본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EA%B3%A0%EB%B6%84%EC%9E%90
최신순
조회순
박용근, 조용훈 교수, 빛을 자유자재로 다룰 수 있는 광학기술 개발
우리 대학 물리학과 박용근, 조용훈 교수와 고려대학교 재료공학과 이헌 교수 공동 연구팀이 빛의 산란을 이용해 다기능 광학 기기를 제작할 수 있는 기술을 개발했다. 이번 연구 결과는 미국 화학회(American Chemical Society, ACS)가 발행하는 나노분야 학술지 ‘에이씨에스 나노(ACS Nano)’ 6월 29일자 온라인 판에 게재됐다. 빛이 안개나 페인트 등의 불규칙한 매질을 투과하면 매우 복잡한 형태의 수많은 반사와 굴절이 발생한다. 이를 빛의 다중 산란이라고 하는데, 다중 산란을 겪은 빛은 간섭이라는 물리 현상을 통해 복잡한 패턴을 나타낸다. 우리가 짙은 안개 속에서 앞을 볼 수 없고 맥주의 거품이 하얗게 보이는 것도 빛의 다중산란이 만든 현상이다. 일반적으로 다중 산란이 생기면 빛이 매우 불규칙한 형태로 지나가기 때문에 제어가 어렵다. 그러나 홀로그래피 기술을 이용해 입사하는 빛의 방향을 잘 제어해주면 다중 산란이 발생해도 원하는 형태로 빛을 제어할 수 있다. 연구팀은 이러한 다중 산란을 효과적으로 활용해 빛의 다양한 성질을 제어할 수 있는 새로운 개념의 광학기기를 개발했다. 이 광학기기는 빛의 반사나 굴절의 원리를 이용하던 기존 기술과 달리 빛의 산란을 이용했다는 특징을 갖는다. 연구팀의 광학기기는 복잡 매질과 광 고분자 필름으로 구성된다. 광 고분자 필름은 입사되는 빛을 홀로그래피 기술을 통해 원하는 모양으로 제어한다. 또한 제어된 빛을 기록하고 실제로 비추는 역할을 한다. 광 고분자 필름을 통해 들어온 빛은 복잡 매질을 지나 일정한 패턴으로 다중 산란돼 원하는 모양의 빛을 나타낸다. 이 두 가지 과정을 통해 독립적으로 활용 가능한 다기능 산란 광학기기의 구현이 가능해진다. 이 기술로 투과된 빛의 진폭, 파장, 편광 뿐 아니라 기존 광학계 기술로는 접근이 어려웠던 근접장 성분까지도 제어할 수 있다. 연구팀은 기존의 광학 부품들로는 구현이 매우 어려웠던 산란 제어를 복잡한 광학적 설계나 제조공정 없이 단일 광학 부품으로도 저렴하게 제작할 수 있다고 밝혔다. 이번 연구를 주도한 박종찬 학생은 “관련 기술은 광학 기기를 제작하는 원천 기술로 활용될 수 있다”며 “향후 리소그래피, 광통신, 바이오 이미징 기술 등 빛이 사용되는 다양한 분야에 응용 가능하다”고 말했다. □ 사진 설명 사진1. 제작된 산란 광학 기기 실제 사진 사진2. 산란 광학기기를 이용한 빛의 다양한 성분 제어 사진3. 산란 광학기기 모식도
2016.07.12
조회수 11605
유승협 교수, 효율성과 유연성 갖춘 OLED 기술 개발
〈 유 승 협 교수 〉 우리 대학 전기및전자공학부 유승협 교수와 POSTECH 신소재공학과 이태우 교수 공동 연구팀이 손상 없이 반복적으로 휘어지면서 우수한 효율을 갖는 플렉서블 유기발광다이오드 (OLED) 기술을 개발했다. 그래핀, 산화티타늄, 전도성 고분자를 복합 전극으로 활용하는 이 기술로 효율 극대화와 우수한 유연성을 동시에 얻을 수 있어 향후 편의성과 활용도를 높일 수 있을 것으로 기대된다. 최성율 교수, 김택수 교수가 공동 연구팀으로 참여하고 이재호 박사과정 학생, POSTECH 한태희 박사와 박민호 박사과정 학생이 공동 1저자로 수행한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 6월 2일자 온라인 판에 게재됐다. 현재 플렉서블 OLED 기술은 엣지형 스마트폰, 커브드 OLED 텔레비전 등에 사용되지만 플렉서블 OLED를 곡면 형태로 휘게 만든 후 고정 시키는 방식으로만 적용되고 있다. 반복적 휨이 가능한 플렉서블 OLED의 구현을 위해선 소재 및 관련 기술의 지속적 발굴이 중요하다. 특히 반복적으로 휘어질 때 각 구성 요소들이 깨지거나 손상되지 않도록 하는 것이 매우 중요하다. 그래핀은 얇은 두께를 통한 우수한 유연성 및 전기적 특성, 광학적 투명성을 갖는다. 이 특성들은 OLED에 주로 사용되는 산화물계 투명전극의 쉽게 깨지는 현상을 극복할 수 있는 기술로 각광받고 있다. 그러나 플렉서블 OLED가 주로 쓰이는 웨어러블 기기는 배터리 용량이 제한적이기 때문에 유연성과 동시에 OLED의 효율을 함께 확보하는 것이 중요하다. OLED는 일반적으로 공진현상(Resonance)(용어설명) 현상을 활용해 발광 효율을 향상시킬 수 있다. 공진현상을 일으키기 위해서는 일정량 이상의 빛 반사가 발생하는 투명 전극이 필요한데 그래핀만을 투명전극으로 사용하면 반사가 적어 광 효율이 낮다는 한계가 있다. 