것을 밝혔다.
연구팀은 IPMK 효소에 의하여 활성화된 SRF 전사 인자를 통해 다양한 유전자들의 전사 과정이 촉진된다는 것을 밝혔다. 즉, IPMK 단백질은 SRF 전사 인자의 단백질 활성을 높이는 데 반드시 필요한 조절 스위치와 같은 역할을 수행하는 것임을 연구팀은 규명했다.
연구팀은 IPMK 효소와 SRF 전사 인자 사이의 직접적인 결합에 문제가 발생할 경우, SRF 전사 인자의 기능과 활성이 낮아져 유전자 발현에 심각한 장애가 발생한다는 점을 최종적으로 검증하였다.
특히 SRF 전사 인자가 가지고 있는 비정형 영역(Intrinsically disordered region, IDR)이 중요한 조절 부위라는 점을 밝힘으로써 비정형 단백질의 생물학적 중요성을 제시했다. 보통 단백질은 접힘을 통해 고유의 구조를 나타내지만 비정형 영역을 포함하게 되는 경우에는 특정한 단백질 구조가 관찰되지 않는다. 학계에서는 이러한 비정형 영역을 가지고 있는 단백질들을 비정형 단백질이라고 구분하고 어떠한 기능을 수행하는지 주목하고 있다.
김세윤 교수는 “이번 연구는 이노시톨 대사 시스템의 핵심 효소인 IPMK 단백질이 동물 세포의 핵심 유전자 발현 네트워크의 중요한 전사 활성화 인자이며 이를 증명하는 핵심 메커니즘을 제시한 중요한 발견”이라며, “SRF 전사 인자로부터 파생되는 다양한 암의 발생과 암전이 현상, 줄기세포로부터의 조직 분화 및 발생, 신경 세포 활성화 과정 등을 근본적으로 이해함으로써 혁신적인 치료 기술 개발 등에 폭넓게 활용되기를 바란다”라는 기대를 전했다.
이 연구는 세계적 국제학술지 ‘핵산 연구 (Nucleic Acids Research)’ (IF=16.7, 생화학 및 분자생물학 분야 상위 1.8%) 온라인판에 1월 7일 게재됐다. (논문명 : Single-molecule analysis reveals that IPMK enhances the DNA-binding activity of the transcription factor SRF) (doi: 10.1093/nar/gkae1281)
한편 이번 연구는 한국연구재단의 중견연구사업, 선도연구센터 지원사업, 글로벌 기초연구실 지원사업과 서경배과학재단, 삼성미래기술육성사업의 지원을 받아 수행됐다.
2025.01.22
조회수 1915
-
스트레스 위험 혈관 변화 실시간으로 잡아낸다
심혈관 질환은 전 세계 사망 원인 1위로 매우 심각한 건강 문제다. 특히, 정신적 스트레스가 심혈관 질환을 더 악화시킨다는 것이 보고되어 왔다. 한국 연구진이 그동안 관찰하기 어려웠던 스트레스로 인한 혈관 변화를 실시간으로 알아내는 데 성공했다.
우리 대학 기계공학과 유홍기 교수 연구팀이 고려대학교 구로병원 심혈관센터 김진원 교수 연구팀과 협력해 심장 박동으로 인한 혈관의 움직임을 보상해 실시간으로 혈관 내 세포의 움직임을 관찰할 수 있는 새로운 생체 내 영상 획득 기술을 개발했다고 20일 밝혔다.
연구팀은 초점 가변 렌즈를 생체 내 광학 현미경에 도입해 동맥의 움직임을 추정했고, 이를 현미경의 초점 평면과 동기화하는 기법을 개발했다. 이 기술을 통해 동맥의 움직임으로 인한 이미지 간의 상관 계수(이미지들 간의 유사성을 나타내는 통계적 지표)를 4배 높일 수 있었고, 시간해상도(단위 시간당 촬영 가능한 이미지 수)를 57% 향상해 혈관 내 면역세포의 빠른 움직임을 실시간으로 관찰했다.
즉, 이 기술을 통해 동맥의 움직임으로 인한 영상 왜곡을 크게 줄이고 초점을 안정적으로 유지함으로써, 영상을 놓치지 않고 혈관 내에서 빠르게 움직이는 면역세포를 실시간으로 관찰하는 데 성공했다.
연구팀은 만성 스트레스에 노출된 실험군 쥐와 대조군 쥐의 경동맥에서 생체 내 영상 획득에 본 기술을 적용했고, 동맥경화 병변의 진행 정도를 세포 수준의 해상도에서 정량적으로 평가할 수 있었다.
만성 스트레스에 노출된 쥐의 경동맥에서 골수 세포의 침윤이 대조군 대비 6.09배 증가했으며, 추적 영상에서는 골수 세포가 2.45배 더 증가하는 것을 확인했다. 또한, 조직학적 분석을 통해 스트레스가 동맥경화반의 크기와 염증을 증가시키고, 섬유성 막을 얇게 만들어 경화반의 불안정성을 높인다는 것을 입증했다.
