-
김갑진 교수, 초고속 동작 자기메모리 핵심 기술 개발 성공
〈 김 갑 진 교수 〉
우리 대학 물리학과 김갑진 교수와 고려대학교 이경진 교수 연구팀이 차세대 자구벽 기반 자기메모리의 속도를 획기적으로 향상시키는 기술을 개발했다.
이 연구는 물리·재료 분야 최고 권위의 학술지인 네이처 머티리얼즈(Nature Materials) 9월 25일자에 게재됐다.
현재 사용되는 메모리 소자인 D램(D-RAM)과 S램(S-RAM)은 속도는 빠르나 전원이 꺼지면 메모리가 사라지는 휘발성 특성이 있고, 플래시 메모리(Flash memory)는 비휘발성이나 속도가 느리고, 하드 디스크 드라이브(HDD)는 용량은 크나 전력 사용량이 크고 충격에 약하다는 한계가 있다.
기존 메모리의 단점을 해결하기 위해 ‘자구벽 기반 자기메모리’를 개발 중이다. 자구벽 메모리의 핵심 동작원리는 전류에 의한 자구벽 이동이다. 자성 나노선을 사용하여 비휘발성 특성을 확보하고, 기계적 회전을 없앰 으로써 전력사용량을 줄인 고집적․저전력의 차세대 메모리이다.
그러나 현재까지 연구결과, 자구벽 메모리의 동작 속도는 최대 수백 m/s로 속도에 한계가 있고, 이는 자구벽이 회전하면서 움직이는 ‘워커붕괴현상*’ 때문이라고 알려져 있다.
따라서 자구벽 메모리의 실용화를 위해 워커붕괴현상을 제거하여 동작 속도를 높일 수 있는 핵심기술 개발이 요구됐다.
자구벽 메모리 연구는 대부분 ‘강자성체’ 물질을 사용했으며, 강자성체의 경우 자구벽이 회전하는 워커붕괴현상을 피할 수 없다.
연구팀은 자기메모리 연구에 ‘페리자성체’인 GdFeCo를 사용한 결과 특정조건을 만족할 경우 워커붕괴현상을 없앨 수 있는 원리를 발견했고, 이를 이용해 자구벽의 이동 속도를 상온에서 2 km/s 이상까지 증가시키는데 성공했다.
자구벽 메모리는 고집적·저전력·비휘발성을 갖춘 메모리로서 이번 연구로 발견한 초고속 동작 특성이 추가된다면 하드디스크를 뛰어넘는 차세대 메모리가 될 것으로 기대된다.
김갑진 교수는 “이번 연구는 페리자성체의 각운동량이 0인 지점에서 나타나는 새로운 물리 현상을 발견했다는 점에서 의미가 크고, 향후 차세대 메모리 구현을 앞당길 수 있을 것으로 기대된다”고 밝혔다.
이 연구는 한국연구재단의 신진연구자지원사업, 선도연구센터지원사업(응집상 양자 결맞음 연구센터)과 DGIST 위탁연구(바이오자성 글로벌 연구센터) 등의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 페리자성체를 이용한 자구벽 메모리 소자의 개념도
그림2. 자구벽 속도 측정 소자의 개략도 및 실험 결과
2017.10.20
조회수 13847
-
배병수, 이도창 교수, 고온 및 고습 견딜 수 있는 퀀텀닷 기술 개발
우리 대학 신소재공학과 배병수 교수와 생명화학공학과 이도창 교수 연구팀이 차세대 디스플레이 발광 소재인 퀀텀닷을 고온, 고습 환경에서도 안정적으로 보호할 수 있는 퀀텀닷 실록산 수지(실리콘 기반의 고분자)를 개발했다.
이 기술을 통해 퀀텀닷을 차세대 고화질 디스플레이 제품에 다양하게 응용할 수 있을 것으로 기대된다.
이번 연구 결과는 화학 분야 학술지인 ‘美 화학회지(Journal of the American Chemical Society, JACS)’ 의 2016년 12월 21일자 최신호에 게재됐다.
퀀텀닷은 수 나노미터 크기의 반도체 나노 결정이다. 크기 변화에 따라 발광 파장을 쉽게 조절할 수 있고 넓은 색 표현 범위를 갖고 있어 초고화질의 디스플레이를 구현할 수 있다.
이러한 특성 덕분에 퀀텀닷은 고분자 수지에 분산된 형태로 필름에 코팅되거나 LED 광원에 도포돼 차세대 디스플레이 핵심 소재로 떠오르고 있다.
그러나 퀀텀닷은 우수한 발광특성에도 불구하고 고온이나 고습 환경에서 쉽게 산화돼 고유의 발광특성(양자효율)이 급격히 저하되는 문제가 있다.
현재 상용화된 퀀텀닷 디스플레이 제품은 고온의 원인인 LED 광원과 거리를 둘 수 있는 퀀텀닷 필름을 사용한다. 그리고 퀀텀닷의 산화를 방지하기 위해 산소, 수분을 차단시키는 별도의 차단 필름으로 퀀텀닷 필름을 감싸서 사용한다.
하지만 차단 필름의 높은 단가는 퀀텀닷 디스플레이 제품의 금액을 상승시켜 시장에서의 가격 경쟁력을 떨어트린다.
연구팀은 문제 해결을 위해 자체적으로 개발한 솔-젤 합성공정을 이용했다. 이 기술을 통해 퀀텀닷이 열에 강한 실록산 분자구조에 의해 보호돼 별도의 산소, 수분 차단 필름 없이도 퀀텀닷의 성능을 유지할 수 있다.