연구팀은 위의 유연성 및 효율성 문제를 해결하기 위해 기존의 그래핀에 산화티타늄(TiO2)과 전도성 고분자 형태를 결합한 복합 전극층을 개발했다. 이 구조에서 각각의 전극 층은 서로의 단점을 보완해주는 협력적 역할을 해 공진 효과를 극대화한다. 연구팀이 개발한 복합전극 층은 산화티타늄의 높은 굴절률과 전도성 고분자의 낮은 굴절률이 함께 활용된다. 이를 통해 전극으로부터의 유효 반사율을 높여줘 공진현상이 충분히 활용될 수 있다. 또한 전도성 고분자의 낮은 굴절률은 표면 플라즈몬의 손실로 인한 효율 감소까지 줄여준다. 기존 27.4%의 양자효율에서 1.5배 향상된 40.5%의 외부양자효율을 보이는 OLED를 구현했다. 이는 동일 발광재료를 이용해 보고된 그래핀 기반 OLED 중 가장 높은 효율이다. 효율을 향상시키는 구조를 도입하면 유연성 등의 다른 특성이 나빠지는 트레이드 오프 현상이 종종 발생한다. 연구팀은 산화티타늄 막이 구부러질 때 깨짐을 방해하는 자체 특성이 있어 기존 산화물 투명전극보다 4배 높은 변형에도 견디는 것을 확인했다. 이를 이용해 유연성 저하를 최소화하고 성능 극대화에 성공했다. 연구팀의 플렉서블 OLED는 곡률 반경 2.3mm에서 1천 회 구부림에도 밝기 특성이 변하지 않아 높은 성능과 유연성을 동시에 확보할 수 있음을 증명했다. 유 교수는 “분야를 넘어선 융합연구가 아니었다면 이번 연구는 불가능했을 것이다”며 “이번 연구 성과가 플렉서블, 웨어러블 디스플레이나 인체 부착형 센서용 플레서블 광원의 성공에 중요한 기틀을 제공할 것이다”고 말했다. 이번 연구는 한국연구재단 공학연구센터 사업의 일환인 차세대 플렉서블 디스플레이 융합센터 (CAFDC), 글로벌 프론티어 소프트 일렉스토닉스 연구단, KAIST 그래핀 연구센터, 산업통상자원부의 IT R&D 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 그래핀 복합 전극층 기반 OLED의 동작사진 그림2. 산화티타늄 (TiO2)-그래핀-전도성 고분자 복합 전극 기반 플렉시블 OLED 구조 모식도
2016.06.03
조회수 15022
이상엽 교수, 미생물로부터 친환경 바이오플라스틱 생산기술 개발
〈 이 상 엽 교수 〉 우리 대학 생명화학공학과 이상엽 교수 연구팀이 세계 최초로 미생물을 이용해 대표적 의료용 고분자인 폴리락테이트-co-글라이클레이트(poly(lactate-co-glycolate), PLGA)를 생산해냈다고 밝혔다. 이번 연구는 생명공학 분야의 최고 권위지인 '네이처 바이오테크놀로지(Nature Bio-technology) 온라인 판에 8일 게재되었다. 기존 폴리락테이트-co-글라이콜레이트의 화학적 생산 공정은 여러 단계의 화학적 전환, 정제 등 복잡한 공정이 필요해 비효율적이었을 뿐만 아니라 유독성 금속 촉매가 사용되어 친환경적이지 못한 단점을 가지고 있었다. 폐목재, 볏짚 등 재생가능한 자원인 바이오매스를 기반으로 폴리락테이트-co-글라이콜레이트를 생산하는 미생물(균주)을 개발하여, 기존 화학공정 대비 친환경적이면서 단순화된 공정이 가능해졌다. 또한 이번 연구에서 개발한 폴리락테이트-co-글라이콜레이트 생산 균주를 기반으로 한 응용 기술로 다양한 목적성 고분자* 생산이 가능해져 신규 바이오플라스틱 생산에 새로운 지평을 열었다. 이번 연구 결과는 자원고갈, 기후변화 등의 문제를 안고 있는 기존 석유 의존형 화학산업을 재생가능한 자원을 통해 지속성장이 가능한 바이오 의존형 화학산업으로 바꾸기 위한 바이오 리파이너리 분야의 의미있는 성과이다. 이상엽 교수는 “이번 연구는 의료용 고분자의 대표적 물질인 폴리락테이트-co-글라이콜레이트를 만드는 미생물을 개발한 세계 최초의 연구“라며 “인공고분자를 생물학적 방법으로 생산할 수 있는 시스템을 구축했다는 점에서 큰 의미를 가진다.”고 말했다. □ 그림 설명 그림1. 대사공학적으로 개량된 대장균이 바이오매스로부터 PLGA 및 다양한 PLGA 공중합체를 생산하는 전체 개념도
2016.03.08
조회수 11383
휘어지는 10나노미터 고분자 절연막 개발
