본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%8B%A0%EA%B2%BD%EB%A7%9D
최신순
조회순
이흥규 교수, 인공신경망 기반 워터마킹 기술 개발
〈 (왼쪽부터) 강지현,문승민,지상근 박사과정, 이흥규 교수 〉 우리 대학 전산학부 이흥규 교수 연구팀이 인공신경망을 이용해 워터마크를 영상에 삽입 및 검출하는 기술을 개발했다. 인공신경망 기반 워터마킹 기술은 3일부터 홈페이지를 통해 시범 운영되고 있다.( http://watermark.kaist.ac.kr ) 이번 웹 서비스는 연구실 수준으로만 진행되던 기술들을 다년간의 연구개발을 통해 일반에 공개함으로써 특정 조건의 실험실 환경이 아닌 조건이 변화하는 실제 환경에서 적용된다. 이를 통해 인공신경망을 기반으로 하는 새로운 접근 기법의 성능을 검증하고 기존 한계점을 극복할 수 있는 연구 방향을 제시하는 초석이 될 것으로 기대된다. 현재까지 개발된 기존 워터마킹 기술은 모두 공격 유형, 세기 등 특정 조건을 사전에 정하고 이를 만족시키도록 설계 및 구현됐다. 따라서 다양한 공격 유형이 존재하는 실제 환경에 사용하기에는 실용적 측면, 기술 확장성, 유용성 등에 한계가 있었다. 또한 워터마크 제거, 복사, 대체 등의 해킹 기술 발전으로 인해 기술 자체의 보안 취약성에도 문제가 있었다. 연구팀의 웹 서비스에서는 ▲인공신경망 학습을 통한 새로운 공격에 대응하고 ▲인공신경망의 비선형적인 특성을 통해 높은 보안성을 가진 인공신경망 기반 2D 영상 워터마킹 기법 ▲다양한 시점 변환이 발생하더라도 영상 보호가 가능한 DIBR 3D 영상 워터마킹 기법 ▲워터마크 삽입으로 인한 시각피로도 상승을 최소화하는 S3D 영상 워터마킹 기법을 제공한다. 연구팀은 다수의 연구 결과들을 기반으로 해당 웹 서비스 기술을 구현했다. 연구팀의 2D 영상 워터마킹 기법은 최초의 인공신경망 기반 워터마킹 기법으로 이미지에 가해질 수 있는 다양한 공격을 이용해 인공신경망을 학습함으로써 강인성을 획득한다. 동시에 인공신경망의 심층구조를 통해 워터마크 해킹 공격에 대한 높은 보안성을 획득함으로써 기존의 보안 취약점을 대폭 개선했다. 고부가가치를 가지는 3D 영상 보안을 위한 워터마킹 기법도 개발해 웹 서비스로 제공한다. 사용자는 2D 영상 또는 3D 영상을 웹 서비스에 업로드 해 워터마크를 삽입하고 추후 필요시 삽입한 워터마크를 검출함으로써 각종 분쟁 해결에 활용할 수 있다. 또한 이 기술은 압축 등의 공격을 가상으로 진행하는 시뮬레이션 툴과 워터마크 삽입 세기 조절, 그리고 워터마크 삽입으로 인한 영상품질 비교 등의 서비스를 함께 제공한다. 이번 연구는 기술 활용 모델에 따라 요구되는 다양한 견고성에 따라 유연하게 추가 수정(修正) 구현 가능하고 해킹에 견고하게 설계됨으로써 워터마킹 기술 유용성을 극대화했다. 이에 따라 개발 기술은 향후 인증, 진위 판별, 유통 추적이나 저작권 분야 등에서 다양한 콘텐츠를 사용한 활용이 가능하다. 향후 각종 영상물들의 불법 활용으로 인해 발생하는 사회경제적 손실을 줄이고 콘텐츠 산업의 성장과 디지털 사회 선진화에 기여할 것으로 기대된다. 