본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%97%90%EB%84%88%EC%A7%80
최신순
조회순
김희탁 교수, 바나듐레독스 흐름전지용 전해액 신공정 개발
〈 김희탁 교수, 허지윤 박사과정, KIER 이신근 박사〉 우리 대학 생명화학공학과/나노융합연구소 차세대배터리센터 김희탁 교수와 한국에너지기술연구원(원장 곽병성) 에너지소재연구실 이신근 박사 공동연구팀이 생산 비용을 40% 줄인 바나듐 레독스 흐름전지용 고순도 전해액 생산 공정 개발에 성공했다. 허지윤 박사과정이 1 저자로 참여한 이번 연구 결과는 국제학술지 ‘네이처 커뮤니케이션즈 (Nature Communications)’ 9월 27일 자 온라인판에 게재됐고, 우수성을 인정받아 에디터 하이라이트(Editor’s Highlight)로 선정됐다. (논문명: Catalytic production of impurity-free V3.5+ electrolyte for vanadium redox flow batteries) 최근 리튬이온전지 기반 대용량 에너지 저장장치의 발화사고가 빈번하게 발생하면서 수계 전해질을 이용하는 비 발화성 바나듐 레독스 흐름전지에 대한 관심이 커지고 있다. 바나듐 레독스 흐름전지는 안전성뿐 아니라 내구성 및 대용량화의 장점이 있어 대용량 에너지 저장장치로의 응용이 기대되고 있으나, 리튬이온전지 대비 높은 가격으로 인해 시장 확대가 지연되고 있다. 바나듐 레독스 흐름전지의 부품 소재 중 바나듐 전해액은 전지의 용량, 수명과 성능을 결정하는 핵심 소재이며 전체 전지 가격의 50% 이상을 차지하고 있어, 바나듐 전해액의 저가격화는 바나듐 레독스 흐름전지 시장 확대의 핵심이라 할 수 있다. 상업적으로 이용되는 바나듐 전해액은 3.5 가의 산화수를 가지며, 이는 5가의 바나듐옥사이드(V2O5) 전구체를 전기분해를 이용해 환원시켜 제조된다. 그러나 전기분해 방식은 고가의 전기분해 장치가 필요하고 에너지 소비가 크며 전기분해 중 생성되는 높은 산화수의 전해액의 재처리가 필요하다. 이에 전기분해 방식을 벗어나 화학적으로 바나듐을 환원시키는 공정이 전 세계적으로 연구됐지만, 환원제의 잔류물에 의한 전해액 오염으로 인해 상업화에 성공한 사례가 없었다. 김 교수와 이 박사 공동연구팀은 유기 연료전지의 촉매 기술을 응용해 잔류물이 남지 않는 환원제인 포름산의 활성을 증대시켜 바나듐을 3.5가로 환원시키는 기술을 개발했다. 연구팀은 이 기술을 이용해 시간당 2리터(L)급 촉매 반응기를 개발했고 연속 공정을 통한 고순도의 3.5가 바나듐 전해액 생산에 성공했다. 이번 촉매반응을 이용한 제조공정은 전기분해 방식 대비 효율적인 공정 구조를 가져 생산 공정 비용을 40% 줄일 수 있다. 또한, 촉매 반응기를 통해 생산된 전해액은 기존 전기분해 방식으로 만들어지는 전해액과 동등한 성능을 보여 그 품질이 검증됐다. 나노융합연구소 차세대배터리센터장 김희탁 교수는 “촉매를 이용한 화학적 전해액 제조기술은 원천성을 가지고 있어, 비 발화성 대용량 에너지 저장장치 분야의 국가 경쟁력을 높일 수 있다”라고 말했다. 한국에너지기술연구원 에너지소재연구실 이신근 박사는 “한국에너지기술연구원에서 개발된 촉매 반응기를 통해 기술의 산업화가 촉진될 것으로 기대한다”라고 말했다. 이번 연구는 산업통상자원부 한국에너지기술평가원 ESS기술개발 사업의 지원을 받아 KAIST, 에너지기술연구원, 연세대학교, ㈜이에스가 참여한 컨소시엄을 통해 개발됐다. □ 그림 설명 그림1. 촉매반응을 통한 3.5가 바나듐 전해액의 생산 및 기존 전기분해를 이용한 3.5가 전해액 생산 비교 그림2. 연구에서 개발된 촉매반응기 및 이를 이용한 전해액 연속 제조
2019.10.28
조회수 13944
이진우 교수, 백금 활용도 16배 높인 단일 원자 촉매 개발
〈 박진규 박사과정, 이진우 교수 〉 우리 대학 생명화학공학과 이진우 교수 연구팀이 전기화학적 물 분해(이하 수전해) 방식을 통해, 수소를 생산하는 과정에서 쓰이는 백금의 사용을 최소화하면서 뛰어난 성능을 보여 활용도를 16배 높일 수 있는 백금 기반 촉매를 개발했다. 연구팀은 백금의 활용도를 높이기 위해 백금을 단일원자 형태로 텅스텐 산화물 표면에 고분산 시켜 백금이 받는 지지체 효과를 극대화했고, 수소 생산 수전해 촉매에서 높은 성능을 구현했다. 박진규 박사과정과 이성규 박사가 공동 1 저자로 참여한 이번 연구는 세계적 화학지인‘앙게반테 케미(Angewandte Chemie)’ 8월 22일 자에 게재됐다. (논문명 : Investigation of Support Effect in Atomically Dispersed Pt on WO3-x for High Utilization of Pt in Hydrogen Evolution Reaction, 수소 생산 반응에서 백금 활용도를 높이기 위해 백금 유사-단일 원자 촉매를 담지한 텅스텐 산화물 지지체 효과 조사) 백금 기반 촉매들은 성능과 안정성이 높아 다양한 전기화학 촉매 분야에서 활용됐지만, 가격이 높아 상용화에 어려움이 있었다. 