10나노미터 이하의 얇고, 유연하게 휘어지면서도 균일한 두께를 유지하는 고분자 절연막의 개발로 사물인터넷의 실현을 앞당길 수 있을 것으로 보인다. 우리 대학 생명화학공학과 임성갑 교수, 전기 및 전자공학과 유승협, 조병진 교수 공동 연구팀은 ‘개시제를 이용한 화학 기상 증착법(initiated chemical vapor deposition, 이하 iCVD)’을 이용한 고분자 절연막을 개발했다고 밝혔다. 이번 연구는 재료분야 국제 학술지인 ‘네이처 머티리얼스(Nature Materials)’ 3월 10일자 온라인 속보판에 게재됐다. 사물인터넷 시대의 핵심인 웨어러블, 플렉서블 기술 촉진을 위해서는 가볍고 전력 소모가 적으면서도 유연성을 가진 소자 제작 기술이 필수적이다. 하지만 무기물 소재를 기반으로 한 절연막을 포함한 전자소자 재료들은 유연성이 부족하고, 고온에서만 공정이 가능해 열에 약한 다른 재료들과의 조합이 좋지 않다. 또한 용액을 이용해 만든 기존 고분자 소재 절연막은 표면장력에 의한 뭉침 현상으로 균일도에 한계가 있었고, 잔류 불순물로 인해 절연 특성도 좋지 못한 경우가 많았다. 공동 연구팀은 이러한 문제점을 해결할 수 있도록 기체 상태의 반응물을 이용해 고분자를 박막 형태로 합성하는 방법인 iCVD를 사용했다. 액체 대신 기체 상태의 반응물을 이용해 균일도를 높이고 불순물을 최소화함으로써, 10nm 이하의 매우 얇은 두께에서도 무기물 기반 소재에 필적하는 절연성을 가지게 됐다. 공동 연구팀은 개발한 절연막을 유기반도체, 그래핀, 산화물반도체와 같은 차세대 반도체를 기반으로 한 트랜지스터에도 적용해 우수한 이동도를 갖는 저전압 트랜지스터를 개발했다. 그 외에도 우수한 유연성을 바탕으로 스티커 필름 형태의 전자 소자를 시연했고, 동국대 노용영 교수 연구팀과 협력해 iCVD 고분자 절연막이 대면적 유연 전자소자 기술에 적용할 수 있음을 확인했다. 이 기술은 향후 다양한 미래형 전자기기 제작에 핵심 요소소재로 활용되고, 이 분야의 기술경쟁력 우위 확보에도 역할을 할 것으로 기대된다. 임성갑 교수는 “이번에 iCVD로 구현된 박막의 절연특성은 고분자 박막으로는 구현할 수 없었던 매우 높은 수준”이며 “이번에 개발된 iCVD 고분자 절연막은 플렉서블 전자 소자 등 차세대 전자 기술에 핵심적인 역할을 할 수 있을 것”이라고 말했다. 문한얼, 신우철 박사(전기 및 전자공학과), 성혜정 학생(생명화학공학과)이 참여한 이번 연구는 미래창조과학부의 한국연구재단 신진연구자 지원사업 및 중견연구자 지원사업, 글로벌프론티어사업 나노기반 소프트일렉스토닉스 연구단의 지원을 받아 수행됐다. □ 그림 설명 그림 1. iCVD 공정의 모식도 (i) 재료물질 (initiator, monomer) 주입, (ii) 개시제의 활성화, (iii), (iv): 활성화된 개시제에 의한 고분자(polymer) 합성 그림 2. 연구진이 개발한 고분자 절연막을 이용하여 제작한 대면적, 고유연성 전자소자 그림 3. 스티커처럼 붙이고 뗄 수 있는 전자소자 이미지
2015.03.10
조회수 17047
빛으로 수리되는 전기회로 세계최초 개발
# 휘어지는 전자기기가 나오면서 금속 재질의 전기회로는 균열로 인한 불량이 발생할 가능성이 점점 높아지고 있다. 미세하면서도 구조가 복잡해 수리보다는 키트 단위로 부품을 교환하거나 고칠 수 없어 아예 못쓰게 되는 경우도 많다. # 아이언맨과 같은 인간형 로봇이나 웨어러블 컴퓨터에 사용되는 금속전선은 지속적인 움직임으로 인해 끊어질 수 있기 때문에 상용화에 앞서 반드시 해결해야할 과제다. 우리 학교 생명화학공학과 박정기·김희탁 교수는 성균관대학교 성균나노과학기술원(SAINT) 이승우 교수와 공동으로 끊어진 전기회로에 레이저를 쪼여주면 단락된 부분이 원래 상태로 다시 붙어 전기가 통하게 되는 ‘빛을 이용한 자기회복 전기회로’를 세계최초로 개발했다. 개발된 회로는 주변에서 쉽게 구할 수 있는 발표용 레이저포인터를 2분 정도 조사하는 것만으로도 끊어진 부위를 처음처럼 완벽하게 수리할 수 있다. 휘고 접고 비틀어도 잘 작동되는 연성기판을 사용하기 때문에 플렉시블 전자기기나 웨어러블 컴퓨터는 물론 움직임 많은 인간형 로봇의 전선으로 적용해 단락 시 곧바로 수리할 수 있다. 최근 얇고 휘어지는 고집적회로를 내장한 전자기기 개발이 활발해짐에 따라 전기회로에 구부림 등 외부 자극으로 인해 내부 전기회로가 손상될 수 있다. 고밀도 회로가 적용된 탓에 고장 난 부분만 수리하기가 어려워 주로 모듈단위로 바꿔야하기 때문에 비싼 수리비용과 자원낭비 문제가 대두되고 있다. 연구팀은 조사되는 빛의 편광 방향과 나란하게 움직이는 아조고분자를 휘어지는 성질이 있는 연성필름에 코팅했다. 그 위에 전기전도도가 우수하며 손쉽게 합성이 가능한 은나노와이어(은으로 이루어진 나노사이즈 막대기)를 도포해 휘어지는 전기회로를 완성했다. 완성된 자기회복 전기회로를 테스트해보기 위해 연구팀은 회로에 인위적으로 균열을 만들어 단락시켰다. 회로가 끊어진 부분에 500mw/cm2(단위면적당 발광 에너지) 세기의 레이저 빛을 조사하자 아조고분자가 편광방향과 나란하게 움직였다. 이와 동시에 도포된 은나노와이어가 아조고분자와 같이 움직여 끊어진 부분이 다시 접착돼 단락된 전기전도도가 회복됐다. 박정기 KAIST 교수는 “플렉시블 전자기기의 전기회로 단락문제를 해결해 전자기기 사용수명을 연장시킬 수 있는 가능성을 제시했다”며 “영화 속 아이언맨도 탐낼만한 차세대 신기술”이라고 말했다. 