화학적으로 균일하게 분산된 퀀텀닷 실록산 수지를 사용해 제작된 퀀텀닷 실록산 재료는 85℃의 고온, 85℃/85%의 고온고습 뿐 아니라 강산성과 강염기성의 환경에서도 발광특성이 저하되지 않았다. 또한 오히려 고습 환경에서는 발광특성이 상승하는 현상을 발견했다.
연구팀의 퀀텀닷 실록산 수지를 이용하면 별도의 차단필름 없이도 안정적인 퀀텀닷 필름을 제작해 가격을 낮출 수 있다. 향후 LED 광원에 직접 도포해 퀀텀닷의 사용량을 줄이는 동시에 성능을 높일 수 있는 퀀텀닷 디스플레이의 개발이 가능할 것으로 기대된다.
배 교수는 “퀀텀닷이 차세대 디스플레이 소재로 나아가는 시점에서 퀀텀닷의 한계를 극복하고 널리 활용될 수 있는 방안을 제시했다”며 “원천소재를 기반으로 하는 국내 디스플레이 산업의 발전에 크게 기여할 수 있을 것이다”고 말했다.
또한 “현재는 기술의 가능성을 제시한 수준으로서 향후 국내외 업체들과 협력해 퀀텀닷의 신뢰성을 향상시켜 상용화에 주력할 계획이다”고 말했다.
연구팀은 관련 특허를 국내외에 출원 중이고, KAIST 교원창업기업인 ㈜솔잎기술에 이전해 사업화를 추진할 계획이다.
□ 그림 설명
그림1. 끓는 물속에도 안정성을 보이는 퀀텀닷 실록산 재료
그림2. 균일한 분산을 갖는 퀀텀닷 실록산 수지와 기존 퀀텀닷 상용고분자 수지 비교
그림3. 본 연구에서 개발된 퀀텀닷 실록산 수지 및 퀀텀닷 실록산 재료 개념도
2017.01.10
조회수 15458
-
양찬호 교수, 자석 아닌 물질이 자성(磁性) 갖게 하는 기술 개발
우리 대학 물리학과 양찬호 교수 연구팀이 전기장을 통해 자석이 아닌 물질이 자성을 갖게 하거나 그 반대로 자석 내의 자성을 없앨 수 있는 기술을 개발했다.
이 연구를 통해 자성 물질 기반의 저장 매체를 개발한다면 대용량의 정보를 빠른 속도로 이용할 수 있을 것으로 기대된다.
장병권 박사과정이 1저자로 참여한 이번 연구 성과는 물리학 분야 학술지 ‘네이처 피직스(Nature Physics)’ 10월 3일자 온라인 판에 게재됐다.
물질의 내부에는 아주 작은 자석들이 존재한다. 그 작은 자석들이 무질서하게 여러 방향으로 향하고 있으면 비 자성 상태이고, 일정한 방향으로 정렬이 이뤄지면 우리가 흔히 볼 수 있는 자석이 된다.
테라바이트 이상의 외장하드를 쉽게 구할 수 있을 정도로 저장 매체의 용량 기술은 발전했다. 그러나 용량 증가는 필연적으로 저장 매체의 읽고 쓰는 속도를 느리게 만든다. 현재 가장 널리 쓰이는 하드 디스크(HDD)의 느린 데이터 접근 속도로는 다른 기술과 조화되기 어려운 상황이다.
이에 따라 SSD, 플로팅 게이트(Floating gate), 저항 방식(Resistive switching) 방식 등이 대안으로 떠오르고 있으나 기록을 할 때마다 흔적을 남기기 때문에 피로 누적 현상을 피할 수 없다는 한계를 갖는다.
정보를 자성 상태로 기록하면 속도가 빠르고 피로 누적 현상을 없앨 수 있기 때문에 저장 매체의 최소 저장 공간인 셀(Cell)을 자성 물질로 구성하려는 시도가 많았다. 주로 전류의 흐름을 통해 유도된 자기장을 이용하는 방식인데, 자기장은 자폐가 매우 어려워 넓은 범위에 영향을 끼치기 때문에 인접한 셀의 자성도 변화시킨다.
셀 하나하나를 조절할 수 없기 때문에 일정한 방향으로 정렬시킬 수 없어 자성의 상태를 바꾸기가 어려웠다.
연구팀은 문제 해결을 위해 자기전기 상호작용을 통해 자성 상태를 조절했다. 자기전기 상호작용은 자기장이 아닌 전기장을 이용해 전류의 흐름 없이 자성 상태를 조절하는 방식으로 에너지 소모가 적다는 장점을 갖는다.
연구팀은 실험을 통해 전기장 인가만으로 무질서하게 임의의 방향을 향하고 있는 셀들이 일정한 방향을 향하고 있음을 확인했다. 또한 반대로 일정한 방향에서 다시 무질서한 상태로도 변화가 가능함을 증명했다.
기존에 보고된 자기전기 현상은 통상적으로 극저온이나 고온에서 발현이 가능했다. 그러나 이번 기술은 화학적 도핑을 통해 상온에서도 작동이 가능하고, 변환이 가역적이며 비휘발성을 갖기 때문에 차세대 정보 저장 소자 개발의 발판이 될 것으로 기대된다.
양 교수는“이번 전기적 자성상태의 변화는 엔트로피 변화를 동반하고 있을 것으로 예상한다”며“자기전기 소자 응용뿐만 아니라 열전 현상의 새로운 가능성을 열 것으로 기대된다”고 말했다.