단일 원자 촉매는 금속의 원자 하나가 지지체에 고분산된 형태의 촉매로, 모든 금속 단일 원자가 반응에 참여하기 때문에 백금의 사용량을 현저히 낮출 수 있다. 하지만 대부분의 연구가 탄소 기반 지지체에 담지된 단일 원자 촉매를 적용하고 있어 백금 활용성에 한계가 있다. 연구팀은 이번에 백금과 강한 시너지 효과를 낼 수 있는 메조 다공성 텅스텐 산화물을 단일 원자 촉매의 지지체로 사용했다. 이를 통해 백금 단일 원자를 텅스텐 산화물에 담지했을 때, 텅스텐 산화물에서 백금 단일 원자로 전하 이동이 일어나 백금의 전자구조가 변하는 것을 확인했다. 또한, 단일 원자 촉매가 갖는 ‘금속과 지지체간의 경계면 극대화’라는 독특한 특징을 활용해 백금 나노입자를 텅스텐 산화물에 담지한 촉매와 비교 실험을 진행했다. 연구팀은 실험을 통해 백금 표면에서 다른 지지체 표면으로 수소가 넘어가는 현상인 수소 스필오버 (Hydrogen spillover)가 크게 발현됨을 확인했다. 이를 통해 기존 상용 백금 촉매의 사용량을 16분의 1로 현저히 줄일 수 있었다. 해당 연구는 수전해 뿐만 아니라 연료전지 기술과 같은 다양한 전기화학 촉매 분야에 응용될 수 있을 것으로 기대된다고 연구팀은 밝혔다. 이 교수는 “이번에 개발한 촉매는 기존 단일 원자 촉매 연구와 다른 관점에서 접근한 연구로 학술적으로 이바지하는 바가 크다”라며 “이번 연구를 통해 단일 원자 촉매 개발의 독보적인 기술을 확보했다”라고 말했다. 이번 연구는 한국연구재단의 중견연구자지원사업, 수소에너지혁신기술개발사업, 기후변화대응기술개발사업, 미래소재디스커버리사업의 지원을 통해 수행됐다. □ 그림 설명 그림1. 유사 단일원자 촉매의 수소생산반응 모식도
2019.10.04
조회수 13610
이재우 교수, 수소-천연가스 기반 하이드레이트 개발
우리 대학 생명화학공학과 이재우 교수 연구팀이 고온, 저압 조건에서도 수소를 안정적으로 하이드레이트에 저장할 수 있는 기술을 개발했다. 연구팀의 기술은 천연가스를 열역학적 촉진제로 사용하는 방식으로 수소-천연가스 하이드레이트는 에너지 가스 저장에 크게 기여할 수 있을 것으로 기대된다. 안윤호 박사가 1 저자로 참여하고 생명화학공학과 이 흔 교수, 고동연 교수, GIST 지구환경공학부 박영준 교수팀과 공동으로 연구한 이번 연구 결과는 국제 학술지 ‘에너지 스토리지 머티리얼즈(Energy Storage Materials)’ 6월 6일 자 온라인판에 게재됐다. (논문명 : One-step formation of hydrogen clusters in clathrate hydrates stabilized via natural gas blending) 유럽 등에서는 대기 중 이산화탄소의 농도를 줄이기 위해 천연가스에 수소를 일부 혼합해 사용하는 대체 연료 시스템을 개발하고 있다. 불타는 얼음이라고 알려진 가스 하이드레이트는 물로 이루어진 친환경적인 물질임과 동시에 폭발 위험이 없어 현재의 탄소 경제 시대와 도래할 수소 경제 시대의 전환점에서 중요한 에너지 가스 저장 매체로 활용될 수 있다. 수소를 하이드레이트에 저장하기 위해 기존에 사용되던 테트라하이드로퓨란과 같은 유기 화합물 기반 열역학적 안정제는 휘발성이 강해 하이드레이트 해리 후에 가스상에 남아 있어 별도의 분리 공정이 필요하고, 수소가 저장될 수 있는 하이드레이트 동공을 차지해 하이드레이트 내의 에너지 저장 밀도를 낮추는 문제가 있다. 이를 해결하기 위해 하이드레이트를 튜닝해 하이드레이트의 동공 중 일부를 비우고 하나의 동공에 여러 개의 수소분자를 저장하려는 노력 등이 있었지만 여전히 유기 화합물 기반의 열역학적 안정제가 필요하다는 문제가 있었다. 연구팀은 천연가스의 주성분인 메탄과 에탄의 하이드레이트 상의 평형 조건이 수소에 비해 낮은 점에 주목해 메탄과 에탄을 열역학적 촉진제로 사용했다. 그 결과 수소-천연가스 혼합물을 하이드레이트에 안정적으로 저장하는 데 성공했다. 메탄과 에탄의 구성 비율에 따라 구조 I 또는 구조 II 하이드레이트가 형성될 수 있는데 두 구조 모두 저압 조건에서도 수소-천연가스가 안정적으로 저장됨을 확인했다. 연구팀은 얼음으로부터 직접 하이드레이트를 만드는 방법과 객체 치환법(용어설명)을 이용해 수소-천연가스 하이드레이트를 제작했고, 수소가 처음부터 하이드레이트 형성에 참여할 때만 두 구조의 하이드레이트에서 모두 튜닝 현상이 일어나는 것을 관찰하는 데 성공했다. 연구팀은 튜닝된 구조 I 하이드레이트에서는 작은 동공에만 2개의 수소가 저장되는 반면 튜닝된 구조 II 하이드레이트에서는 작은 동공뿐 아니라 큰 동공에서도 최대 3개의 수소분자가 저장될 수 있음을 확인했다. 