이승우 성균관대학교 교수는 “기존 자기회복 전기회로 기술의 단점이었던 고온을 사용하거나 해로운 용매를 사용하는 것과 같은 복잡한 회복과정이 없다”며 “주변에서 쉽게 구할 수 있는 레이저를 쏘아주면 끊어진 전기전도도가 회복되는 전기회로를 세계 최초로 개발했다”고 이번 연구의 의의를 밝혔다. 한국연구재단이 추진하는 일반연구자사업의 지원을 받아 KAIST와 성균관대학교 교수진의 지도아래 KAIST 강홍석 박사과정 학생이 주도한 이번 연구는 재료 분야의 세계적 학술지 ‘어드밴스드 펑셔널 머티리얼스(Advanced Functional Materials)’ 9월 16일자로 실렸다. 1. 아조고분자 필름에 크랙을 인위적으로 발생시킨 후 빛을 조사해 크랙을 회복시키는 이미지. 조사한 빛은 크랙과 수직한 편광을 갖는 빛이다. 2분의 조사시간만으로도 크랙을 완전히 회복시킨다. 2. 끊어진 전기회로가 다시 접합되는 과정 ①아조고분자 필름 위에 은나노와이어를 도포한 후 인위적으로 크랙을 발생시켜 전기전도도 단락을 일으킨다. ②빛을 조사하여 아조고분자의 이동을 유도한다. ③그 효과로 인해 도포된 은나노와이어를 끌고 이동시켜서 다시 은나노와이어 접착을 유도한다. ④단락된 전기전도도가 회복된다. (회복과정으로 인해 'K‘ 모양으로 배열된 전구에 빛이 다시 들어오는 것을 보여줌) 3. 은나노와이어가 도포된 아조고분자 필름의 연성특성 파악. 구부림, 꼬임 등에도 모두 전기전도도를 유지한다. 자기회복 과정을 거친 후에도 전기전도도 특성을 유지한다. 4. 제작한 자기 회복 필름의 웨어러블 기기 적용 가능성 파악. 장난감 손에 아래와 같이 회로를 연결한 후 반복적 구부림을 통해 전기전도도 단락을 시킨 다음 빛을 조사해 전기전도도를 회복할 수 있다.
2014.10.15
조회수 16582
세계 최초 맞춤형 미생물 균주 대량 생산기술 개발
- 고부가가치 산업원료 생산 균주를 간편하고 빠르게 개발할 수 있는 원천기술 확보 - 우리 학교 생명화학공학과 이상엽 특훈교수와 유승민 연구교수 연구팀은 나일론 등 산업에 필요한 원료를 만드는 미생물 균주를 친환경 방법으로 쉽고 빠르게 대량 생산할 수 있는 ‘합성 조절 RNA’ 설계 원천기술을 세계 최초로 개발했다. 이번 연구결과는 세계적 학술지인 네이처 프로토콜스(Nature Protocols) 9월호 표지논문으로 선정되어 8월 9일 게재(온라인판)됐다. ’합성 조절 RNA 설계 기술’은 기존에 산업 균주를 개량하거나, 아직까지 알려지지 않은 미개척 산업 균주 개발‧개량에 광범위하게 적용이 가능하여 비천연 고분자를 포함한 다양한 화학물질, 원료, 의약품 등을 보다 효율적으로 개발, 생산할 수 있는 핵심원천기술이다. 기존의 균주개발은 유전자 결실(knockout) 이라는 유전공학 기법을 이용하여 미생물 염색체 내의 유전자를 하나씩 제거하는 방법을 통해 미생물내의 생산 물질의 양이 증가하는지를 관찰하는 것이었다. 그러나 아무리 작은 미생물일지라도 수천 개 이상의 유전자로 이루어져 있기에 이런 접근 방법을 통해 생물체 대사회로내의 모든 유전자를 조절한다면 수개월에서 수년의 시간이 소요되고 대용량 실험이 매우 어려우며, 미생물의 생장을 저해하고 원치 않은 물질들이 생산되는 한계가 있었다. 이상엽 교수와 유승민 연구교수는 이러한 기존 방법의 한계 극복을 위해 해당 유전자와 결합되는 부위의 합성 조절 RNA 유전정보를 바꾸는 ‘합성 조절 RNA’ 설계법을 개발하였다. 이를 통해 대장균의 조절 RNA를 기본골격으로 하여 세포내 존재하는 유전자의 발현을 단백질 수준에서 제어할 수 있는 맞춤형 합성 조절 RNA를 3~4일내에 제작할 수 있는 원천기술을 개발하였다. 이렇게 설계된 합성 조절 RNA들은 미생물 게놈을 건드리지 않은 채 유전자 전달체에 삽입하여 제작되므로 여러 종류의 균주들과 여러 유전자들에 대하여 동시다발적인 대용량 실험이 가능하다. 또한, 다양한 균주에 적용시 고효율의 균주를 선별하거나, 유전자 발현조절 효율이 가장 좋은 목적 유전자를 선별할 수 있어 향후 조절 RNA 라이브러리(Library)까지 구축할 수 있다. 네이처 프로토콜스 편집자인 이탄 즈로토린스키(Eytan Zlotorynski) 박사는 “본 논문은 합성 sRNA를 디자인하고 응용하는데 필요한 상세한 프로토콜을 기술하고 있어 생명과학과 생명공학 분야 연구에 매우 널리 활용될 것이며, 특히 대사공학과 합성생물학 연구에서 유용할 것이다”라고 말했다. KAIST 산학협력단 배중면 단장은 “본 원천기술에 대해 이미 해외 기업들이 관심을 표명하며 기술이전계약을 제안하고 있으므로 2년 이내에 기술이전이 이루어질 것으로 본다“고 밝혔다.
