-
최원호 교수, 플라즈마 내 전자의 가열 원리 규명
〈 최원호 교수, 박상후 연구교수〉
우리 대학 원자력및양자공학과 최원호 교수 연구팀이 약하게 이온화된 플라즈마(weakly ionized plasma)에서 전자가 가열되는 구조와 제어 원리를 규명하는데 성공했다.
플라즈마 내의 모든 반응이 전자로부터 시작된다는 점으로 볼 때 전자의 가열 원리를 규명함으로써 플라즈마를 더욱 자유롭고 다양하게 활용할 수 있을 것으로 예상된다.
이는 대기압 플라즈마 내에 존재하는 자유 전자에 대한 기초 연구 자료로 기존 플라즈마의 활용 및 응용 가능성을 높이는 등 플라즈마 물리학 및 응용기술 발전에 크게 기여할 것으로 기대된다.
박상후 연구교수가 1저자로 참여한 이번 연구는 국제 학술지 ‘사이언티픽 리포트(Scientific Reports)’5월 14일자와 7월 5일자 온라인 판에 연달아 게재됐다. (논문명 : Electron information in single- and dual-frequency capacitive discharges at atmospheric pressure, 단일 및 이중 주파수 대기압 플라즈마의 전자 정보 / Electron heating in rf capacitive discharges at atmospheric-to-subatmospheric pressures, 대기압과 대기압보다 낮은 압력에서 라디오 주파수 플라즈마 내의 전자 가열)
물질의 세 가지 상태인 고체, 액체, 기체와 더불어 ‘물질의 네 번째 상태’라 불리는 플라즈마는 표준 온도 및 압력(25 ℃, 1 기압)의 상태에서는 자연적으로 존재하지 않으나 인위적으로 기체에 에너지를 가하면 플라즈마 상태가 된다.
학계 및 산업계는 활용 목적과 조건에 맞춰 다양한 형태의 플라즈마 발생원을 개발해 사용하고 있다. 특히 대기압 플라즈마는 응용 가능 분야가 다양하고 활용도가 높아 학술적, 산업적 활용성 측면에서 많은 관심을 받고 있다.
일반적으로 플라즈마 내의 다양한 화학적, 물리적 반응은 전자로부터 시작되기 때문에 전자의 밀도와 온도의 시공간적 변화는 아주 중요한 정보이다. 플라즈마 및 가속기 물리학 분야에서 자유 전자의 가열 여부는 과학자들의 관심을 지속적으로 받은 연구 주제이다.
그러나 대기압 조건에서는 자유 전자와 중성기체의 충돌이 빈번하기 때문에 이온화된 플라즈마 내 자유 전자의 밀도와 온도를 측정하는 데에는 한계가 있어 자유 전자의 가열 구조 및 원리를 실험적으로 규명할 수 없었다.
또한 전자 가열의 제어 방법 및 주요 요인에 대한 정보가 부족해 플라즈마의 반응성과 활용성 개선이 제한적이었다.
연구팀은 문제 해결을 위해 전자-중성입자 제동복사(electron-neutral bremsstrahlung)란 기술을 이용해 플라즈마 내 자유 전자의 밀도, 온도를 정확히 진단하고 이를 2차원으로 영상화하는 기술을 개발했다.
연구팀은 개발한 진단 기술을 이용해 대기압 플라즈마에서 수 나노초(10억분의 1초) 단위로 자유 전자의 온도(에너지)를 측정해 전자가 에너지를 얻는 가열 과정의 시공간적 분포 및 근본 원리를 밝히는 데 성공했다.
0.25~1기압 압력구간에서의 전자 온도의 시공간적 분포의 변화를 실험적으로 최초로 확인해 대기압 및 대기압보다 낮은 압력에서 전자가 에너지를 얻는 가열의 기본 원리를 규명했다.
최 교수는 “이 연구 결과는 자유 전자와 중성입자의 충돌이 매우 빈번한 조건에서 발생하는 플라즈마에서의 전자 가열 원리를 학문적으로 이해하는 데 유용할 것이다”며 “이를 통해 경제적, 산업적 활용 가능한 대기압 플라즈마 발생원을 개발하고 다양하게 활용하는데 큰 역할을 하길 기대한다”고 말했다.
이번 연구는 국가핵융합연구소의 미래선도플라즈마-농식품융합기술개발사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 측정된 파장의 제동복사 및 전자 온도의 시공간적 변화
그림2. 단일 및 이중 주파수로 구동하는 플라즈마에서 측정된 제동복사 및 전자 온도의 시공간적 변화
2018.07.26
조회수 15563
-
육종민, 이정용 교수, 나트륨 기반의 이차전지 음극 소재 개발
우리 대학 신소재공학과 육종민 교수와 이정용 명예교수(前 기초과학연구원 나노물질 및 화학반응연구단) 공동 연구팀이 리튬 기반 이차전지 음극재료에 비해 저렴하고 수명이 긴 나트륨 기반 이온 전지용 음극 소재를 개발했다.