연구팀은 개발된 기술은 다양한 공격 유형에 적응적으로 대응하며 상용 가능한 수준의 기술 신뢰도를 보인다고 밝혔다. 이흥규 교수는 “영상 관련 각종 분쟁들이 저작권에 국한되던 종전의 범위를 넘어 최근 가짜 영상 유통에 따른 진위 판별, 인증, 무결성 검사, 유통 추적 등으로 관심 분야가 급속히 커지고 있다”며 “인공지능 기술을 활용해 기존 워터마킹 기법들의 기술적인 한계점을 해결할 수 있는 디지털 워터마킹 연구를 선도하겠다”고 말했다. 이번 연구는 한국연구재단이 추진하는 중견연구지원사업의 지원으로 수행됐다. □ 그림 설명 그림1.2D 영상 워터마킹 기법을 이용한 영상 예제 그림2.S3D 영상 워터마킹 기법을 이용한 영상 예제
2018.09.11
조회수 8480
예종철 교수, 인공지능 블랙박스의 원리 밝혀
〈 예종철 교수, 한요섭 연구원, 차은주 연구원 〉 우리 대학 바이오및뇌공학과 예종철 석좌교수 연구팀이 인공지능의 기하학적인 구조를 규명하고 이를 통해 의료영상 및 정밀분야에 활용 가능한 고성능 인공신경망 제작의 수학적인 원리를 밝혔다. 연구팀의 ‘심층 합성곱 프레임렛(Deep Convolutional Framelets)’이라는 새로운 조화분석학적 기술은 인공지능의 블랙박스로 알려진 심층 신경망의 수학적 원리를 밝혀 기존 심층 신경망 구조의 단점을 보완하고 이를 다양하게 응용 가능할 것으로 기대된다. 예종철 석좌교수가 주도하고 한요섭, 차은주 박사과정이 참여한 이번 연구는 응용수학 분야 국제 학술지 ‘사이암 저널 온 이매징 사이언스(SIAM Journal on Imaging Sciences)’ 4월 26일자 온라인 판에 게재됐다. 심층신경망은 최근 폭발적으로 성장하는 인공지능의 핵심을 이루는 딥 러닝의 대표적인 구현 방법이다. 이를 이용한 영상, 음성 인식 및 영상처리 기법, 바둑, 체스 등은 이미 사람의 능력을 뛰어넘고 있으며 현재 4차 산업혁명의 핵심기술로 알려져 있다. 그러나 이러한 심층신경망은 그 뛰어난 성능에도 불구하고 정확한 동작원리가 밝혀지지 않아 예상하지 못한 결과가 나오거나 오류가 발생하는 문제가 있다. 이로 인해 ‘설명 가능한 인공지능(explainable AI: XAI)’에 대한 사회적, 기술적 요구가 커지고 있다. 연구팀은 심층신경망의 구조가 얻어지는 고차원 공간에서의 기하학적 구조를 찾기 위해 노력했다. 그 결과 기존의 신호처리 분야에서 집중 연구된 고차원 구조인 행켈구조 행렬(Hankel matrix)을 기저함수로 분해하는 과정에서 심층신경망 구조가 나오는 것을 발견했다. 행켈 행렬이 분해되는 과정에서 기저함수는 국지기저함수(local basis)와 광역기저함수(non-local basis)로 나눠진다. 연구팀은 광역기저함수와 국지기저함수가 각각 인공지능의 풀링(pooling)과 필터링(filtering) 역할을 한다는 것을 밝혔다. 기존에는 인공지능을 구현하기 위한 심층신경망을 구성할 때 구체적인 작동 원리를 모른 채 실험적으로 구현했다면, 연구팀은 신호를 효과적으로 나타내는 고차원 공간인 행켈 행렬를 찾고 이를 분리하는 방식을 통해 필터링, 풀링 구조를 얻는 이론적인 구조를 제시한 것이다. 