유홍기 교수는 “이번 연구를 통해 비접촉 방법으로 동맥의 움직임을 정확하게 추정할 수 있었고, 이 방법은 실험동물의 높은 생존율을 보장할 수 있어 만성 스트레스가 미치는 영향을 종단 연구로 입증할 수 있었다”라고 말했다.
이어 유 교수는 “이 기술은 우수한 시간 해상도를 제공해 스트레스가 심혈관 질환에 미치는 영향을 세포 수준에서 실시간으로 관찰할 수 있어 앞으로 스트레스 관련 심혈관 질환의 발병 기전을 규명하고 새로운 치료법을 개발하는 데 중요한 도구로 활용될 것으로 기대하고 있다”라고 강조했다.
기계공학과 장민석 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 ‘동맥경화, 혈전, 혈관 생물학(Arteriosclerosis, Thrombosis, and Vascular Biology)’에 지난해 10월 10일 온라인판 게재됐고, 44권 12호에 표지논문과 에디터픽으로 선정됐다.
(논문명: Real-time imaging assessment of stress-induced vascular inflammation using heartbeat-synchronized motion compensation)
한편 이번 연구는 한국연구재단, 범부처전주기의료기기연구개발사업단의 지원을 받아 수행됐다.
2025.01.22
조회수 1295
-
스스로 학습·수정하는 뉴로모픽 반도체칩 개발
기존 컴퓨터 시스템은 데이터 처리 장치와 저장 장치가 분리돼 있어, 인공지능처럼 복잡한 데이터를 처리하기에는 효율적이지 않다. KAIST 연구팀은 우리 뇌의 정보 처리 방식과 유사한 멤리스터 기반 통합 시스템을 개발했다. 이제 원격 클라우드 서버에 의존하지 않고 의심스러운 활동을 즉시 인식하는 스마트 보안 카메라부터 건강 데이터를 실시간으로 분석할 수 있는 의료기기까지 다양한 분야에 적용될 수 있게 되었다.
우리 대학 전기및전자공학부 최신현 교수, 윤영규 교수 공동연구팀이 스스로 학습하고 오류를 수정할 수 있는 차세대 뉴로모픽 반도체 기반 초소형 컴퓨팅 칩을 개발했다고 17일 밝혔다.
연구팀이 개발한 이 컴퓨팅 칩의 특별한 점은 기존 뉴로모픽 소자에서 해결이 어려웠던 비이상적 특성에서 발생하는 오류를 스스로 학습하고 수정할 수 있다는 것이다. 예를 들어, 영상 스트림을 처리할 때 칩은 움직이는 물체를 배경에서 자동으로 분리하는 법을 학습하며 시간이 지날수록 이 작업을 더 잘 수행하게 된다.
이러한 자가 학습 능력은 실시간 영상 처리에서 이상적인 컴퓨터 시뮬레이션에 견줄 만한 정확도를 달성하며 입증됐다. 연구팀의 주요성과는 뇌와 유사한 구성 요소의 개발을 넘어, 신뢰성과 실용성을 모두 갖춘 시스템으로 완성한 것에 있다.
연구팀은 세계 최초로 즉각적인 환경 변화에 적응할 수 있는 멤리스터 기반 통합 시스템을 개발하며, 기존 기술의 한계를 극복하는 혁신적인 해결책을 제시했다.
이 혁신의 핵심에는 멤리스터(memristor)*라고 불리는 차세대 반도체 소자가 있다. 이 소자의 가변 저항 특성은 신경망의 시냅스 역할을 대체할 수 있게 되고, 이를 활용해 우리 뇌세포처럼 데이터 저장 및 연산을 동시에 수행할 수 있다.
*멤리스터: 메모리(memory)와 저항(resistor)의 합성어로 두 단자 사이로 과거에 흐른 전하량과 방향에 따라 저항값이 결정되는 차세대 전기소자
연구팀은 저항 변화를 정밀하게 제어할 수 있는 고신뢰성 멤리스터를 설계하고, 자가 학습을 통해 복잡한 보정 과정을 배제한 효율적인 시스템을 개발했다. 이번 연구는 실시간 학습과 추론을 지원하는 차세대 뉴로모픽 반도체 기반 통합 시스템의 상용화 가능성을 실험적으로 검증했다는 점에서 중요한 의미를 가진다.
이 기술은 일상적인 기기에서 인공지능을 사용하는 방식을 혁신하여 AI 작업 처리를 위해 원격 클라우드 서버에 의존하지 않고 로컬에서 처리할 수 있게 되어, 더 빠르고 사생활 보호가 강화되며 에너지 효율성이 높아질 것이다.