이번 연구는 재료연구소 최시영 박사, 포항공대 정윤희 교수, 포항 가속기연구소 구태영 박사, 막스플랑크 연구소 고경태 박사, 미국 스탠포드 가속기연구소 이준식 박사 와 헨드릭(Hendrik Ohldag) 박사, 호주 뉴사우스웨일즈 대학 잔(Jan Seidel) 교수 등과 공동으로 진행됐다.
한국연구재단의 중견연구자지원사업, 글로벌연구네트워크지원사업, 선도연구센터지원사업(응집상 양자 결맞음 연구센터)과 글로벌프론티어사업(하이브리드 인터페이스기반 미래소재 연구단) 등의 지원을 통해 수행됐다.
□ 그림 설명
그림1. 전기장 인가를 통한 자성 방향의 변화를 나타낸 개념도
2016.10.27
조회수 16021
-
조용훈 교수, 피라미드 구조로 방향성과 집광 효율을 높인 고성능 반도체 양자 광원 개발
우리 대학 물리학과 조용훈 교수 연구팀이 반도체 피라미드 구조의 양자점이 피라미드 밑면으로 강한 빛을 방출함을 발견하고 이 빛을 높은 효율로 모을 수 있는 기술을 개발했다.
김세정, 공수현 박사가 공동 1저자로 참여한 이번 연구 결과는 나노분야 국제 학술지 ‘나노 레터스(Nano Letters)’ 10월 12일자에 게재됐다.
반도체 양자점은 빛 알갱이를 하나씩 내뿜는 단일광자원(양자광원)으로 활용가능하다. 단일광자원은 미래의 양자컴퓨터 또는 양자암호기술 등을 구현하기 위한 필수 요소이다.
일반적인 양자점은 불규칙적인 위치에 형성되는 반면 3차원 피라미드 구조에 얇게 양자우물(Quantum well)을 성장시키면 정확히 피라미드 꼭짓점 위치에 양자점(Quantum dot)을 형성할 수 있다. 이 기술을 활용하면 위치가 제어된 단일광자원을 높은 수율로 얻을 수 있다.
하지만 양자점에서 나오는 빛은 빛 알갱이 개수가 적고 양자점이 굴절률 높은 반도체 물질에 갇혀 있기 때문에 일반적으로 구조 바깥으로 빠져나오기 어렵다. 반도체 단일광자원 소자가 상용화 단계로 나아가려면 빛의 집광 효율을 높여야만 한다.
연구팀은 일반적으로 가지고 있는 고정관념을 벗어나 문제를 해결했다. 피라미드 구조의 빛의 지향성(directionality)을 관찰했고 이를 이용했다. 그 동안 피라미드 양자점에서 나오는 빛은 피라미드의 위, 즉 꼭짓점 방향으로 나오는 신호만을 측정했다. 피라미드 밑면 방향으로는 성장 과정상 두꺼운 기판이 반드시 존재하기 때문이다.
하지만 연구팀은 시뮬레이션을 통해 양자점이 피라미드 위쪽보다 밑면 방향으로 더 많은 빛을 방출함을 확인했다.
또한 피라미드 밑면 방향으로 진행하는 빛은 가우시안 형태의 전기장 분포 형태를 갖고 있어, 광도파로 또는 광섬유의 단일 모드와 잘 일치한다. 이는 제품과 전선을 결합하듯이 광원과 광도파로 간의 결합 효율을 높일 수 있다.
이에 연구팀은 폴리머를 이용해 피라미드 구조체를 기판에서 떼어냈다. 피라미드의 밑면으로 나오는 빛이 두꺼운 반도체 기판을 거치지 않고 공기 중으로 직접 방출되도록 한 것이다.
연구팀이 떼어낸 피라미드는 쉽게 다른 광학 소자들과 직접 결합할 수 있어 피라미드 양자점의 응용분야가 확대될 수 있는 발판이 될 것으로 기대된다.
조 교수는 “이번 연구 내용은 양자 광원 뿐 아니라 LED와 같은 광원 소자에도 적용 가능해 활용도가 높을 것으로 기대된다.”고 말했다.
이번 연구는 한국연구재단의 중견연구자지원사업과 KAIST 기후변화연구 허브사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 폴리머로 떼어낸 피라미드 양자점의 모식도
그림2. 피라미드 양자점에서 방출된 빛의 상반구 및 하반구 먼장 (far-field) 방출 패턴(좌)와 폴리머로 떼어내기 전후의 나노 피라미드 구조체(후)
2016.10.18
조회수 18332
-
최민기, 김형준 교수, 1년 이상 유지 가능한 백금 단일원자 촉매 개발
우리 대학 생명화학공학과 최민기 교수, EEWS 대학원의 김형준 교수 공동 연구팀이 1년 이상 유지가 가능하고 과산화수소를 생산할 수 있는 단일 원자 크기의 백금 촉매 개발에 성공했다.
연구 결과는 ‘네이처 커뮤니케이션즈(Nature Communications)’ 8일자 온라인 판에 게재됐다.
백금 고체 촉매는 산업계에서 널리 이용된다. 고가의 촉매 활성물질인 백금을 최대한 효율적으로 활용하기 위해 백금 촉매입자를 최대한 작게 합성하려는 연구가 많이 이뤄지고 있다.
과학계에서는 효율적인 금속의 사용을 위해 가장 작은 구성원소인 단일 원자로 이뤄진 백금 촉매(1/10 나노미터 수준)를 개발했다.
백금을 비롯한 모든 금속은 나노미터 수준에서는 매우 불안정하기 때문에 특정 금속 산화물을 담지체로 사용해 백금 원자를 안정화해야 한다. 그러나 이 방법으로 합성된 촉매 또한 장기적으로는 안정성이 떨어지는 경우가 대부분이다.