하이드레이트는 부피의 약 170배에 달하는 가스를 저장할 수 있는 특성을 가지며, 연구에서 사용한 열역학적 촉진제인 천연가스는 그 자체로 에너지원으로 활용될 수 있어 다양한 분야에 활용할 수 있을 것으로 기대된다. 1 저자인 안윤호 박사는 “기존의 열역학적 촉진제들과는 달리 하이드레이트에 저장된 모든 물질을 에너지원으로 사용할 수 있다는 의의가 있다”라고 말했다. 이재우 교수는 “수소-천연가스 혼합 연료는 기존의 천연가스 운송 인프라를 그대로 활용해 보급 및 이용될 수 있다는 점에서 연구팀의 수소-천연가스 하이드레이트 시스템은 상용화 가능성이 크다”라며 “에너지 가스가 열역학적 안정제로 사용될 가능성을 처음 확인한 만큼, 하이드레이트 내의 가스 저장량을 늘리기 위해 추가적인 연구를 진행 중이다”라고 말했다. 이번 연구는 연구재단의 중견 연구자 지원사업과 BK21 plus 프로그램을 통해 수행됐다. □ 그림 설명 그림1. 객체 치환법을 이용하여 천연가스 하이드레이트에 수소를 저장하는 방법과 얼음으로부터 직접 수소-천연가스 하이드레이트를 저장하는 방법
2019.06.17
조회수 11327
최경철 교수, 자가발전으로 에너지 절약 및 세탁 가능한 입는 디스플레이 개발
〈 (오른쪽 위부터 시계방향으로) 정은교 연구원, 최경철 교수, 전남대 조석호 교수, 전용민 연구원 〉 우리 대학 전기및전자공학부 최경철 교수와 전남대학교 의류학과 조석호 교수 연구팀이 외부 전원 없이 자가발전 되고 세탁이 가능한 디스플레이 모듈 기술을 개발했다. 이번 연구는 기존 플라스틱 기판 웨어러블 전자소자가 아닌 옷감을 직접 기판으로 사용하는 전자소자의 상용화를 앞당길 수 있다는 점, 일상생활에 입는 전자소자가 외부 전원 없이 자가 발전해 에너지를 절약할 수 있다는 점에서 큰 의미가 있다. 정은교 박사과정과 전용민 연구원이 주도한 이번 연구는 국제 학술지 ‘에너지&인바이런멘탈 사이언스(Energy and Environmental Science, IF : 30.067)’ 1월 18일 자 온라인판에 게재됐고, 우수성을 인정받아 뒤표지 논문으로 선정됐다. 기존의 섬유형 웨어러블 디스플레이는 주로 디스플레이의 소자 구현에 초점을 맞춰 연구가 이뤄졌다. 이로 인해 소자를 구동하기 위한 별도의 외부 전원이 필요할 뿐 아니라 내구성 또한 부족한 특성을 가져 웨어러블 디스플레이로 응용하기에는 한계가 있다. 고분자 태양전지와 유기 발광 디스플레이 소자는 수분, 산소 등 외부 요인에 매우 취약해 소자를 보호하기 위한 봉지막이 필요하다. 그러나 기존에 개발된 봉지막 기술은 상온에서는 역할을 충분히 수행하지만, 습기가 많은 환경에서는 그 특성을 잃게 된다. 따라서 비 오는 날이나 세탁 이후에도 동작할 수 있어야 하는 착용형 디스플레이에서는 사용이 제한된다. 연구팀은 문제해결을 위해 외부 전원 없이도 안정적으로 전력을 공급할 수 있는 고분자 태양전지(PSC)와 수 밀리와트(milliwatt)로도 동작할 수 있는 유기발광다이오드(OLED)를 옷감 위에 직접 형성하고 그 위에 세탁이 가능한 봉지기술을 적용했다. 이를 통해 전기를 절약하면서도 실제 입을 수 있는 디스플레이 모듈 기술을 개발했다. 연구팀은 원자층 증착법(ALD)과 스핀코팅(spin coating)을 통해 세탁 후에도 특성 변화 없이 소자를 보호할 수 있는 봉지막 기술을 자가발전이 가능한 입는 디스플레이 모듈에 적용했다. 이 봉지막 기술을 통해 세탁 이후나 3mm의 낮은 곡률반경에서도 웨어러블 전자소자들의 성능이 유지되는 것을 증명했다. 연구팀은 일주일마다 세탁 및 기계적인 스트레스를 주입한 뒤 결과를 관찰한 결과 30일 이후 PSC는 초기 대비 98%, OLED는 94%의 특성을 유지함을 확인했다. 최경철 교수는 “기존의 플라스틱 기판 기반의 웨어러블 전자소자 및 디스플레이 연구와 달리 일상생활에 입는 옷감을 기판으로 활용해 세탁이 가능하고 외부 전원 없이 고분자 태양전지로 디스플레이를 구동하는 전자소자 모듈을 구현했다”라며 “태양에너지를 이용해 자가 구동 및 세탁이 가능한, 전기 충전이 필요 없는 진정한 의미의 입을 수 있는 디스플레이 기술 시대를 열었다”라고 말했다. 이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 선도연구센터지원사업과 교육부 BK21 지원사업으로 수행됐으며, 이번 연구 성과로 1 저자인 정은교 연구원은 BK21 우수인력으로 사회부총리 겸 교육부장관 표창을 받는다. □ 그림 설명 그림1. 표지논문 이미지 그림2. 세탁 가능한 입는 디스플레이 모듈 모식도 및 구동 사진
2019.03.21
조회수 18388
민범기 교수, 광학적 시공간 경계 통한 빛 제어 기술 개발