이 기술 개발을 주도한 KAIST 정학천 연구원과 한승재 연구원은 “이 시스템은 책상과 자료 캐비닛을 오가며 일하는 대신 모든 것이 손이 닿는 곳에 있는 스마트 작업 공간과 같다. 이는 모든 것이 한 곳에서 처리돼 매우 효율적인 우리 뇌의 정보 처리 방식과 유사하다”고 설명했다.
전기및전자공학부 정학천 석박통합과정생과 한승재 석박사통합과정생이 제 1저자로 연구에 참여했으며 국제 학술지 `네이처 일렉트로닉스 (Nature Electronics)'에 2025년 1월 8일 자로 온라인 게재됐다.
(논문 제목: Self-supervised video processing with self-calibration on an analogue computing platform based on a selector-less memristor array, https://doi.org/10.1038/s41928-024-01318-6)
이번 연구는 한국연구재단의 차세대지능형반도체기술개발사업, 우수신진연구사업, PIM인공지능반도체핵심기술개발사업, 정보통신기획평가원의 한국전자통신연구원연구개발지원사업의 지원을 받아 수행됐다.
2025.01.22
조회수 1955
-
화재·재난 속 공간 입체적 느끼는 촉각기술 개발
재난 및 화재의 상황은 사람이 직접 투입되기 어렵고 시야가 제한될 수 있는 극한 상황이며, 드론이 수집한 공간 데이터를 촉감형 인터페이스를 통해 입체적인 정보 그대로 전달하는 것은 매우 어렵다. KAIST 연구진이 원격 제어하는 드론이 수집한 공간 데이터를 촉각 피드백을 통해 직관적으로 조종자가 이해할 수 있도록 하는 웨어러블 햅틱 기술을 개발했다.
우리 대학 기계공학과 오일권 교수 연구팀이 형상기억합금 와이어를 직교 중첩 구조의 메타구조 패턴으로 매듭지은 독립적인 직교 방향 거동이 가능한 ‘직교 방향 제어 웨어러블 햅틱(이하 WHOA)’기술을 개발했다.
햅틱(Haptic)은 시·청각을 넘어 촉각을 이용해 정보를 전달하는 기술로, 스마트폰의 진동 알림처럼 피부로 감지할 수 있는 물리적 피드백을 제공한다.
이 기술의 핵심 소재인 형상기억합금은 특정 온도로 가열하면 변형된 상태에서 원래 형태로 돌아오는 특수 금속으로 촉각을 구현하는 작동기로 사용되었다. 연구팀은 가볍고 단순한 직교 메타구조로 3차원 공간정보를 촉각으로 재구성할 수 있는 기술을 개발해서 공간 인식 기반 햅틱 내비게이션의 새로운 영역을 개척했다.
연구팀이 개발한 이 기술은 시각 정보에 의존하지 않고도 주변 환경을 ‘느낄 수’ 있는 방식으로 재난, 화재, 극한환경에서 효과적인 모빌리티 제어를 가능하게 한다. 특히, 시각 정보가 제한되는 상황에서도 공간정보를 직접 감지할 수 있어, 기존 방식보다 안정적이고 효율적인 조작이 가능하다.
촉각 피드백은 좌, 우, 상, 하, 전진, 후진 같은 공간 이동뿐만 아니라 전방 장애물 감지 시 독특한 햅틱 패턴까지 전달하도록 설계됐다. 이 기술은 재난 구조와 긴급 구호 작업 같은 중요한 상황에서 작업 효율성과 안전성을 크게 끌어올릴 가능성을 보여준다.
이 기술은 서로 수직인 독립된 촉감 모드를 생성하며, 이를 통해 팔이나 발에 착용했을 때 사용자에게 입체 공간정보를 촉감으로 전달할 수 있다. 이는 내비게이션과 원격 조작을 보다 직관적으로 수행할 수 있도록 보조한다.
WHOA를 착용하면 가로, 세로 방향의 독립적인 촉각 모드 조합을 통해 사용자는 입체적인 공간정보 피드백을 받는다. 특히 이 기술은 신발 내부의 작은 공간에서도 동작하도록 설계되어 장시간 착용할 시 피로를 최소화하는 동시에 손이 자유로운 상태에서 직관적으로 다음 이동 방향을 파악할 수 있어 실용성이 뛰어나다.
연구팀은 WHOA를 적용한 드론 내비게이션 시스템을 가상현실(VR) 환경에서 실증했다. 화재 현장의 건물을 배경으로 한 시뮬레이션에서 WHOA를 착용한 사용자는 드론을 조종하며 위험 구역을 회피하고 구조 작업을 수행했다.
드론이 수집한 공간 데이터는 촉각 피드백으로 사용자에게 전달되며, 연기와 잔해로 시야가 제한된 환경에서도 직관적으로 상황을 파악하고 드론을 제어할 수 있도록 보조한다.