탄소 소재의 경우 전기전도성이 높고 저렴해 담지체로서 장점을 갖지만 금속을 안정화시키는 능력이 매우 떨어져 탄소 전극 위에서 백금을 합성시키기 어려웠다.
연구팀은 문제 해결을 위해 금속과 강하게 결합할 수 있는 황 원자를 이용했다. 제올라이트를 거푸집으로 사용해 황 원자가 다량으로 분포된 탄소 나노구조를 합성했고, 이 물질에 백금 촉매를 형성했을 때 단일 원자 형태로도 백금을 안정화시키는 것을 발견했다.
연구팀은 황과 결합된 이 탄소 소재가 일반적인 촉매 합성 방법을 통해서도 백금이 단일 원자 크기로 존재하는 것을 확인했다. 또한 기존의 단일 원자 촉매는 불안정성으로 인해 구조가 쉽게 변했지만 연구팀이 개발한 촉매는 상온에서 1년이 지난 후에도 대부분의 촉매가 단일 원자로 존재하는 안정성을 보였다.
그밖에도 연구팀은 추가적인 성과를 확인했다. 일반적인 단일 원자 백금 촉매를 수소와 산소를 이용해 연료 전지 기술에 적용할 경우 대부분 물(H2O)이 형성되지만, 연구팀의 단일 원자 백금 촉매는 고부가가치 물질인 과산화수소가(H2O2) 95% 이상의 선택도로 생성돼 저렴하게 과산화수소를 생산할 수 있을 것으로 기대된다.
최 교수는 “기존의 불균일계 촉매로는 불가능했던 특이 촉매 선택성을 구현할 수 있을 것으로 예상된다” 며 “다른 단일 원자 촉매군 에 비해 훨씬 높은 안정성을 가져 촉매 수명을 획기적으로 늘릴 수 있을 것으로 기대된다"고 말했다.
김 교수는 “양자역학 시뮬레이션을 이용해 단일 원자 백금 촉매가 탄소 담지체에서 갖는 안정성 및 특이한 선택성 등의 원인을 규명했다”고 말했다.
이번 연구는 미래창조과학부의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 백금 단일 원자 촉매에서의 과산화수소 (H2O2) 생성 반응 모식도
그림2. 백금 단일 원자 사진
2016.03.14
조회수 10873
-
고효율의 단일광자원 소자 핵심기술 개발
조 용 훈 교수
우리 대학 물리학과 조용훈 교수 연구팀이 양자정보기술에 기여할 수 있는 고효율의 단일광자원(양자광원) 의 방출 효율과 공정 수율을 높일 수 있는 기술을 개발했다.
이번 연구 결과는 자연과학분야 학술지인 미국국립과학원회보(PNAS: Proceedings of the National Academy of Sciences) 4월 13일자 온라인 판에 게재됐다.
빛은 보통 파동의 성질을 갖는 동시에 입자의 성질도 가지고 있는데, 이 입자를 광자라고 한다. 단일광자원 혹은 양자광원은 광자가 뭉쳐서 나오는 고전적인 광원과는 달리 한 번에 한 개의 광자만 방출하는 소자이다. 반도체 양자점을 이용한 단일광자 방출 소자는 안정성 및 전기구동 가능성이 높아 상용화에 적합한 소자로 각광받고 있다.
하지만 빛의 파장은 양자점보다 수십~수백 배 정도 크기 때문에 상호 작용하기 어려워서 단일광자의 방출 효율이 매우 작다는 한계점이 있다. 따라서 고효율 단일광자원를 만들기 위해서는 양자점과 빛을 집속시키는 구조(광공진기)를 공간적으로 정확히 결합시키는 것이 필수적이다.
하지만 양자점은 불규칙하게 분포되어 있고 위치를 정확히 확인할 수 없어 우연성에 의존한 결합을 기대할 수밖에 없었다. 따라서 긴 공정시간에도 불구하고 소수의 단일광자소자를 제작하는 수준에 머물러 있었다.
연구팀은 문제 해결을 위해 피라미드 모양의 나노 구조체를 활용했다. 반도체 나노피라미드 구조에서는 양자점이 피라미드의 꼭지점에 자발적으로 형성된다. 그리고 그 위에 금속 필름을 얇게 증착하면 빛 역시 뾰족한 금속 끝에 모이는 성질 때문에 양자점과 동일한 위치에 집속되는 것이다.
특히 금속에서는 빛이 본래 가진 파장보다 작게 뭉칠 수 있다. 즉, 빛이 가진 파장보다 더 소형화를 시킬 수 있기 때문에 양자점과의 크기 차이로 인한 문제를 극복할 수 있게 되는데, 이 방법으로 단일광자 방출 효율이 기존의 방식보다 20배 정도 증가되었다.
단일광자 방출소자는 양자광컴퓨터 및 양자암호기술 구현의 가장 기본적인 구성 요소이다. 이번 연구를 통해 기존의 까다로운 과정들 없이 단순한 방식으로 효율과 수율을 모두 높일 수 있으므로, 단일광자방출원 혹은 양자광원 관련 기술의 상용화 가능성이 높아질 것으로 기대된다.
조 교수는 “이 기술은 높은 공정 수율을 갖고 있기 때문에 상용 양자광원 소자 제작 한계를 해결하고, 양자정보통신 분야 구현에 중요 기술이 될 것”이라고 말했다.
조용훈 교수의 지도를 받아 공수현(1저자)·김제형(2저자) 박사가 수행한 이번 연구는 우리 대학 신종화·이용희 교수, 프랑스 CNRS의 레시당 박사, 미국 UC 버클리의 샹장 교수가 참여했으며, 한국연구재단의 중견연구자 지원사업과 KAIST 기후변화연구 허브사업의 지원을 받아 수행됐다.