〈 민범기 교수, 손재현 박사과정, 이강희 박사 〉 우리 대학 기계공학과 민범기 교수 연구팀이 광학적인 시공간 경계(spatiotemporal boundary)를 이용해 빛의 색과 위상을 동시에 제어하는 기술을 개발했다. 기계공학과 전원주 교수, 물리학과 이상민 교수와의 공동 연구로 진행된 이번 연구는 특수 미세 금속 구조를 반도체 표면 위에 제작해 기존 연구결과에 비해 훨씬 높은 자유도를 갖는 시공간 경계를 구현했다. 이 시공간 경계는 빛의 주파수를 변환할 수 있는 초박막형 광학 소자에 응용 가능할 것으로 기대된다. 이강희 박사, 손재현 박사과정이 공동 1저자로 참여한 이번 연구는 광학분야 국제 학술지 ‘네이처 포토닉스(Nature Photonics)’ 10월 8일자 온라인 판에 게재됐다. 광 주파수 변환 소자는 광학적 비선형성으로 인해 빛의 색이 변화하는 현상을 주로 이용해 빛을 사용한 정밀 측정과 통신 기술에서 핵심 역할을 하고 있다. 일반적인 광학 현상에서는 빛의 중첩(superposition) 원리가 성립하기 때문에 여러 빛이 동시에 물질을 통과해도 서로에게 영향을 주지 않는다. 하지만 빛의 세기가 매우 강하면 빛의 전기장이 물질을 이루는 원자핵, 전자 상호작용에 영향을 줘 빛의 주파수를 배로 늘리거나 두 빛의 주파수를 합하거나 뺀 빛을 형성하는 등의 비선형 광학 현상을 관찰할 수 있다. 이럴 경우 대부분 비선형 형상 구현에 필요한 강한 빛을 얻기 위해 고출력 레이저를 사용하거나 아주 좁은 공간에 빛을 집속시키는 방법을 사용한다. 또한 빛이 통과하고 있는 물질을 빛 스스로가 아닌 다른 외부 자극을 이용해 변화시킬 때에도 주파수 변환 현상을 볼 수 있다. 이렇게 시간에 따라 동적으로 변화하는 물질, 시간 경계 등을 이용하면 약한 빛에서도 주파수 변환을 일으킬 수 있다. 이는 통신 분야에서 유용하게 활용 가능하다. 그러나 외부 자극을 이용한 물성의 변화는 개념적으로만 연구돼 왔고, 다양한 이론적 예측 결과들을 실제로 구현하는 데 어려움이 있었다. 연구팀은 문제 해결을 위해 원자 구조를 모사한 금속 미세구조를 배열해 인공적인 광학물질(메타물질)을 개발했고 이 인공 물질을 매우 빠르게 변화시켜 시공간 경계를 만들어내는 데 성공했다. 기존 연구들이 약간의 굴절률에만 변화를 주는 것에 그쳤다면 이번 연구는 물질의 분광학적 특성을 자유롭게 설계 및 변화시킬 수 있는 플랫폼을 제공했다. 이를 이용해 빛의 색을 큰 폭으로 변화시키면서 주파수 변화량 역시 제어할 수 있는 소자를 개발했다. 연구팀은 주로 개념적으로만 진행되던 시공간 경계에서의 주파수 변환에 관한 연구를 광학물질을 이용해 실현 및 응용할 수 있는 단계로 발전시켰다는데 의의가 있다고 밝혔다. 민 교수는 “주파수 스펙트럼의 변화를 자유롭게 설계하고 예측할 수 있어 폭넓은 활용이 가능하다”며 “광학 분야에서 동적인 매질에 연구에 새 방향을 제시하게 될 것이다”라고 말했다. 이번 연구는 한국연구재단의 중견연구자지원사업과 미래유망융합기술파이오니어사업 및 글로벌프론티어사업 파동에너지극한제어연구단의 지원을 받아 수행됐다. □ 그림 설명 그림1. 협대역의 테라헤르츠파를 입사시켰을 때 시간적 경계의 변화에 따른 주파수 변환 실험 결과 그림2. 기술 개념도
2018.11.05
조회수 12172
이건재 교수, 유창동 교수, 유연 압전 화자인식 음성센서 개발
〈 이 건 재 교수 〉 우리 대학 신소재공학과 이건재 교수와 전기및전자공학부 유창동 교수 공동 연구팀이 인공지능 기반의 화자(話者) 인식용 유연 압전 음성센서를 개발했다. 이번 연구를 통해 개인별 음성 서비스를 스마트 홈 가전이나 인공지능 비서, 생체 인증 분야 등 차세대 기술에 활용 가능할 것으로 기대된다. 이번 연구 결과는 국제 학술지 ‘나노 에너지(Nano Energy)’ 9월호에 ‘민감도’와 ‘화자인식’ 논문 두 편으로 동시 게재됐고 현재 관련 기술은 실용화 단계에 있다. (민감도 논문 : Basilar Membrane-Inspired Self-Powered Acoustic Sensor Enabled by Highly Sensitive Multi Tunable Frequency Band, 화자인식 논문 : Machine Learning-based Self-powered Acoustic Sensor for Speaker Recognition) 음성 센서는 인간과 기계 사이의 자유로운 소통을 가능하게 만드는 가장 직관적인 수단으로 4차 산업혁명의 핵심 기술로 주목받고 있다. 음성센서 시장은 2021년 대략 160억 달러 규모로 커질 것으로 예상된다. 그러나 현재 산업계에서는 음성 신호 수신 시 정전용량을 측정하는 콘덴서 형식을 사용하기 때문에 민감도가 낮고 인식 거리가 짧아 화자 인식률에 한계가 있다. 이번 연구에서 이 교수 연구팀은 인간의 달팽이관을 모사해 주파수에 따라 다른 영역이 진동하는 사다리꼴의 얇은 막을 제작했다. 음성신호에 따른 공진형 진동을 유연 압전 물질을 통해 감지하는 자가발전 고민감 음성 센서를 개발했다. 연구팀의 음성 센서는 기존 기술 대비 2배 이상 높은 민감도를 가져 미세한 음성 신호를 원거리에서도 감지할 수 있다. 