이러한 성질을 이용하면 입력신호의 복잡성에 따라 기저함수의 개수와 심층신경망의 깊이를 정해 원하는 심층신경망의 구조를 제시할 수 있다. 연구팀은 수학적 원리를 통해 제안된 인공신경망 구조를 영상잡음제거, 영상 화소복원 및 의료영상 복원 문제에 적용했고 매우 우수한 성능을 보임을 확인했다. 예종철 교수는 “시행착오를 반복해 설계하는 기존의 심층신경망과는 달리 원하는 응용에 따라 최적화된 심층신경망구조를 수학적 원리로 디자인하고 그 영향을 예측할 수 있다”며 “이 결과를 통해 의료 영상 등 설명 가능한 인공지능이 필요한 다양한 분야에 응용될 수 있다”고 말했다. 이번 연구는 과학기술정보통신부의 중견연구자지원사업(도약연구) 및 뇌과학원천기술사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 수학적인 원리를 이용한 심층신경망의 설계 예시 그림2. 영상잡음제거 결과 그림3. 영상에서 80% 화소가 사라진 경우 인공신경망을 통해 복원한 결과
2018.05.10
조회수 17450
유회준 교수, 딥러닝용 AI 반도체 개발
우리대학 전기및전자공학부 유회준 교수 연구팀이 스타트업 '유엑스 팩토리'와 함께 가변 인공신경망 기술을 적용해 딥러닝을 효율적으로 처리하는 AI 반도체를 개발했다. 딥러닝이란 컴퓨터가 마치 사람처럼 스스로 학습할 수 있도록 인공신경망을 기반으로 구축한 '기계 학습' 기술이다. 유 교수 연구팀이 개발한 새로운 칩은 반도체 안에서 인공신경망의 무게 정밀도를 조절함으로써 에너지 효율과 정확도를 조절한다. 1비트부터 16비트까지 소프트웨어로 간편하게 조절하면서 상황에 맞춰 최적화된 동작을 얻어낸다. 하나의 칩이지만 '콘볼루션 신경망'(CNN)과 '재귀 신경망'(RNN)을 동시에 처리할 수 있다. CNN은 이미지를 분류나 탐지하는 데 쓰이며, RNN은 주로 시간의 흐름에 따라 변화하는 영상과 음성 등 데이터 학습에 적합하다. 또 통합 신경망 프로세서(UNPU)를 통해 인식 대상에 따라 에너지효율과 정확도를 다르게 설정하는 것도 가능하다. 모바일에서 AI 기술을 구현하려면 고속 연산을 '저전력'으로 처리해야 한다. 그렇지 않으면 한꺼번에 많은 정보를 처리하면서 발생하는 발열로 인해 배터리 폭발 등의 사고가 일어날 수 있기 때문이다. 연구팀에 따르면 이번 칩은 세계 최고 수준 모바일용 AI 칩 대비 CNN과 RNN 연산 성능이 각각 1.15배, 13.8배이 달한다. 에너지효율도 40% 높은 것으로 나타났다. 스마트폰 카메라를 통해 사람의 얼굴 표정을 인식해 행복, 슬픔, 놀람, 공포, 무표정 등 7가지의 감정을 자동으로 인식하는 감정인식 시스템도 개발됐다. 이 시스템은 감정 상태를 스마트폰 상에 실시간으로 표시한다. 유 교수 연구팀의 이번 연구는 지난 13일 미국 샌프란시스코에서 열린 국제고체회로설계학회(ISSCC)에서 발표됐다. 유회준 교수는 "기술 상용화에는 1년 정도 더 걸릴 전망"이라며 " 모바일에서 AI를 구현하기 위해 저전력으로 가속하는 반도체를 개발했으며, 향후 물체인식, 감정인식, 동작인식, 자동 번역 등 다양하게 응용될 것으로 기대된다"고 설명했다.