그림 1. 단일 광자가 높은 효율로 방출되는 모습의 개념도
2015.04.23
조회수 14033
-
그래핀 양자점 디스플레이 핵심기술 개발
우리 학교 신소재공학과 전석우(39) 교수는 물리학과 조용훈(48) 교수, 전기및전자공학과 유승협(43) 교수와 공동으로 세계에서 처음으로 흑연으로부터 고품질의 그래핀 양자점을 개발하는데 성공했다.
연구팀은 그래핀의 원재료인 흑연에 염(salt)과 물만을 이용한 흑연층간 화합물을 합성해 친환경적인 방법으로 그래핀 양자점을 만들었다.
개발된 양자점은 지름이 5nm(나노미터, 10억분의 1미터) 정도로 크기가 매우 균일하면서도 높은 양자 효율을 보였으며, 기존 양자점과 달리 납, 카드뮴 등의 독성 물질이 포함돼 있지 않다. 또 자연에서 쉽게 얻을 수 있는 재료(흑연, 염, 물)로만 만들어 적은 비용으로 대량생산이 가능할 것으로 기대된다.
이와 함께 연구팀은 그래핀 양자점의 발광 메커니즘을 규명했으며 제조된 그래핀 양자점을 통해 휴대폰 디스플레이의 최대 밝기(수백 cd/㎡)보다 높은 1,000 cd/m2(cd, 칸델라) 이상의 높은 휘도를 갖는 그래핀 양자점 LED를 개발해 상용화 가능성을 최초로 입증했다.
전석우 교수는 “아직은 기존 LED의 발광효율에는 못 미치지만 발광 특성은 향후 더욱 향상될 가능성이 많다”며 “특히 그래핀 양자점을 활용하면 종잇장처럼 얇은 디스플레이는 물론 커튼처럼 유연한 소재에도 원하는 정보가 표시되는 기술도 가능할 것”이라고 밝혔다.
연구팀이 KAIST 나노융합연구소 그래핀 연구센터의 지원을 받아 수행된 이번 연구는 ‘어드밴스드 옵티컬 머티리얼스(Advanced Optical Materials)’ 20일자 온라인판에 게재됐다.
그림1. 그래핀 양자점 합성 과정 및 그래핀 양자점 이미지
그림2. 그래핀 양자점 발광 메커니즘
그림3. 그래핀 양자점 적용 LED 구조 및 발광 이미지
2014.08.28
조회수 14747
-
양자점 이용한 고효율 투명 태양전지 개발
- 양자점 전해질에 분산해 9%대 고효율 염료감응 태양전지 원천기술 개발 -- 네이처 자매지 ‘사이언티픽 리포트’ 19일자 게재 -
우리 학교 신소재공학과 강정구 교수 연구팀은 모바일 양자점(mobile quantum dots)을 활용해 투명한 고효율 염료감응 태양전지 원천기술을 개발하는데 성공했다.
연구 결과는 세계적 학술지인 네이처(Nature)에서 발간하는 사이언티픽 리포트(Scientific Reports) 19일자 온라인판에 게재됐다.
현재 양산 가능한 염료감응 태양전지는 효율이 약 14% 정도로 낮아 가시광선 및 적외선 영역의 빛 흡수를 높이기 위해 염료, 빛 산란층, 플라즈몬 구조 등을 적용해 왔다. 그러나 이러한 구조들로 인해 태양전지가 두꺼워져 고효율의 투명 태양전지 구현에 한계가 있었다.
연구팀은 빛 흡수를 높이기 위해 염료감응 태양전지의 전해질에 양자점을 분산시켜 빛 산란층과 플라스몬 구조 없이도 9%대의 고효율을 달성했다.
아직은 현재 양산 가능한 태양전지보다 효율이 낮고, 상용화에는 많은 시간이 소요될 것으로 예상되지만 근본적으로 두께가 얇고 저렴한 염료감응 태양전지의 장점으로 인해 매우 의미 있는 연구결과라고 연구팀은 전했다.
이와 함께 연구팀은 전해질에 분산돼 있는 양자점이 염료와 함께 빛을 흡수하고 나서 다시 빛을 방출해 TiO2-염료 층과 전해질이 있음에도 불구하고 투명한 태양전지를 구현해내는데 성공했다.연구팀은 또 이번 연구를 통해 △가시광선 영역대에서도 양자점의 흡수와 방출 스펙트럼에 따라 형광공명 에너지 이동과 빛을 흡수한 양자점이 산화된 염료의 환원을 가속화시켜 태양전지 효율이 증가했으며 △빛 분산층과 플라즈몬 구조가 있는 투명하지 않은 셀과의 비교에서도 양자점의 흡수에 의한 효율 증가가 다른 효과보다 크고 투명한 특성을 보였음을 밝혀냈다.
강정구 교수는 이번 연구에 대해 “염료감응 태양전지의 높은 효율과 투명성을 모두 확보할 수 있게 됐으며, 투명한 유리창에 태양전지를 설치하는 것이 최종 목표”라며 “적외선 영역의 빛을 사용해 전기를 만들 수 있는 방법을 제시해 염료감응 태양전지의 적용 범위가 더욱 확대될 것으로 기대된다”고 말했다.
이번 연구는 KAIST 인공광합성센터, 고효율박막태양전지센터, 나노계면센터, WCU, 글로벌프론티어 사업 등의 지원을 통해 수행됐다.