또한 다채널로 신호를 받아들여 하나의 언어에 대해 복수 개의 데이터를 얻을 수 있다. 이 기술을 기반으로 누가 이야기하는지 찾아내는 화자인식 시스템에 적용해 97.5%의 화자인식 성공률을 무향실에서 달성했고 기존 기술 대비 오류를 75% 이상 줄였다. 화자인식 서비스는 음성 분야에 세상을 바꿀 next big thing으로 기대를 받고 있다. 기존 기술은 소프트웨어 업그레이드를 통한 접근으로 인식률에 한계가 있었지만 연구팀의 기술은 하드웨어 센서를 개발함으로써 능력을 크게 향상시켰다. 추후 첨단 소프트웨어를 접목한다면 다양한 환경에서도 화자 및 음성 인식률을 높일 수 있을 것으로 예상된다. 이건재 교수는 “이번에 개발한 머신 러닝 기반 고민감 유연 압전 음성센서는 화자를 정확하게 구별할 수 있기 때문에 개인별 음성 서비스를 스마트 가전이나 인공지능 비서에 접목할 수 있을 것이며 생체 인증 및 핀테크와 같은 보안 분야에서도 큰 역할을 할 수 있을 것이다”고 말했다. 이번 연구는 스마트 IT 융합시스템 연구단의 지원을 받아 수행됐다. <관련 영상> https://www.youtube.com/watch?v=QGEVJxCFVpc&feature=youtu.be □ 그림 설명 그림1. 인간의 달팽이관을 모사한 유연 압전 음성 센서 구조 그림2. 인공지능을 통한 화자 인식 개략도
2018.10.04
조회수 11862
강정구 교수, 급속충전 가능한 하이브리드 에너지 저장소자 개발
〈 강 정 구 교수〉 우리 대학 EEWS대학원/신소재공학과 강정구 교수 연구팀이 다공성 금속 산화물 나노입자와 그래핀을 이용해 고성능, 고안정성을 갖는 물 기반 하이브리드 에너지 저장 소자를 개발했다. 이 하이브리드 소자는 기존 배터리에 비해 100배 이상 빠른 출력 밀도를 보이며 수십 초 내로 급속 충전이 가능해 소형의 휴대용 전자기기 등에 활용될 수 있을 것으로 기대된다. 강원대학교 정형모 교수 연구팀과 공동으로 진행된 이번 연구 결과는 재료 분야 국제 학술지 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 8월 15일자에 온라인 판에 게재됐다. 리튬 이온 배터리를 비롯한 기존 유계 에너지 저장 소자는 넓은 전압 범위와 높은 에너지 밀도를 갖지만 유기 전해질의 사용에 따른 화재 등의 안전 문제가 뒤따른다. 또한 전기화학적 반응 속도가 느리기 때문에 소자를 충전하는데 긴 시간이 필요하고 사이클이 짧다는 한계가 있다. 이에 반해 수계 전해질 기반 에너지 저장 소자는 안전하고 친환경적 소자로써 주목받고 있다. 하지만 제한된 전압 범위와 낮은 용량으로 인해 유계 기반 소자에 비해 에너지 밀도가 낮은 단점을 가지고 있다. 연구팀은 금속 산화물과 그래핀을 결합한 뒤 수계 기반 전해질을 사용해 높은 에너지 밀도, 고출력, 우수 한 사이클 특성을 갖는 에너지 저장 전극을 개발했다. 이번 연구에서 개발한 다공성의 금속 산화물 나노 입자는 2~3 나노미터 크기의 나노 클러스터로 이루어져 있으며 5 나노미터 이하의 메조 기공이 다량으로 형성돼 있다. 이러한 다공성 구조에서는 이온이 물질 표면으로 빠르게 전달되며 작은 입자크기와 넓은 표면적에 의해 짧은 시간 동안 많은 수의 이온이 금속 산화물 입자 내부에 저장된다. 연구팀은 철과 망간, 두 종류의 다공성 금속 산화물을 양극과 음극에 각각 적용해 2V의 넓은 전압 범위에서 작동 가능한 수계 전해질 기반 하이브리드 소자를 구현했다. 강 교수는 “다공성의 금속 산화물 전극이 가진 기존 기술 이상의 고용량, 고출력 특성은 새로운 개념의 에너지 저장장치의 상용화에 기여할 것이다”며 “수십 초 내의 급속 충전이 가능하기 때문에 휴대폰, 전기자동차 등의 주전원이나 태양에너지를 전기로 직접 저장해 플렉서블 기기에 적용될 수 있을 것이다”고 말했다. 이번 연구는 과학기술정보통신부 글로벌프론티어사업의 하이브리드인터페이스기반 미래소재연구단(단장 김광호)의 지원을 받아 수행됐다. □ 그림설명 그래핀 위에 형성된 다공성 금속 산화물 나노입자 전극의 수계 이온 저장 특성을 나타낸 이미지
2018.08.27
조회수 12373
이현주 교수, 배기가스 정화용 로듐 앙상블 촉매 개발