오일권 교수는 “이번 기술은 시각장애인이 촉감을 활용해 길을 안내받을 수 있는 새로운 형태의 내비게이션 기법”이며 "착용형 햅틱 인터페이스는 입체적 공간정보를 촉감으로 전달하여 재난, 화재 환경 또는 국방의 MUM-T(유무인 협력 전투체계)에서 드론이나 로봇의 원격제어에 활용될 수 있다"라고 말했다.
오세웅 박사와 마난 칸(KHAN) 석사가 공동 제1 저자로 참여한 본 연구 성과는 첨단 소재 분야 국제학술지 ‘어드밴스드 머티리얼스(Advanced Materials)’에 지난 1월 8일 게재됐다.
(논문명: Wearable Haptics for Orthotropic Actuation Based on Perpendicularly Nested Auxetic SMA Knotting)
https://doi.org/10.1002/adma.202411353
한편, 이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 중견연구지원 사업으로 수행됐다.
2025.01.21
조회수 2050
-
초당 9,120프레임 포착 곤충눈 모사 카메라 개발
곤충의 겹눈은 빠르게 움직이는 물체를 병렬적으로 감지하고, 어두운 환경에서는 감도를 높이기 위해 시각세포가 여러 시간의 신호를 합쳐서 반응해 움직임을 결정한다. KAIST 연구진이 곤충의 생체를 모사하여 기존 고속 카메라가 직면했던 프레임 속도와 감도 간의 한계를 극복한 저비용 고속 카메라를 개발하는데 성공했다.
우리 대학 바이오및뇌공학과 정기훈·전산학과 김민혁 교수 연구팀이 곤충의 시각 구조에서 영감을 받아 초고속 촬영과 고감도를 동시에 구현한 새로운 생체모사 카메라를 개발했다고 16일 밝혔다.
고속 및 저조도 환경에서의 고품질 이미징은 많은 응용 분야에서 중요한 과제이다. 기존의 고속 카메라는 빠른 움직임을 포착하는 데 강점을 가지고 있지만, 프레임율을 높일수록 빛을 수집할 수 있는 시간이 줄어들어 저조도 환경에서는 감도가 부족한 문제가 발생해왔다.
이를 해결하기 위해 연구팀은 곤충의 시각 기관처럼, 여러 개의 광학 채널과 시간 합산을 활용하는 방식을 채택했다. 기존 단안 카메라 시스템과 달리, 생체 모사 카메라는 겹눈을 통해 서로 다른 시간대의 프레임을 병렬적으로 획득할 수 있다.
이 과정에서 각 프레임이 중첩되는 시간 동안 빛을 합산함으로써 신호대잡음비를 증가시킬 수 있다. 연구팀은 이러한 방식을 적용한 생체 모사 카메라가 기존의 고속 카메라 대비 최대 40배 더 어두운 물체까지 포착할 수 있었다고 밝혔다.
또한 연구팀은 카메라의 속도를 크게 향상하기 위해 ‘채널 분할’ 기술을 도입하여 패키징에 사용된 이미지센서보다 수천 배 빠른 프레임률을 획득할 수 있었다. 이에 더해 ‘압축 이미지 복원’ 알고리즘을 활용해 합산된 프레임에서 발생할 수 있는 흐림 현상을 제거하며, 선명한 이미지를 재구성했다.
연구팀은 제작된 생체 모사 카메라는 두께 1mm 이하의 매우 얇고, 작은 크기에도 불구하고 초당 9,120프레임을 촬영할 수 있고, 낮은 조도에서도 선명한 이미지를 제공한다.
향후 연구팀은 3D 이미징 및 초해상도 이미징을 위한 고급 이미지 처리 알고리즘을 통해 바이오의료 응용뿐 아니라 모바일 등 다양한 카메라 응용 기술을 개발할 예정이라고 밝혔다.
제1 저자인 바이오및뇌공학과 김현경 박사과정은 “제작된 곤충 눈 카메라가 작은 크기임에도 불구하고 고속 및 저조도 촬영에서 뛰어난 성능을 발휘하는 것을 실험적으로 검증했다”라며, “이 카메라는 이동식 카메라 시스템, 보안 감시, 의료 영상 등 다양한 분야에서의 응용 가능성을 열었다”라고 말했다.
바이오및뇌공학과 김현경 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 어드밴시스(Science Advances)'에 1월 출판됐다. (논문명 : Biologically-inspired microlens array camera for high-speed and high-sensitivity imaging)
DOI: https://doi.org/10.1126/sciadv.ads3389
한편 이번 연구는 국방기술진흥연구소, 과학기술정보통신부, 그리고 산업통상자원부의 지원을 받아 수행됐다.
2025.01.16
조회수 2215