그림1. 모바일 양자점이 포함된 염료감응태양전지의 흡수 스펙트럼, 외부양자효율, 전압-전류.(상단) 플라즈몬 구조, 빛반사층과 모바일 양자점이 구현된 태양전지의 외부양자효율, 산란파워, 그리고 사진의 비교. (하단)
그림2. 모바일 양자점이 전해질에서 염료에 흡수된 빛 에너지를 전달하는 메커니즘(좌측)과 염료 및 양자점의 흡수스펙트럼과 양자효율 (우측): Foster Resonance Energy Transfer (FRET) (상단), 양자점에서 흡수된 빛에너지에 의한 산화된 염료의 환원 작용(중단), 2광자 흡수 (하단)
그림3. 염료감응 태양전지 샘플
그림4. 연구원 사진
2013.09.25
조회수 16606
-
순수한 그래핀의 양자점 개발 성공
- 수 나노미터 직경의 완전히 순수한 그래핀 양자점 개발 -- “바이오센서, 광센서, 바이오 이미징 등 다양한 분야로 응용 가능” -
우리 학교 생명화학공학과 서태석(42) 교수와 물리학과 조용훈(48) 교수 공동 연구팀은 흑연 나노입자를 이용해 순수한 그래핀 양자점을 개발하는데 성공하고 그래핀 양자점에서의 방출되는 형광 빛의 원인을 밝혔다.
연구결과는 나노분야의 권위 있는 학술지 ‘어드밴스드 머티리얼스(Advanced Materials)’ 7월 19일자 표지논문(Back Cover)으로 게재됐다.
이번에 개발된 그래핀 양자점은 흑연으로 제작돼 인체에 무해한 친환경 소재라는 점에서 바이오센서, 광센서, 바이오 이미징 등 다양한 응용 분야에 적용할 수 있을 것으로 기대된다.
그래핀 양자점은 수 나노미터 이하의 직경을 갖고 있으며, 가시광 영역의 형광을 방출하는 특징이 있다.
기존 그래핀 양자점은 대부분 산화된 그래핀 양자점을 다시 환원하는 방식으로 제작했다. 따라서 그래핀 양자점 구조에 존재하는 순수한 탄소 결합과 산소 결합에 의한 형광 특성이 혼합돼 있어 발광의 근원을 정확하게 구분하기 어려웠다. 또 복잡한 화학적 방법으로 제작해 생산성이 떨어졌다.
연구팀은 그래핀 양자점의 정확한 발광 원인을 규명하기 위해 수 나노미터 크기의 흑연 나노입자를 이용해 순수한 그래핀 양자점을 산화반응 과정 없이 제작했다. 또 일반적으로 사용되고 있는 산화 과정을 흑연 나노입자에 적용해 산화 그래핀 양자점을 간단하게 제작하는 방법도 개발했다.
연구팀은 개발된 순수한 그래핀 양자점과 산화 그래핀 양자점으로부터 각각 파란색과 녹색 형광의 빛을 방출하는 것을 확인했는데, 이 두 종류의 양자점들은 산소 결합의 유무에 근본적 차이가 있다는 것을 밝혔다.
이와 함께 다양한 광분석 기법을 이용해 순수한 그래핀 양자점의 파란색 형광 현상이 벤젠 형태의 탄소 결합에 의한 것임을 규명하고, 산화 그래핀 양자점의 녹색 발광이 그래핀에 결합된 다양한 산소 기능기에 의한 것임을 규명했다.
서태석 교수는 “순수한 그래핀 양자점의 개발과 발광 특성 분석을 통해 기존에 뚜렷하게 설명되지 않았던 그래핀 양자점에서의 파란색 형광 빛의 원인을 밝혀냈다”고 이번 연구의 의의를 밝혔다.
KAIST 생명화학공학과 페이 리우(Fei Liu), 물리학과 장민호(제1저자) 박사과정 학생이 서태석, 조용훈 교수의 지도를 받아 수행한 이번 연구는 환경융합 신기술개발사업과 KAIST 나노융합연구소의 그래핀 연구센터 지원으로 수행됐다.
서태석 교수(왼쪽), 조용훈 교수(오른쪽)
2013.08.07
조회수 14801
-
양자점 기반 단파장 초고속 양자 광원 개발
- 나노 오벨리스크 구조 위에 양자점을 형성해 고효율 단광자 광원 개발 -- 단파장 가시광선 대역에서 작동하는 초고속 반도체 양자 광원 연구 -
우리 학교 물리학과 조용훈 교수팀은 오벨리스크 모양의 나노 구조물을 만들고 꼭대기 부분에 높은 신뢰도를 갖는 반도체 단일 양자점을 형성해 초고속 고효율 단광자 방출을 구현하는데 성공했다.
연구결과는 네이처(Nature)가 발행하는 "사이언티픽 리포트(Scientific Reports)" 7월 5일자 온라인판에 게재됐다.
반도체 양자점은 전자를 수 나노미터 크기에 3차원적으로 구속해 불연속적인 에너지 준위를 갖는 원자와 유사한 특성을 나타낸다. 이 성질을 이용하면 차세대 양자정보 통신, 양자 암호의 핵심 구성 요소인 양자광원을 개발할 수 있다.
특히, 반도체 양자점의 경우 높은 구동 온도, 안정성, 빠른 광자 방출, 전류 구동 가능성과 같은 많은 장점을 가지고 있어 차세대 핵심 기술 중 하나로 꼽히고 있다.