〈 정호진 박사과정, 이현주 교수 〉 우리 대학 생명화학공학과 이현주 교수가 포항공대 한정우 교수와의 공동 연구를 통해 자동차 배기가스 정화에 사용할 수 있는 분산도 100%의 로듐 앙상블 촉매를 개발했다. 연구팀의 촉매는 자동차 배기가스 정화 반응에서 시중의 디젤 산화 촉매에 비해 50도 낮은 온도에서 100%의 전환율을 달성하는 성능을 보였다. 연구팀의 앙상블 촉매는 기존의 단일원자 촉매, 나노입자 촉매와는 다른 개념으로 금속 앙상블 자리(ensemble site)가 필요한 다양한 분야에 적용 가능할 것으로 기대된다. 정호진 박사과정이 1저자로 참여한 이번 연구 결과는 화학 분야 국제 학술지 ‘미국 화학회지(JACS, Journal of the American Chemical Society)’ 7월 5일자 온라인 판에 게재됐다. (논문명 : Fully Dispersed Rh Ensemble Catalyst to Enhance Low-Temperature Activity, 저온 활성 향상을 위한 완전히 분산된 로듐 앙상블 촉매) 다양한 불균일계 촉매 중 귀금속 촉매는 높은 활성을 보이기 때문에 널리 사용된다. 하지만 귀금속의 희소가치 때문에 귀금속 사용 효율을 극대화하는 것이 매우 중요하다. 단일원자 촉매는 모든 금속 원자가 촉매 반응에 참여할 수 있기 때문에 널리 사용되지만, 금속 원자가 독립적으로 존재하기 때문에 앙상블 자리가 필요한 촉매 반응에서 촉매 성능을 발휘하지 못한다. 한편 프로필렌(C3H6)과 프로판(C3H8) 등의 탄화수소는 대표적인 자동차 배기가스 오염물질로 반드시 촉매 산화 반응을 통해 이산화탄소(CO2)와 물(H2O)로 전환한 뒤 배출돼야 한다. 탄소-탄소, 탄소-수소 결합을 깨뜨려야만 탄화수소 산화반응이 진행되기 때문에 촉매 반응을 위해서는 금속 앙상블 자리를 확보하는 것이 필수적이다. 연구팀은 문제 해결을 위해 100%의 분산도를 갖는 로듐 앙상블 촉매를 개발해 자동차 배기가스 정화반응에 적용했다. 100%의 분산도를 갖는다는 것은 모든 금속 원자가 표면에 드러나 있기 때문에 모든 원자가 반응에 참여할 수 있다는 의미이다. 이는 단일원자 촉매도 동일하게 갖는 특징이지만, 앙상블 촉매는 100% 분산도와 더불어 두 개 이상의 원자가 붙어있는 앙상블 자리가 존재한다는 장점 또한 갖고 있다. 그 결과 일산화탄소(CO), 일산화질소(NO), 프로필렌, 프로판 산화 반응에서 모두 우수한 저온 촉매 성능을 보였다. 이는 탄화수소 산화 반응 성능이 없는 단일원자 촉매나 낮은 금속 분산도로 인해 저온 촉매 성능이 떨어지는 나노입자 촉매의 단점을 보완한 것이다. 특히 연구팀이 개발한 분산도 100%의 로듐 앙상블 촉매는 상용화된 디젤 산화 촉매(DOC, diesel oxidation catalysts)보다 높은 활성과 내구성을 가져 실제 자동차 배기가스 정화에 적용 가능할 것으로 기대된다. 이현주 교수는 “이번에 개발한 촉매는 기존의 단일원자, 나노입자 촉매와는 다른 새로운 금속 촉매 개념으로 학술적으로 기여하는 바가 크다”며 “자동차 배기가스 정화 촉매 분야에도 산업적으로 적용 가능해 가치가 큰 연구이다”고 말했다. 이번 연구는 한국연구재단 선도연구센터사업 초저에너지 자동차 초저배출 사업단의 지원을 받아 수행됐다. □ 그림 설명 그림1. 분산도 100% 로듐 앙상블 촉매를 이용한 자동차 배기가스 정화 반응 개념도 그림2. 단일 원자 촉매와 앙상블 촉매의 촉매 구조와 성능 비교 모식도 그림3. EDS-mapping 분석법을 통해 관찰한 단일 원자 촉매, 앙상블 촉매, 나노입자 촉매 구조 사진
2018.07.23
조회수 13149
정우철 교수, 5분 코팅만으로 연료전지 전극반응성 1천배 향상 기술 개발
〈 정 우 철 교수, 서 한 길 박사과정 〉 우리 대학 신소재공학과 정우철 교수 연구팀이 5분 이내의 산화물 코팅만으로 연료전지의 수명과 성능을 획기적으로 향상시킬 수 있는 전극 코팅 기술을 개발했다. 서한길 박사과정이 1저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 에너지 머티리얼즈(Advanced Energy Materials)’ 7월 5일자 표지 논문(Inside Front Cover)에 게재됐다. (논문명 : Exceptionally Enhanced Electrode Activity of (Pr,Ce)O2-δ-Based Cathodes for Thin-Film Solid Oxide Fuel Cells, 박막 고체산화물연료전지용 (Pr,Ce)O2-δ 기반 공기극의 향상된 전극 활성) 연료전지는 대기오염 물질을 배출하지 않는 친환경 발전장치로 특히 고체산화물 연료전지는 다른 연료전지에 비해 발전효율이 높고 값비싼 수소 이외에 다양한 연료를 직접 사용할 수 있다는 장점을 가져 세계적으로 큰 주목을 받고 있다. 하지만 고체산화물 연료전지를 구동하기 위해서는 700℃ 이상의 높은 작동온도가 필요하며 이는 소재 및 시스템 비용의 증가, 장시간 구동 시 성능 저하 등의 문제를 일으켜 연료전지의 상용화에 걸림돌이 되고 있다. 최근에는 박막 공정을 도입해 전해질의 두께를 수백 나노미터 크기로 줄임으로써 작동온도를 600℃ 이하로 크게 낮추고 가격 경쟁력을 확보하려는 박막형 고체산화물연료전지가 새로운 해결책으로 제시되고 있지만, 낮은 작동온도에서 급격히 떨어지는 전극 성능의 한계를 극복하지 못하고 있다. 연구팀은 공기극으로 사용되는 백금 박막의 산소환원반응 활성점을 극대화하고, 백금 전극이 고온에서 응집되는 현상을 막기 위해 산화물 코팅 기술을 개발했다. 