기존의 이차전지 음극재료 대비 1.5배 수명이 길고 약 40% 저렴한 나트륨 이온 전지용 음극 소재 개발을 통해 나트륨 이온 전지의 상용화에 기여할 것으로 기대된다.
박재열 박사과정과 기초과학연구원 김성주 박사가 공동 1저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 3월 2일자 온라인 판에 게재됐다.
현재 리튬 이온 전지는 휴대폰, 전기차 등 일상생활과 밀접한 다양한 곳에 사용되고 있다. 그런데 리튬은 매장지역이 한정돼 있고 수요가 급등해 공급량이 부족한 상황이다. 2015년과 대비해 현재 리튬의 가격은 3배 이상 상승했다.
이런 문제를 해결하기 위해 리튬 이온 전지의 대안으로 나트륨 이온 전지가 주목받고 있다. 리튬이 지구 지표면에 0.005%만 존재하는 반면 나트륨은 그 500배 이상인 2.6% 존재하기 때문에 공급 문제가 해결된다.
따라서 나트륨 이온 전지는 기존 리튬 이온 전지에 비해 40% 저렴한 가격으로 같은 용량의 에너지를 저장할 수 있을 것으로 전망된다.
그러나 리튬 이온 전지의 음극 재료인 흑연은 나트륨의 저장에 적합하지 않다. 흑연 간의 층 사이에 리튬 이온들이 삽입(intercalation)되며 저장이 이뤄지는데 나트륨 이온을 저장하기에는 흑연 층간 거리가 너무 좁기 때문이다. 이러한 이유로 나트륨 이온 전지 상용화를 위해서는 이에 적합한 음극 소재를 개발하는 것이 필수적이다.
연구팀은 흑연의 대안을 나노판상 구조를 가진 황화구리에서 찾았다. 황화구리는 높은 전기전도도와 이론용량을 갖는다. 또한 황화구리에 나트륨이 저장되는 과정을 원자단위에서 실시간 분석한 결과 황화구리의 결정 구조가 유동적으로 변화하며 안정적으로 나트륨 이온을 저장하는 것을 확인했다.
그 결과로 황화구리의 나트륨 저장 성능이 흑연 이론용량(~370mAh/g)의 1.5배(~560mAh/g)에 달하는 것을 확인했고 충, 방전을 250회 반복한 이후에도 이론용량의 90% 이상이 유지됨을 증명했다.
이번 연구로 나트륨 이온전지가 상용화되면 지구 표면의 약 70%를 차지하는 바다에 무궁무진하게 존재하는 나트륨을 활용할 수 있다. 이는 배터리 원가 절감으로 이어지고 휴대폰, 전기 자동차, 노트북 등의 단가를 약 30% 정도 낮출 수 있을 것으로 기대된다.
이정용 교수는“이번 연구결과가 차세대 고성능 나트륨 이온 전지 개발에 크게 기여할 것으로 기대된다”고 말했다.
육종민 교수는 “요즘 미세먼지 등의 환경오염 문제로 특히 신재생 에너지 상품에 관심이 많은데 이번 연구 결과를 통해 우리나라가 관련 제품에 대한 우위를 점할 수 있는 토대를 한 단계 다졌다고 생각한다”고 말했다.
이번 연구는 한국연구재단의 생애첫연구사업 및 나노, 소재기술개발사업과 기초과학연구원의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 판상구조 황화구리 촬영 사진
그림2. 황화구리 내 나트륨이 저장되면서 나타나는 결정구조 변화 양상
그림3. 황화구리 내 나트륨 충방전 횟수별 저장 용량
2018.03.08
조회수 18567
-
남윤기 교수, 뇌질환 치료용 나노입자 프린팅 기술 개발
우리 대학 바이오및뇌공학과 남윤기 교수 연구팀이 잉크젯 프린팅으로 마이크로미터 수준의 열 패턴을 마음대로 찍어내고, 이를 이용해 원격으로 신경세포의 전기적 활성을 제어할 수 있는 기술을 개발했다.
선택적 나노 광열 신경자극이라 할 수 있는 이 기술은 잉크젯 프린팅 기술과 나노입자 기술을 융합한 것으로 뇌전증 등의 뇌질환 환자들에게 맞춤형 정밀 광열 자극을 도입할 수 있는 기반기술이 될 것으로 기대된다.
강홍기 박사가 주도하고 이구행, 정현준, 이지웅 박사과정이 참여한 이번 연구는 국제 학술지 ‘에이씨에스 나노(ACS Nano)’ 2월 5일자에 게재됐다.
나노 광열자극 기술은 금속 나노 입자의 열-플라즈모닉 현상을 이용해 신경 세포의 활성을 조절한다. 연구팀은 지난 4년간 연구를 통해 나노 광열효과에 의한 신경세포 활성 억제 현상을 발견했고, 이를 이용해 뇌전증 등의 뇌질환에서 발생하는 신경세포의 비정상적 활동을 조절하기 위한 기술을 연구했다.