그러나 기존의 자발 형성 양자점의 경우, 평면 구조 안에 양자점들이 높은 밀도로 묻혀 있어 단일 양자점 하나의 특성을 파악하기 어렵고 광자 방출 효율이 매우 제한돼 있는 한계가 있다. 또 구성하는 층 사이의 응력으로 인한 내부 전기장 효과 때문에 전자와 정공 사이의 재결합이 어려워 내부 양자 효율이 낮은 문제가 있었다.조 교수 연구팀은 단파장의 빛을 내는 넓은 띠구조를 갖는 질화물 반도체를 이용해 오벨리스크 형태(뾰족한 팁 모양)의 나노 구조를 제작했다. 그 위에 얇은 활성층 구조를 다시 성장해 나노 팁 끝에 단일 양자점을 위치시키는데 성공해 스펙트럼 폭이 매우 작은 에너지 준위에서 발생하는 초고속 단광자 특성을 확인했다.
이 같은 독특한 나노 구조를 활용하면, 패터닝 등의 공정 없이도 단일 양자구조를 얻기가 쉽고, 양자점에서 생성된 빛이 외부로 쉽게 빠져나올 수 있다는 장점이 있다.
이와 함께 연구팀은 박막 형태와는 달리 오벨리스크 형태의 나노구조의 경우 응력을 크게 감소시켜 내부 전기장 효과도 상쇄돼 내부 양자 효율이 크게 증가하는 현상을 밝혔다.
이번에 개발된 양자광원은 발광파장이 기존 장파장 적외선 대역이 아닌 단파장 가시광(400nm) 대역이기 때문에 자유 공간에서의 통신에 사용이 가능하고 광자 검출 효율이 높은 가시광 대역의 검출기를 사용할 수 있다.
조용훈 교수는 “기존의 양자점 성장 방식과는 달리 비교적 쉽게 단일 양자점을 형성하여 제어할 수 있고, 이를 통해 매우 빠른 단일 광자 생성이 가능해 실용적인 양자광원 개발에 기여할 수 있을 것으로 기대된다”며 “오벨리스크 형태 나노구조의 특성 상 손쉽게 분리 및 다른 기판과의 결합이 가능해 단일 칩 양자 광소자 제작에도 활용될 수 있다”고 말했다.
KAIST 물리학과 조용훈 교수 지도아래 김제형(제1저자), 고영호(제2저자) 박사과정 학생이 주도적으로 수행한 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 중견연구자지원사업 및 WCU 사업의 지원으로 수행됐다.
그림1. (왼쪽) 프랑스 파리에 위치한 오벨리스크 사진. (오른쪽) 제작된 오벨리스크형 나노 구조의 전자현미경 이미지.
그림2. (왼쪽) 오벨리스크형 나노구조와 기존 평면 박막 구조에 내재된 양자점을 비교한 개념도. (오른쪽) 오벨리스크 나노구조 끝에 형성된 단일 양자점에서 방출되는 좁은 선폭의 스펙트럼과 광원의 양자화 정도와 빠른 단광자 방출 속도를 나타내는 2차 광자 상관 관계 그래프.
2013.07.22
조회수 16668
-
실리콘 나노선의 불순물 특성 세계 첫 규명
장기주 교수
- “실리콘 나노선을 소재 상용화 앞당겨 획기적 반도체 집적도 향상 기대” -- 나노분야 세계적 학술지 ‘나노레터스’ 9월 17일자 게재 -
우리 학교 연구진이 미래 차세대 반도체 소자 소재로 기대를 모으고 있는 실리콘 나노선의 전기 흐름과 직결된 불순물 특성을 밝혀냈다.
우리 학교 물리학과 장기주 특훈교수팀은 산화 처리된 실리콘 나노선에서 전기를 흐르게 하기위해 첨가한 불순물 붕소(B), 인(P) 등의 움직임과 비활성화를 일으키는 메커니즘을 세계 최초로 규명했다.
현재 최첨단 기술로도 10nm(나노미터) 이하의 실리콘 기반 반도체 제작은 불가능한 것으로 알려져 있지만, 실리콘 나노선은 굵기가 수 나노미터이기 때문에 보다 획기적인 집적도를 가진 반도체를 구현할 수 있을 것으로 기대된다.
실리콘 나노선은 원래 전기가 흐르지 않는 데 반도체 소자로 적용하려면 인 또는 붕소와 같은 불순물을 소량 첨가(Doping)해 양의 전하를 띠는 정공이나 음 전하를 띠는 전자 운반 매개체를 만들어 전기가 흐를 수 있도록 해야 한다.
그러나 덩어리 형태의 기존 실리콘에 비해 나노선에서는 불순물 첨가가 어려울 뿐만 아니라 전기전도 특성을 조절하기 어려운 문제가 있었다.
장 교수 연구팀은 이번 연구를 위해 단순 모형을 이용한 기존 이론을 개선한 획기적 양자시뮬레이션 이론을 고안해 실제와 매우 가까운 코어-쉘 원자 모델을 만들었다.연구팀은 이를 통해 실리콘 코어 내부에 첨가된 붕소 불순물이 산화과정에서 코어를 싸고 있는 산화물 껍질로 쉽게 빠져나가는 원인을 세계 최초로 규명하는 데 성공했다.
이와 함께 인 불순물은 산화물로 빠져나가지 못하지만 서로 전기적으로 비활성화 된 쌍을 이루면서 정공이 생기는 효율을 감소시킨다는 사실도 밝혔다.
이러한 현상은 나노선이 필름 형태로 돼 있는 기존 실리콘에 비해 같은 부피라도 표면적이 더 넓기 때문에 더욱 심각한 문제를 일으킨다고 연구팀은 이번 연구에서 입증했다.