2013.08.09
조회수 13604
고용량 분자 저장기술 개발 성공
- KAIST EEWS 대학원 Yaghi 교수팀, 고용량의 단백질 저장체 개발 성공해 사이언스(Science)지 5월호에 실려 - - “선택적으로 반응하는 신약 개발에 도움될 것” - 다양한 종류의 단백질 물질을 고용량으로 저장할 수 있는 기술이 KAIST 연구진에 의해 개발됐다. 우리대학 EEWS대학원 오마르 야기(Omar M. Yaghi)교수 연구팀이 커다란 크기의 기공을 갖는 금속유기골격구조체를 개발해 여러 종류의 단백질을 고용량으로 저장할 수 있는 원천기술을 확보하는데 성공했다. 이번 연구 결과는 세계적 학술지 ‘사이언스(Science)’ 5월호(25일자)에 실렸다. 이번에 개발된 기술은 다양한 종류와 크기의 단백질을 저장 할 수 있어 ▲고용량 고집적의 신약 개발 ▲특정 바이러스 분리 물질 개발 ▲인체 내에서 악성 반응을 일으키는 특정 단백질의 선택적 제거 ▲특정 부위에서 작용하는 신약 수용체 개발 ▲희귀 고분자 단백질 영구 보존 등 다양한 분야에 폭넓게 활용될 수 있을 것으로 학계는 기대하고 있다. 이와 함께 줄기세포를 포한한 모든 인체의 세포까지 선택적으로 분리하고 영구히 저장할 수 있어 난치병 치료나 생명연장을 위한 의학기반 기술 발전에도 크게 도움이 될 것으로 예상된다. 금속유기골격구조체는 분자단위에서 같은 물질들이 일정한 규칙과 간격을 가지고 배열돼 생성되는 것이기 때문에, 1그램당 축구장과 같은 크기의 표면적을 가지고 있으며 고용량의 물질 저장 능력과 빠른 물질 이동특성을 가지고 있다. 따라서 많은 양의 물질을 내부에 저장할 수 있어 최근 다양한 종류의 차세대 저장체 연구에 필수적인 장비로 사용되고 있다. 그러나 지금까지의 금속유기골격구조체는 7.0Å(옴스트롬·100억분의 1m) 크기의 아주 작은 단분자만을 사용했기 때문에 커다란 크기의 고분자 및 단백질의 저장에는 활용될 수 없었으며 고용량 가스 저장체로서의 가능성만 입증된 상태였다. 게다가 기존의 금속유기골격구조체의 경우 구조가 내부에서 서로 엇갈려 있어 큰 크기의 단백질을 저장하는 것은 사실상 불가능했다. 야기(Yaghi) 교수 연구팀은 5nm 이상의 크기를 가지는 분자체를 이용한 금속유기골격구조체를 개발해 이러한 문제들을 해결하고, 금속유기골격구조체의 주기적인 기공을 처음으로 투과전자현미경을 이용해 관찰하기도 했다. 연구팀은 커다란 크기의 분자들을 이용해 금속유기골격구조체를 만들고 단백질처럼 아주 큰 물질을 구조체 내부에 일정하게 배열시켜 효율적으로 저장하는 방법을 고안해 내 세계 최초로 규칙적 분자구조체 내부에 비타민과 미오그로빈(Myoglobin) 같은 단백질을 고용량으로 저장하는데 성공했다. 야기(Yaghi) 교수는 “이번 연구는 그동안 불가능했던 큰 크기의 단백질 및 고분자들을 규칙적 배열을 가지는 다공성 물질을 개발해 고용량으로 저장하는 원천기술”이라며 “고용량으로 집적된 단백질 약을 원하는 곳에 투여함과 동시에 제거해야 할 분자들을 선택적으로 흡수함으로써 난치병이나 희귀병 치료에 획기적인 역할을 할 수 있을 것으로 기대된다”고 말했다.
2012.05.29
조회수 14637
고감도 나노광학측정기술 개발
- 머리카락 단면적의 70만배 보다 작은 나노유체기술과 나노광학기술을 융합한 바이오분석기술.- 신약개발 및 신경질환 조기진단기술로 활용 기대. 우리학교 바이오및뇌공학과 정기훈 교수 연구팀이 소분자 생화합물 (small molecules) 검출을 위한 획기적인 고감도 나노광학측정기술을 개발했다. 소분자 생화합물은 분자량이 작은 생체내 분자들로 다양한 세포의 세포막을 드나들며 세포간의 신호전달 등에 큰 역할을 담당한다. 최근에는 제약업계에서도 소분자 생화합물을 이용한 신약 개발 관련 연구 및 개발에 큰 관심을 기울이고 있다. 그러나 이러한 소분자 생화합물은 대부분 특정 항원-항체 화학 결합반응을 유도하기 힘들어 기존에 많이 사용되는 형광이나 전기화학적인 방법으로 극소량을 분석하는데 어려움이 많았다. 정 교수 연구팀은 사람의 머리카락 단면적의 70만배 보다 작은 나노유체관내 유동특성을 이용해 나노몰(nM) 수준의 농도를 갖는 극미량의 소분자 생화합물의 농도를 국소적으로 증가시켰다. 이후 나노플라즈모닉 광학기술과 접목해 측정하는 빛의 세기를 1만배 이상 향상시켜, 별도의 생화학처리를 사용하지 않은 도파민(Dopamine)과 가바(GABA)와 같은 신경전달물질을 1초 이내에 구별하는 데 성공했다. 이 결과는 현존 세계 최고수준의 검출한계를 수백배 이상 향상시킨 기술로 평가받고 있다. 이번 연구결과는 앞으로 소분자 생화합물을 이용한 다양한 글로벌 신약개발은 물론, 알츠하이머병과 같은 퇴행성 신경질환의 조기진단 및 뇌기능 진단기술에 크게 기여할 수 있을 것이라 기대된다. 한편, 교육과학기술부가 지원하는 한국연구재단의 도약연구자지원사업과 한국생명공학연구원이 지원하는 오픈이노베이션사업의 일환으로 수행된 이번 연구는 오영재 박사과정 학생 주도하에 진행됐으며, 독일에서 발간되는 나노분야 국제저명학술지인 ‘스몰(Small)’지의 1월 17일자 표지논문으로 게재됐다.