2018.02.26
조회수 14366
김문철 교수, 인공지능 통해 풀HD영상 4K UHD로 실시간 변환
〈 김 문 철 교수 〉 우리 대학 전기및전자공학부 김문철 교수 연구팀이 딥러닝 기술을 이용해 풀 HD 비디오 영상을 4K UHD 초고화질 영상으로 초해상화 변환할 수 있는 기술을 개발했다. 이 기술은 인공지능의 핵심 기술인 심층 콘볼루션 신경망(Deep Convolutional Neural Network, DCNN)을 하드웨어로 구현했다. 초당 60프레임의 초고해상도 4K UHD 화면을 실시간으로 생성할 수 있는 알고리즘 및 하드웨어 개발을 통해 향후 프리미엄 UHD TV, 360 VR, 4K IPTV 등에 기여할 것으로 기대된다. 이번 연구는 KAIST 전기및전자공학부 김용우, 최재석 박사과정 등이 주도했고 현재 특허 출원을 준비 중이다. 최근 영상 화질 개선 연구에 인공지능의 핵심 기술인 심층 콘볼루션 신경망을 적용시키려는 노력이 활발히 이뤄지고 있다. 그러나 이러한 심층 콘볼루션 신경망 기술은 연산 복잡도와 매우 높고 사용되는 메모리가 커 작은 규모의 하드웨어를 통해 초고해상도 영상으로 실시간 변환하는 데 한계가 있다. 기존의 프레임 단위로 영상을 처리하던 방식은 DRAM과 같은 외부 메모리 사용이 필수적인데 이로 인해 영상 데이터를 처리할 때 지나친 외부 메모리 접근으로 인한 메모리 병목현상과 전력 소모 현상이 발생했다. 김 교수 연구팀은 프레임 단위 대신 라인 단위로 데이터를 처리할 수 있는 효율적인 심층 콘볼루션 신경망 구조를 개발해 외부 메모리를 사용하지 않고도 작은 규모의 하드웨어에서 초당 60 프레임의 4K UHD 초해상화를 구현했다. 연구팀은 기존 소프트웨어 방식의 심층 콘볼루션 신경망 기반의 고속 알고리즘과 비교해 필터 파라미터를 65% 정도만 적용하고도 유사한 화질을 유지했다. 이는 딥러닝 기술을 이용한 고해상도 영상 변환 기술이 활발히 진행되는 가운데 초당 60프레임의 4K UHD 초해상화를 하드웨어로 실현한 첫 사례로 꼽힌다. 김 교수는 “이번 연구는 심층 콘볼루션 신경망이 작은 규모의 하드웨어에서 초고품질 영상 처리에 실질적으로 응요 가능한 기술임을 보인 매우 중요한 사례다”며 “현재 프리미엄 UHD TV 및 UHD 방송 콘텐츠 생성, 360도 VR 콘텐츠, 4K IPTV 서비스에 매우 효과적으로 적용할 수 있다”고 말했다. 이번 연구는 과학기술정보통신부 정보통신기술진흥센터(IITP) ICT 기초연구실지원사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 실시간 AI(딥러닝) 기반 고속 초고해상도 업스케일링 기술 그림2.심층 신경망 AI 기반 4K UHD 60fps 실시간 초해상화 하드웨어 (FPGA) 그림3. 심층 신경망 AI 기반 4K UHD 60fps 실시간 초해상화 하드웨어 시연
2018.01.16
조회수 17104
박현욱 교수, 머신러닝 통해 MRI 영상촬영시간 단축기술 개발