연구팀은 전자와 산소이온 모두에 대한 높은 전도성과 산소환원 반응에 대한 뛰어난 촉매 특성을 가진 ‘프라세오디뮴이 도핑된 세리아((Pr,Ce)O2-δ)라는 새로운 코팅 소재를 전기화학도금을 통해 백금 표면에 코팅하는 데 성공했다. 이를 통해 기존 백금 박막 전극에 비해 1천 배 이상의 성능을 향상시켰다. 추가적으로 연구팀은 백금을 전혀 사용하지 않고 (Pr,Ce)O2-δ의 나노구조화를 제어하는 것만으로도 고성능의 박막형 고체산화물연료전지 공기극을 구현하는데 성공했다. 정 교수는“이번 연구에서 사용된 전극 코팅 기술은 쉽고 대량생산이 가능한 전기화학도금을 활용했기 때문에 그 기술적 가치가 매우 뛰어나다”며 “향후 박막형 고체산화물연료전지의 백금 전극을 대체할 수 있어 가격 저감을 통한 시장경쟁력 제고가 기대된다.”고 말했다. 이번 연구는 한국에너지기술평가원과 한국전력공사의 지원을 받아 수행됐다. □ 그림 설명 그림1. 어드밴스드 에너지 머티리얼즈 표지(Inside Front Cover) 그림2. 코팅된 (Pr,Ce)O2-δ 나노구조체 유무에 따른 전극성능 변화
2018.07.09
조회수 15156
김희탁, 정희태 교수, 수명 5배 늘린 바나듐레독스-흐름전지 개발
〈 김수현 박사과정, 김희탁 교수, 최정훈 박사과정 〉 우리 대학 생명화학공학과 정희태, 김희탁 교수 공동 연구팀(차세대배터리센터)이 용량 유지율 15배, 수명을 5배 향상시킨 바나듐레독스-흐름전지를 개발했다. 신재생 에너지의 발전과 함께 이를 통해 생산된 에너지를 효율적이고 안전하게 저장할 수 있는 대용량 에너지 저장장치의 필요성이 커지고 있다. 바나듐레독스-흐름전지는 폭발 위험이 없는 이차전지로 대용량화에 적합해 기존 에너지 저장장치를 대체할 수 있을 것으로 기대된다. 김수현, 최정훈 박사과정이 공동 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘나노 레터스(Nano letters)’ 5월 3일자 온라인 판에 게재됐다. (논문명 : Pore Size-Tuned Graphene Oxide Framework as lon-Selective and Protective Layers on Hydrocarbon Membranes for Vanadium Redox Flow Batteries) 기존의 바나듐레독스-흐름전지는 과불소계 분리막의 활물질 투과도가 높아 충․방전 효율과 용량 유지율이 매우 낮다는 한계가 있다. 이를 해결하기 위해 낮은 활물질 투과도를 갖는 탄화수소계 분리막을 적용시키고자 했지만 활물질인 바나듐5가 이온에 의해 열화 현상이 발생하고 전지 수명이 급감하는 문제가 있었다. 따라서 활물질인 바나듐 이온의 크기보다는 작으면서 전하 운반체인 수소 이온보다는 큰 기공 크기를 갖는 분리막 개발의 필요성이 커지고 있다. 공동 연구팀은 산화그래핀 간의 가교 반응을 통해 바나듐레독스-흐름전지에 적합한 기공 크기를 갖는 산화그래핀 골격체 분리막을 구현하는 데 성공했다. 가교에 의해 수화 팽창(moisture expansion, 습기나 물을 흡수해 팽창하는 현상)이 제한된 산화그래핀 간 층간 간격을 선택적 이온의 투과를 위한 기공으로 활용하는 원리이다. 이 산화그래핀 골격체는 기공 크기를 통한 분리 성능이 뛰어나 매우 높은 수소 이온-바나듐 이온 선택성을 갖는다. 연구팀의 분리막은 바나듐레독스-흐름전지의 용량 유지율을 기존 과불소계 분리막의 15배, 충․방전 사이클 수명 또한 기존 탄화수소계 분리막에 비해 5배 이상 향상시켰다. 연구팀의 산화그래핀 골격체를 통한 기공 크기 조절 기술은 다양한 크기의 이온을 활용하는 이차전지, 센서 등의 전기화학적 시스템에 적용 가능할 것으로 보인다. 김희탁 교수는 “레독스 흐름전지 분야의 고질적인 문제인 활물질의 분리막을 통한 크로스오버 및 이에 따른 분리막 열화문제를 나노기술을 통해 해결할 수 있음을 보여줬다”며 “바나듐레독스-흐름전지 뿐만 아니라 다양한 대용량 에너지 저장장치용 이차전지에 적용될 수 있을 것이다”고 말했다. 이번 연구는 한국화학연구원 주요사업, 에너지기술평가원과 기후변화연구허브사업의 지원을 통해 수행됐다. □ 그림 설명 그림1. 산화그래핀 골격체를 통한 수화 바나듐 이온과 수소 이온의 선택적 이온 투과에 대한 모식도 그림2. 바나듐레독스-흐름전지의 사이클 용량 특성
2018.06.07
조회수 12872
조은애 교수, 사용량 90% 줄이고 수명 2배 늘린 백금촉매 개발