2011.01.26
조회수 17799
나노튜브를 이용한 유기태양전지 효율 향상 기술 개발
우리학교 신소재공학과 김상욱 교수팀과 전기및전자공학과 유승협 교수팀이 탄소나노튜브를 유기태양전지에 적용해 에너지 변환효율을 크게 향상시키는데 성공했다. 이 연구결과는 재료공학의 세계적 학술지인 어드밴스드 머티리얼스(Advanced Materials)지 최신호(11월 30일, 화) 온라인 판에 게재됐다. 반도체고분자의 광반응을 통해 전기에너지를 생산하는 유기태양전지는 고가의 실리콘을 사용하지 않아 가격이 저렴하다. 또한, 잘 휘고 투명해 여러 분야에 적용 가능한 미래 친환경 에너지원이다. 이 전지는 휴대 전자기기나 스마트 의류, BIPV(Building Integration Photovoltaic : 건물 외피에 전지판을 이용하는 건물 외장형 태양광 발전) 등 다양한 분야에 응용이 기대된다. 유기태양전지가 다른 태양전지에 비해 효율이 낮은 중요한 이유 중 하나는 태양빛을 받아 전자와 정공을 형성시키는 반도체고분자의 수송특성이 낮아 생성된 전자나 정공이 효율적으로 외부로 전달되지 못한다는 점이다. 이러한 문제를 해결하기 위해 반도체고분자의 수송특성을 향상하려는 다양한 연구들이 전 세계적으로 진행되어 왔다. 특히, 탄소나노튜브나 나노와이어 등을 이용해 전자나 정공의 빠른 수송 경로를 제공해주는 방법이 꾸준히 연구되어 왔다. 그러나 이들 연구에서는 전자와 정공이 동시에 탄소나노튜브나 나노와이어에 주입되어 자기들끼리 재결합 함으로써, 결국 외부에서 채집되는 전류가 증대되지 못하거나 오히려 감소하는 고질적인 문제가 발생했다. 이러한 문제를 포함해 유기태양전지들은 상용화하기에는 아직 낮은 광변환 효율을 보여 이에 대한 성능향상이 시급히 요구되어 왔다. KAIST 연구팀은 유기 태양전지의 반도체고분자에 붕소 또는 질소 원소로 도핑된 탄소나노튜브를 적용해 전자나 정공 중 한쪽만을 선택적으로 수송하도록 함으로써 이들의 재결합을 막아 유기태양전지의 효율을 33%까지 크게 향상시키는데 성공했다. 또한 도핑된 탄소나노튜브는 유기용매 및 반도체고분자내에서 매우 쉽고 고르게 분산되는 특성을 보여 기존의 값싼 용액공정을 그대로 사용해 효율이 향상된 태양전지를 만들 수 있음을 확인했다. 이 연구결과로 반도체고분자가 이용되는 유기트랜지스터나 유기디스플레이 등 다양한 전자기기의 성능향상도 가능할 것으로 기대된다. 김상욱 교수는 “이번 연구결과를 통해 나노소재 기술이 유기태양전지의 성능향상에도 크게 기여할 수 있음을 알아냈다”며 “앞으로 나노소재 기술을 이용한 차세 대 에너지개발을 위한 연구에 노력하겠다”고 말했다. 이번 연구는 KAIST EEWS(Energy, Environment, Water, and Sustainability)연구사업의 지원을 받아 김상욱, 유승협 교수의 지도하에 박사과정 이주민 학생이 진행했다.
2010.12.07
조회수 18948
플렉시블 디스플레이용 개스 배리어 기판기술 개발
- 나노 복합체 개스 배리어 기판 원천기술 확보 - - 투산소도와 투습도 낮아 식품 포장재에 바로 활용 가능 - 우리학교 물리학과 윤춘섭 교수팀이 금오공과대학 고분자공학과 장진해 교수와 공동으로 플라스틱 기판의 투산소도를 1/1,000로 낮춘 독창적 개념의 플렉시블 디스플레이용 개스 배리어(Gas Barrier) 기판을 개발했다. 이번 성과는 평판형 나노입자를 플라스틱 기판에 분산시킨 후 박리 및 배향시키는 나노 복합체 기판 원천기술 개발을 통해 가능해졌다고 공동연구팀은 밝혔다. 개발된 나노 복합체 기판 기술은 차세대 디스플레이인 플렉시블 유기발광 디스플레이(OLED)의 구현에 필수적인 기계적 고유연성, 저 투습도 및 저 투산소도, 높은 광투과도 조건을 모두 만족시킬 수 있는 획기적인 기판 기술로 평가받고 있다. 현존하는 세계최고 수준의 플렉시블 개스 배리어 기판 기술은 플라스틱 기판위에 유기 고분자 층과 무기물 층을 교차로 증착시킨 다층 박막 구조를 가진다. 이 구조로 인해 기판을 곡률반경이 작게 휘거나 접을 경우 무기층에 균열이 생겨 개스 배리어 기능을 상실한다. 이 때문에 기계적 유연성에 한계를 가질 뿐만 아니라 생산 단가가 높은 문제점을 가지고 있었다. 이번에 윤 교수팀이 개발한 나노 복합체 기판 기술은 기판의 골격을 형성하고 있는 유기 고분자가 유연성을 담당하고, 평판형 나노입자가 개스 배리어 기능을 담당한다. 그로 인해 높은 기계적 유연성과 개스 배리어 특성을 동시에 확보할 수 있고 롤투롤(Roll to Roll) 공정이 가능해 생산 단가를 낮출 수 있는 장점이 있다. 플렉시블 디스플레이는 차세대 디스플레이로 각광받고 있으며, 미국을 위시한 일본, 영국, 독일 등 IT 선진국에서는 플렉시블 디스플레이를 모바일 통신기기용 접는 디스플레이, 입는 디스플레이, 디지털 광고판, 스마트 카드, 군복 소매에 부착할 수 있는 작전용 디스플레이 등에 적용하기 위해 대학, 연구소, 기업 및 군이 연구개발 협력체를 구성해 플렉시블 OLED 디스플레이 기술개발을 활발하게 추진하고 있다. 