장기주 교수는 “이번 연구방법은 실리콘과 산화물 사이의 코어-쉘 나노선 모델을 구현하는 이론 연구의 기본 모형으로 받아질 것으로 기대된다”며 “특히, 10nm급 수준의 소자 연구에서 실리콘 채널을 산화물로 둘러 싼 3차원 FinFET 구조의 원자구조를 구현해 소자 특성을 밝히는 데 커다란 도움이 될 것이다”라고 연구의의를 밝혔다.KAIST 장기주 교수가 주도하고 김성현 박사과정 학생(제1저자)과 박지상 박사과정 학생(제 2저자)이 참여한 이번 연구는 교육과학기술부와 한국연구재단이 추진하는 중견연구자사업(도약연구) 및 신기술융합형성장동력사업(나노기반정보⋅에너지) 지원으로 수행됐고, 나노과학분야 세계적 학술지인 ‘나노레터스(Nano Letters)’ 9월 17일자 온라인 판에 게재됐다.
그림설명 : 실리콘/산화물 코어-쉘 나노선의 종단면. 초기 코어에 잘 들어가 있던 붕소(녹색)이 격자 틈새에 위치한 실리콘(연파랑)에 의해 밀려남 따라 붕소가 산화물 껍질로 빠져나간다.
2012.10.22
조회수 15924
-
실험비용 획기적으로 절감하는 빠르고 정확한 양자역학 계산 이론 개발
정유성 교수 윌리엄 고다드 교수
현재 널리 사용되고 있는 양자역학 원리를 이용하여 정확하면서도 계산시간이 획기적으로 개선된 새로운 전자밀도범함수 계산이론*이 국내 연구진에 의해 개발됐다.
*) 전자밀도범함수 계산이론 : 비교적 간단한 파동함수와 전자밀도만으로 에너지와 성질을 계산할 수 있음을 증명한 이론
우리 학교 EEWS대학원 정유성 교수(38세)와 윌리엄 고다드 교수가 주도한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단이 추진하는 WCU(세계수준의 연구중심대학)육성사업의 지원을 받아 수행되었고, 연구결과는 자연과학분야의 권위 있는 학술지인 ‘미국립과학원회보(PNAS)’ 11월 23일자 온라인으로 게재되었다.
정유성 교수와 고다드 교수는 기존의 양자계산의 문제점인 계산시간과 부정확한 예측으로 인한 결과의 신뢰성이 떨어지는 단점을 보완하여, 정확하면서도 빠른 전자밀도범함수 이론과 알고리즘을 개발하였다.
양자역학 계산법 중 파동함수*를 이용하면 정확도가 높은 반면에 계산시간도 빠르게 증가해 수백-수천 개의 원자를 갖는 거대 분자에 적용하기 어렵고, 상대적으로 계산량이 적은 전자밀도를 변수로 사용할 경우 적용할 수 있는 분자의 크기는 증가하지만 정확도가 떨어지는 단점이 있었다.
*) 파동함수(波動函數) : 양자역학에서 물질입자인 전자·양성자·중성자 등의 상태를 나타내는 양
전자들의 상호작용은 스핀*이 같은 전자들끼리의 상호작용과 스핀이 다른 전자들끼리의 상호작용으로 나뉘는데, 파울리의 배타 원리에 의해 스핀이 다른 전자 사이의 거리가 더 가까우므로 스핀이 다른 전자들의 상호작용이 더 크다. 연구팀은 이 점에 착안하여, 기존에 존재하던 정확한 계산법에서 스핀이 다른 전자 사이의 상호작용을 중점적으로 계산하여 속도를 향상시켰다.
*) 스핀(spin) : 입자의 기본성질을 나타내는 물리량 중 하나로, 입자의 고유한 운동량을 나타냄. 소립자들의 특징을 밝히는 중요한 물리량임
또한 전자들의 상호작용은 국소성을 띠기 때문에 멀리 떨어진 전자 사이에는 상호작용이 거의 없어서 이들을 무시하더라도 총 에너지에 영향을 미치지 않는다는 점에 착안하여, 계산시간을 최대 100배이상 단축시키는 알고리즘을 개발하였다. 예를 들어, 기존의 계산방법으로는 탄소 200개와 수소 402개로 이루어진 알케인(aklane) 분자를 정확히 계산하는데 6개월이 걸린 반면, 새로운 방법론을 이용하면 비슷한 정확도로 하루(24시간)면 계산할 수 있다.
정유성 교수는 “그동안 국내의 계산과학 및 재료 설계 커뮤니티가 응용 연구에 주로 집중하여 짧은 시간 동안 훌륭한 결과를 많이 도출한 반면, 상대적으로 긴 시간을 요구하는 기초 방법론이나 소프트웨어 개발에서는 국제경쟁력이 뒤처져 있는 추세였다. 그러나 이번 연구는 기존의 방법들보다 월등한 정확도와 속도를 가진 방법론을 국내에서 개발했다는 점에서 의미가 크다”고 연구의의를 밝혔다.
아울러 이번에 개발된 방법론은 큐켐(Q-CHEM)이라는 상용 소프트웨어 패키지를 통해 일반연구자들에게 공급될 예정이다.알케인(alkane) 분자의 크기에 따라 본 연구에서 제시한 새로운 방법론(local XYGJ-OS)과 기존의 방법론의 계산 시간을 비교한 그래프. local XYGJ-OS는 전자 간 상호작용의 국소성을 이용해 계산 시간을 낮춘 방법이다.다양한 양자계산 방법과 본 연구에서 제시한 XYGJ-OS 방법의 오차. 233개 분자의 생성열을 실험값과 대조하여 오차의 절대값을 평균하였다. B2PLYP부터 XYG3까지의 방법 및 G2, G3 방법은 XYGJ-OS에 비하여 훨씬 많은 시간을 소모한다.
2011.11.29
조회수 14770