우리 대학 전기및전자공학부 박현욱 교수 연구팀이 머신러닝 기반의 영상복원법을 이용해 자기공명영상장치(이하 MRI)의 영상 획득시간을 6배 이상 단축시킬 수 있는 기술을 개발했다. 이번 연구를 통해 MRI의 영상획득시간을 대폭 줄임으로써 환자의 편의성을 높일 뿐 아니라 의료비용 절감 효과를 기대할 수 있을 것으로 보인다. 권기남 박사과정이 1저자로 참여한 이번 연구는 국제 학술지 ‘메디컬 피직스(Medical Physics)’ 12월 13일자에 게재됐고 그 우수성을 인정받아 표지 논문에 선정됐다. MRI는 방사능 없이 연조직의 다양한 대조도를 촬영할 수 있는 영상기기이다. 다양한 해부학적 구조 뿐 아니라 기능적, 생리학적 정보 또한 영상화 할 수 있기 때문에 의료 진단을 위해 매우 높은 빈도로 사용되고 있다. 하지만 MRI는 다른 의료영상기기에 비해 영상획득시간이 오래 걸린다는 단점이 있다. 따라서 환자들은 MRI를 찍기 위해 긴 시간을 대기해야 하고 촬영 과정에서도 자세를 움직이지 않아야 하는 등의 불편함을 감수해야 한다. 특히 길게 소요되는 영상획득시간은 MRI의 비싼 촬영 비용과 직접적인 연관이 있다. 박 교수 연구팀은 MRI의 영상획득시간을 줄이기 위해 데이터를 적게 수집하고 대신 부족한 데이터를 기계학습(Machine Learning)을 이용해 복원하는 방법을 개발했다. 기존의 MRI는 주파수 영역에서 여러 위상 인코딩을 하면서 순차적으로 한 줄씩 얻기 때문에 영상획득시간이 오래 걸린다. 획득 시간을 단축시키기 위해 저주파 영역에서만 데이터를 얻으면 저해상도 영상을 얻게 되고 듬성듬성 데이터를 얻으면 영상에서 인공물이 생기는 에일리어싱 아티팩트 현상이 발생한다. 이러한 에일리어싱 아티팩트를 해결하기 위해 다른 민감도를 갖는 여러 수신 코일을 활용한 병렬 영상법과 신호의 희소성을 이용한 압축 센싱 기법이 주로 활용됐다. 그러나 병렬 영상법은 수신 코일들의 설계에 영향을 받기 때문에 시간을 많이 단축할 수 없고 영상 복원에도 시간이 많이 걸린다. 연구팀은 MRI의 가속화에 의해 발생하는 에일리어싱 아티팩트 현상을 없애기 위해 라인 전체를 고려한 인공 신경망(Deep Neural Networks)을 개발했다. 연구팀은 위 기술과 함께 기존 병렬 영상법에서 이용했던 복수 수신 코일의 정보를 활용했고, 이 방식을 통해 직접적으로 영향을 주는 부분만을 연결해 네트워크의 효율성을 높였다. 기존 방법들의 경우 서브 샘플링 패턴에 많은 영향을 받았지만 박 교수 연구팀의 기술은 다양한 서브샘플링 패턴에 적용 가능하며 기존 방법대비 복원 영상의 우수함을 보였고 실시간 복원 또한 가능하다. 박 교수는 “MRI는 환자 진단에 필요한 필수 장비가 됐지만 영상 획득 시간이 오래 걸려 비용이 비싸고 불편함이 많았다”며 “기계학습을 활용한 방법이 MRI의 영상 획득 시간을 크게 단축할 것으로 기대한다”고 말했다. 이번 연구는 과학기술정보통신부의 인공지능 국가전략프로젝트와 뇌과학원천기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 국제 학술지 ‘메디컬 피직스 (Medical Physics)’12월호 표지 그림2. 제안하는 네트워크의 모식도 그림3. MRI의 일반적인 영상 획득 및 가속 영상 획득 모식도
2017.12.29
조회수 17602
증강현실로 스마트시대의 미래를 열다!