플렉시블 디스플레이를 구현하기 위해서는 유연성이 좋은 플라스틱 기판을 사용해야 하는데, 플라스틱은 내부에 미세한 공간이 있어 개스 분자들이 쉽게 스며들 수 있다. OLED 디스플레이에 습기나 산소가 소자 내부로 침투하면 OLED 소자를 구성하는 유기물질의 분해가 일어나 소자의 기능이 상실되기 때문에 디스플레이의 수명을 단축시킨다. 지금까지 우수한 개스 배리어 특성을 갖는 고유연성 기판의 부재가 플렉시블 OLED 디스플레이의 구현을 막는 중요한 요인 중 하나가 되어 왔다. 이로 인해 현재 상용화되고 있는 소형 모바일 통신기기의 OLED 디스플레이에는 유연성이 없는 유리 기판을 사용하고 있다. 또한, 개발된 나노 복합체 개스 배리어 기판 기술은 플렉시블 디스플레이 뿐만 아니라 투습도 및 투산소도에 대한 요구 조건이 덜 엄격한 식품 포장재에 바로 활용이 가능하다. 식품의 장기 저장 시 산화와 부패를 방지하기 위해서는 투산소도와 투습도가 낮은 포장재의 사용이 필수적이다. 개발된 나노 복합체 기판은 투산소도가 10-2~10-3cc/m2/day로서 현재 일반적으로 사용되고 있는 식품 포장재 투산소도의 1/10 이하이기 때문에 식품 보관 기간을 최소 5배 이상 늘릴 수 있어 식품 유통 구조에 대변혁을 가져올 수도 있다. 라면 봉지와 같은 기존의 식품 포장재는 투산소도와 투습도를 낮추기 위해 플라스틱 필름위에 알루미늄 코팅을 하는데, 인체에 해로운 알루미늄과 음식물의 직접적인 접촉을 피하기 위해 알루미늄 코팅위에 보호막 코팅을 다시 입혀야 되는 번거로운 공정을 거쳐야 한다. 그러나 나노 복합체 개스 배리어 기판 기술을 이용하면 알루미늄 코팅과 보호막 코팅이 필요 없기 때문에 생산 공정이 단순해져 생산 단가도 훨씬 저렴해 지고 친환경적인 장점이 있다. 한편, 윤 교수는 2008년부터 지경부 산업원천기술개발사업의 지원을 받아 ETRI와 공동연구과제로 연구를 수행하고 있으며, 개발된 개스 배리어 기판 기술의 특허 등록을 마치고 관련기업과 기술 이전을 협의 중이다. <용어설명> ○ 플렉시블 디스플레이 : 기존에 유리를 기판으로 사용한 평판형 디스플레이와 달리 유연한 플라스틱 기판을 사용하여 종이와 같이 말거나 접을 수 있는 디스플레이를 말하며, 휴대하거나 착용하기 쉬워 차세대 디스플레이로 각광받고 있다. ○ 유기발광 디스플레이(OLED) : 전기를 가하였을 때 유기물질에서 발생하는 자발광을 이용한 디스플레이로서 LCD에 비해 빠른 응답 속도, 높은 발광 효율, 넓은 시야각, 얇은 두께 등 우수한 특성을 가지고 있어 꿈의 디스플레이로 불린다. 아직 대면적 화면 구현에는 기술적인 난관이 있어 현재는 주로 소형 모바일 통신기기에 상용화되어 사용되고 있다. ○ 롤투롤(Roll-to-Roll) 공정 : 공정하고자 하는 재질을 두루마리 형태로 감아 한 두루마리에서 다른 두루마리로 감아 옮기면서 연속으로 진행하는 공정을 말한다. ○ 개스 배리어(Gas Barrier): 플라스틱 기판으로 스며드는 개스의 통과를 차단 시키는 역할을 하는 방어벽.
2010.09.06
조회수 18743
이상엽 교수, 초고분자량 거미 실크 단백질 생산기술 개발
- 초고분자량의 거미 실크 단백질이 거미줄을 강하게 만든다는 사실 밝혀 -- 첨단 초강력 섬유소재로의 활용 기대 - 우리학교 이상엽 특훈교수는 서울대 박명환 교수팀과 공동으로 세계적으로 이제까지 생산하지 못했던 ‘초고분자량의 거미 실크 단백질’을 대사공학으로 개량된 대장균을 이용하여 생산하였다고 발표하였다. 이 초고분자량의 단백질로 만든 거미 실크 섬유는 강철보다 강한 성질을 나타냄을 밝혔다.이 연구는 교육과학기술부가 2009년부터 추진하고 있는 ‘신기술융합형 성장동력사업(바이오제약 사업본부장 수원대 임교빈 교수, 분자생물공정 융합연구단장 KAIST 김정회 교수)의 지원을 받아 수행되었으며, 연구결과는 특허 출원 중으로 세계적 저명 학술지인 「미국 국립과학원 회보 (PNAS)」誌’ 7월 26일자 온라인판에 게재되었다. 거미가 만드는 초고분자량의 실크 섬유는 미국 듀폰(Dupont)社의 고강력 합성섬유인 케블라(Kevlar)에 견줄 강도를 갖고 있으며, 탄성력이 뛰어나 의료산업 등 다양한 분야에서 활용될 수 있는 것으로 알려져 있다. 거미 실크 섬유의 우수한 특성 때문에 그동안 효모, 곤충, 동물세포, 형질전환식물, 대장균을 비롯한 여러 생체 시스템을 활용하여 거미실크를 대량 생산하는 기술을 개발하려는 많은 시도가 있어 왔다.그러나 지금까지는 글리신 등 특정 아미노산이 반복적으로 많이 존재하는 거미 실크 단백질의 특수성으로 인해 고분자량의 거미실크를 인공적으로 생산할 수 없었다. 