〈 조 은 애 교수 〉 우리 대학 신소재공학과 조은애 교수 연구팀이 백금 사용량을 90% 줄이면서 동시에 수명은 2배 향상시킨 연료전지 촉매를 개발했다. 임정훈 연구원이 1저자로 참여한 이번 연구는 국제 학술지 ‘나노 레터스(Nano Letters)’ 4월호(4월 11일자)에 게재됐다. 연료전지는 대기오염 물질을 배출하지 않는 친환경 발전장치로 기존 발전 설비를 대체할 수 있다. 연료전지를 주원료로 이용하는 수소 전기차 한 대는 성인 70명이 호흡하는 공기로부터 미세먼지와 초미세먼지를 98% 이상 정화할 수 있는 달리는 공기청정기로 불린다. 하지만 이 연료전지에 전극촉매로 사용되는 백금의 비싼 가격은 상용화를 가로막는 큰 장벽이다. 또한 현재 개발된 탄소 담지 백금 나노촉매는 상용화 기준에 못 미치는 산소환원반응 활성과 내구성을 보여 한계로 남아있다. 연구팀은 기존 백금 기반 촉매들의 산소환원반응 활성 및 내구성을 증진하는 것을 목표했다. 우선 백금과 니켈 합금 촉매를 합성한 뒤 성능 증진을 위해 여러 금속 원소를 도입한 결과 갈륨이 가장 효과적임을 발견했다. 연구팀은 백금-니켈 합금 촉매를 팔면체 형태의 나노입자로 만들고 나노입자의 표면에 갈륨을 첨가해 기존 백금 촉매에 비해 성능을 12배 향상시켰다. 특히 기존 연료전지 촉매들이 대부분 실제 시스템에 적용하는 데는 실패한 반면 조 교수 연구팀은 개발한 촉매를 이용해 연료전지를 제작해 가격을 30% 줄이고 수명도 2배 이상 향상시켜 실제 적용이 가능함을 증명했다. 1저자인 임정훈 연구원은 “기존 합성 방법으로 제조 가능한 백금 니켈 합금 촉매 표면에 갈륨을 첨가해 가열만 하면 촉매가 합성되기 때문에 기존 공정에 쉽게 도입이 가능하고 대량 생산이 용이해 실용화 가능성이 높다.”고 말했다. 조은애 교수는 “연료전지의 가격저감과 내구성 향상을 동시에 달성한 연구 성과로 수소 전기차, 발전용 연료전지의 시장경쟁력 제고가 기대된다”고 말했다. 이번 연구는 에너지기술평가원, 한국연구재단 기후변화대응사업과 국방과학연구소의 지원을 통해 수행됐다. □ 그림 설명 그림1. 내구성 평가 후의 촉매 입자 형상 변화
2018.04.17
조회수 15044
강정구 교수, 수십 초 내 충전가능한 물 기반 저장소자 개발
우리 대학 EEWS대학원 강정구 교수 연구팀이 수십 초 내 급속충전이 가능한 물 기반의 융합에너지 저장소자를 개발했다. 이 기술은 그래핀 기반의 고분자 음극 및 나노 금속 산화물 양극 개발을 통한 높은 에너지 밀도를 가지며 급속 충전이 가능한 융합 에너지 저장소자로 향후 휴대용 전자기기에 적용 가능할 것으로 기대된다. 옥일우 박사과정이 1저자로 참여한 이번 연구 결과는 에너지재료분야 국제 학술지 ‘어드밴스드 에너지 머티리얼즈(Advanced Energy Materials)’ 1월 15일자에 게재됐다. 기존의 물 기반 에너지 저장장치는 낮은 구동전압과 음극재료의 부족으로 에너지 밀도가 낮고 급속 충전에 한계가 있었다. 에너지 저장장치는 두 전극에 의해 에너지 저장 용량이 정해지며 양극, 음극의 균형이 이뤄져야 고안정성을 갖는다. 일반적으로 두 전극은 전기적 특성에 차이를 보이고 이온 저장 과정이 다르기 때문에 불균형에 의한 낮은 용량 및 안정성을 보이곤 한다. 연구팀은 전극의 표면에서 빠른 속도로 에너지 교환을 이루게 하고 양극 사이의 에너지 손실을 최소화시킴으로써 고성능 에너지 저장장치를 구현하는 데 성공했다. 연구팀이 개발한 음극소재는 전도성 고분자 물질로 배터리, 슈퍼커패시터 전극 재료로 활용 가능하다. 그래핀 표면과 층 사이에서 그물 모양의 최적화된 외형으로 기존 음극소재에 비해 높은 에너지 저장용량을 갖는다. 양극소재는 나노크기 이하의 금속 산화물이 그래핀 표면에 분산된 외형을 이루고 원자와 이온이 일대일로 저장되는 형식이다. 두 전극을 기반으로 한 연구팀의 에너지 저장 소자는 고용량과 함께 높은 에너지 및 출력 밀도를 보이며 음극과 양극의 물리적 균형을 통해 매우 안정적인 충, 방전 결과를 보였다. 연구팀이 개발한 물 기반 융합에너지 저장소자는 기존의 물 기반 배터리에 비해 100배 이상으로 높은 최대 출력 밀도를 보이며 급속 충전이 가능하다. 또한 10만 번 이상의 높은 충, 방전 전류에서도 용량이 100퍼센트 유지되는 고 안정성을 보였다. 연구팀의 에너지 저장 소자는 USB 충전기나 소형태양전지 등의 저전력 충전 시스템을 통해서도 2~30초 내에 충전이 가능하다. 강 교수는 “친환경적인 이 기술은 제작이 쉽고 활용성이 뛰어나다. 특히 기존 기술 이상의 고용량, 고안정성은 물 기반 에너지 저장장치의 상용화에 기여할 것이다”며 “저전력 충전 시스템을 통해 급속 충전이 가능하기 때문에 휴대 가능한 전자 기기에 적용할 수 있을 것이다”고 말했다. 강원대학교 정형모 교수와 공동으로 진행한 이번 연구는 과학기술정보통신부 글로벌프론티어사업의 하이브리드인터페이스기반미래소재연구단(단장 김광호)의 지원을 받아 수행됐다. □ 그림 설명 그림1. 실험을 통해 구동된 저장소자 사진 그림2. 물 기반 융합 에너지 저장소자 모식도 그림3. 고분자 사슬 음극 및 금속 산화물 양극 표면 이미지
2018.02.20
조회수 16264
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
>
다음 페이지
>>
마지막 페이지 7