영화 ‘마이너리티 리포트’에서 허공에 화면이 뜨고 손짓으로 컴퓨터를 조작하는 모습은 단지 상상 속 미래였다. 하지만 이런 일들이 곧 실현될 것으로 보인다. 우리 학교 전기및전자공학과 유회준 교수 연구팀은 세계 최초로 증강현실 전용 프로세서가 내장된 고성능·초저전력 머리 장착형 디스플레이(HMD, Head Mount Display) ‘케이 글래스(K-Glass)’를 개발했다. 연구팀의 전용 프로세서 개발로 기존 상용칩을 활용한 구글 글래스 보다 속도는 30배 이상 빨라지면서 동시에 사용시간은 3배 이상 길어지는 등 실제 사용자에게 불편함이 많이 줄어 증강현실시대를 앞당길 것으로 기대된다. 증강현실이란, 현실 세계와 이를 적절히 변형한 가상 미디어 콘텐츠가 결합한 것이다. 예를 들면, 동화책에 그려진 공룡 그림을 쳐다보면 3차원 공룡이 책 위로 솟아올라 보이며 방향을 바꾸면 공룡의 다른 쪽이 보이게 하는 기술이다. 삼성, 마이크로소프트 등에서는 관련 특허를 출원하고 있고, 특히 구글에서는 2012년 5월 증강현실을 위한 프로젝트 글래스(Project Glass)를 개발했다. 하지만 자연스러운 증강현실을 구현하기에는 성능이 만족할만한 수준은 아니었다. 구글의 기술은 바코드와 같은 표식을 인식해 해당 물체에 가상 컨텐츠를 첨가하는 방식의 증강현실을 구현하는 방식이기 때문에 표식을 설치하기 힘든 야외에는 증강현실을 구현할 수 없는 큰 단점이 있다. 게다가 2시간 정도만 사용할 수 있을 정도로 전력 소비량이 많아 휴대폰과 같은 모바일 기기처럼 일상생활에서 항상 착용하지는 못하는 실정이었다.연구팀이 개발한 K-Glass의 ‘증강현실 전용 프로세서’는 인간 뇌의 시각 집중 모델(Visual Attention Model)에 영감을 받아 제작돼 저전력·고성능을 동시에 달성했다. 시각 집중 모델은 보고 있는 화면에서 의미 있고 중요한 부분을 배경과 같이 인식에 무의미한 영역들로부터 분리한다. 이에 따라 불필요한 연산을 제거할 수 있어 복잡한 증강현실 알고리즘의 연산 속도를 획기적으로 증가시킬 수 있다는 장점이 있다. 또 전력소모를 줄이기 위해 ‘뉴런의 신경망’을 모방한 네트워크 구조를 적용했다. 프로세서 내부에서는 데이터가 활발하게 돌아다니는데 데이터 쏠림현상에 의해 전송에 병목이 발생할 수가 있는데 연구팀은 뉴런의 신경망 구조를 활용해 프로세서 내 데이터를 전송 및 네트워크 병목현상을 효과적으로 극복했다. 개발된 증강현실 전용 프로세서는 65nm(나노미터) 공정에서 제작돼 32㎟ 면적에 1.22TOPS(Tera-Operation per Second, 1초당 1012회 연산속도) 성능을 보인다. 또한 30fps(초당프레임)/720p(픽셀) 비디오 환경의 실시간 동작에서 1.57TOPS/W(와트)의 높은 에너지 효율을 나타내 장시간 동작할 수 있다. 유회준 교수는 “스마트 폰의 뒤를 잇는 차세대 모바일 디바이스로써 HMD에 대한 관심이 급증하고 있다”며 “투과형 HMD는 증강현실을 구현함에 따라 교육 엔터테인먼트 등의 분야에 큰 변화를 가져올 것”이라고 말했다. 또 “K-Glass는 구글의 프로젝트 글래스 등 기존 HMD의 낮은 컴퓨팅 성능을 획기적으로 향상시키는 것은 물론 초저전력 소비를 달성하는데 성공, 미래 모바일 IT분야에서 혁신적인 변화를 주도할 것”이라고 연구 의의에 대해 말했다. 유회준 교수 지도하에 김경훈 박사과정 학생이 주도해 개발한 K-Glass는 이달 미국 샌프란시스코에서 개최된 세계적 반도체 학술대회 ISSCC(국제고체회로설계학회)에서 발표돼 커다란 주목을 받았다. K-Glass 데모 동영상 유튜브 링크 :http://www.youtube.com/watch?v=fzQpSORKYr8&feature=c4-overview&list=UUirZA3OFhxP4YFreIJkTtXw
2014.02.20
조회수 16031
<<
첫번째페이지
<
이전 페이지
1
2
3
4
>
다음 페이지
>>
마지막 페이지 4