이러한 기존 기술의 한계와 달리, 우리학교 생명화학공학과 이상엽 교수 연구팀은 고분자량의 거미실크 단백질 (황금 원형 거미; Nephila clavipes 유래)을 생산하는 대장균을 대사공학적으로 새로이 개발하고, 이를 활용함으로써 고성능의 거미실크섬유를 인공적으로 합성하는데 성공하였다. 우선, 연구팀은 비교 단백체 분석 등 시스템 대사공학 기법을 이용하여 거미 실크 단백질을 생산할 때 대장균 내에 글리실-tRNA의 부족 현상이 일어남을 밝혀냈다. 그리고 이 문제의 해결을 위해 관련 유전자들을 증폭 또는 제거 하는 등 대장균의 대사를 재구성함으로써 대장균으로부터 세계 최고 수준의 반복단위수를 가진 285 kDa에 달하는 거미실크 단백질을 성공적으로 합성해 낼 수 있었다. 또한, 대장균에서 생산된 거미 실크 단백질을 분리‧정제한 후에 생체 모방 기술을 이용한 스피닝 작업을 통해 실크 섬유 형태로 제작하였다. 이렇게 만들어진 거미 실크 섬유의 물성을 측정한 결과 강도 (tenacity) 508 MPa, 인장탄성율 (Young"s modulus) 21 GPa를 보여 케블라 수준의 강도를 가지게 된다는 사실을 확인하였다. 기존에는 285 kDa이나 되는 큰 거미 실크 단백질의 생산이 불가능하여 고강도의 거미 실크 섬유를 만들 수 없었는데, 이번 연구를 통해 가능하게 되었다. 이상엽 교수는 “이번 연구는 바이오기반 화학 및 물질 생산시스템 개발의 핵심기술인 시스템 대사공학적 방법을 통해 기존의 석유화학 제품과 대체 가능한 고성능의 섬유를 생산하는 기반기술을 확립하였다는 데 그 의의가 있으며, 향후 생산시스템 향상과 물성 연구를 계속 수행하여 실용화하고 싶다.”라고 밝혔다.
2010.07.28
조회수 22277
박찬범 교수팀, 펩타이드 자기조립기술을 이용하여 전도성고분자 나노선/나노튜브 개발
- 화학분야 저명 국제학술지 안게완테 케미지 최근호 게재 우리대학 신소재공학과 박찬범(40) 교수와 유정기(28) 연구원이 자연계의 펩타이드 자기조립기술을 이용, 전도성고분자 나노선과 나노튜브 소재를 개발했다. 관련 논문은 독일에서 발간되는 세계적인 학술지인 안게완테 케미(Angewandte Chemie)지 최근호 (6월 15일자)에 게재됐으며, 나노기술과 생명과학분야의 창의적인 융합을 통해 새로운 나노소재를 개발하는데 크게 기여했다는 평가를 받았다. 펩타이드나 단백질은 20여가지 아미노산의 조합을 통해 다양한 3차원 구조를 형성할 수 있으며, 이들은 기존의 재료에서는 볼 수 없었던 매우 우수한 물성과 다양한 기능을 가지는 장점이 있다. 朴 교수 연구팀은 두 개의 아미노산으로 구성된 매우 단순한 펩타이드 (peptide)를 수만 개 이상 스스로 조립시켜 머리카락의 약 천분의 일 정도 두께를 가진 긴 나노선을 형성하고, 여기에 대표적인 전도성 고분자 물질인 폴리아닐린 (polyaniline)을 얇게 코팅하여 누드김밥처럼 코어(Core)/쉘(Shell) 구조를 가진 전도성 나노선을 제조했다. 코어/쉘 형태의 나노선은 일반 전선과는 반대로, 바깥쪽으로만 전류가 흐르는 특성을 가지고 있다. 朴 교수팀은 이렇게 형성된 전도성 나노선의 펩타이드 코어부분을 선택적으로 제거하여 폴리아닐린으로만 구성된 전도성 나노튜브 (채널직경 약 1/5000 mm)를 제조하는 데 성공했다. 화학물질들이 레고(Lego) 장난감처럼 스스로 조립하여 3차원 구조체를 만드는 것은 모든 생명현상의 근간이 될 뿐만 아니라, 최근 들어서는 나노소재를 개발하는 주요기술들 중의 하나로 각광받고 있다. 특히 朴 교수팀의 연구에서 사용한 펩타이드는 알츠하이머병 등 각종 퇴행성 신경질환의 발병과도 밀접한 연관성을 가진 섬유상 구조의 아밀로이드 플라크(amyloid plaque)로부터 유래되어 펩타이드의 자기조립 현상에 관한 연구는 의학적 측면에서도 중요성이 매우 크다. 전도성 고분자를 나노크기의 구조로 제조할 경우 그 전기적 특성이 대폭 향상되기 때문에 이번에 개발된 전도성 고분자 나노선/나노튜브 소재는 차세대 태양전지, 각종 센서/칩 개발 등에 응용이 가능할 것으로 예상되며, 향후 나노-바이오 융합분야에서 국가 과학기술 경쟁력 제고에 기여할 것으로 기대된다. 朴 교수팀은 2008년도부터 교육과학기술부의 ‘국가지정연구실사업’으로부터 지원을 받아 다양한 형광색상(RGB)을 가진 나노튜브, 연잎처럼 물에 젖지 않는 펩타이드 소재, 식물의 광합성을 모방한 인공광합성 재료 등 새로운 기능을 가진 바이오소재를 개발하기 위한 연구를 수행해 왔으며, 해외 저명학술지들로부터 크게 주목받는 연구 성과들을 발표하고 있다 (http://biomaterials.kaist.ac.kr).
2009.06.16
조회수 19451
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
>
다음 페이지
>>
마지막 페이지 5