연구팀은 기존의 나노 광열자극 기술이 갖는 공간적인 선택성의 한계와 해상도의 제약을 극복하기 위해 잉크젯 프린팅 기술을 이용한 나노 입자의 미세 패턴 작업을 통해 나노 광열자극 기술을 선택적인 부분에만 가할 수 있는 기술을 개발했다.
정밀 잉크젯 프린팅과 고분자전해질 적층 코팅법을 결합해 고해상도의 선택적 광열 자극 기술을 구현했다. 이 기술은 정밀 잉크젯 프린팅 기술은 금속 나노 입자를 잉크로 사용해 수십 마이크로미터 크기의 나노입자 패턴을 만들 수 있다.
이 기술과 고분자전해질 적층 코팅법을 결합하면 원하는 모양을 보다 정밀하게 인쇄할 수 있고 안정성이 높아 다양한 기판에 적용할 수 있다. 또한 고분자전해질 코팅법은 세포 친화적이기 때문에 세포실험 및 생체 기술에 적용 가능하다.
연구팀은 이 기술을 통해 금 나노막대 입자를 수십 마이크로미터 해상도로 인쇄해 수 센티미터 이상의 정밀한 나노입자 패턴을 손쉽게 제작했다. 이 패턴에 빛을 조사하면 인쇄한 모양대로 정밀한 열 패턴을 형성할 수 있다.
또한 이 기술로 배양된 뇌신경세포의 활동을 선택적, 일시적으로 빛 조사를 통해 억제할 수 있음을 실험을 통해 확인했다.
이 열 패턴 기술을 이용하면 신경세포의 전기적 활성을 열 발생 부분에만 일시적으로 억제할 수 있어 선택적으로 광열 신경자극을 줄 수 있다. 이를 통해 원하는 세포 영역만 구분해 활동을 억제시켜 환자에게 맞춤형 광열 신경자극 치료를 제공할 수 있다.
연구팀의 기술은 얇고 유연한 기판에도 적용 가능해 체내 이식용 뇌질환 치료 장치나 웨어러블 의료 장치에 응용 가능할 것으로 기대된다.
남 교수는 “원하는 형태의 열 모양을 손쉽게 어디든지 인쇄할 수 있다는 점에서 공학적으로 폭넓게 활용 가능하다”며 “바이오공학 분야에서 생체기능 조절을 위해 빛과 열을 이용한 다양한 인터페이스 제작에 적용할 수 있고 새로운 위조 방지 기술 등에도 적용 가능할 것이다”고 말했다.
이번 연구는 과학기술정보통신부의 중견연구자지원사업(도약연구)의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 기술을 통해 제작한 사례들
그림2. 잉크젯 프린팅을 이용한 광열 효과 패턴 방식 및 이를 이용한 뇌신경세포의 선택적 활동 조절 기술
2018.02.27
조회수 17774
-
조용훈 교수, 금속나노구조 이용해 효율 높인 퀀텀닷 LED 개발
우리 대학 물리학과 조용훈 교수 연구팀이 금속나노 배열 구조를 이용해 퀀텀닷(Quantum Dot) 발광다이오드(LED)의 효율을 향상시킬 수 있는 기술을 개발했다.
이 기술을 통해 차세대 디스플레이 기술이 한 단계 발전하는 데 기여할 것으로 기대된다.
현재 사용되는 퀀텀닷 기반의 디스플레이는 청색 LED를 광원으로 사용해 녹색과 적색 퀀텀닷을 여기(勵起, 광자 에너지가 분자로 옮아가 높은 에너지상태로 방출되는 상태)해 색 변환을 하는 방식이다.
이러한 방식은 높은 가격의 퀀텀닷을 이용하기 때문에 디스플레이 소자의 단가가 높아진다. 또한 액체 상태인 퀀텀닷을 소재에 적용하기 위해 공기 중에 말리면 발광 효율이 급격히 저하된다.
연구팀은 문제 해결을 위해 금속 나노구조가 청색 LED의 빛을 받으며 발생하는 국소 표면 플라즈몬 효과를 이용해 퀀텀닷의 발광효율을 증가시켰다. 더불어 발광 휘도를 높일 수 있는 LED 구조를 이론적으로 제시하고 구현하는 데 성공했다.
이 구조는 기본 청색 LED를 여기 광원으로 이용한다. 알루미늄 금속 나노구조와 녹색 퀀텀닷을 여기해 녹색 발광 휘도를 증가시키고, 은 금속 나노구조와 적색 퀀텀닷을 여기해 적색 발광 휘도를 증가시키는 방식이다.
이는 금속 나노구조를 통해 특정 휘도를 얻기 위해 필요한 퀀텀닷의 양을 많이 줄일 수 있다는 의미이고 결과적으로 소재의 단가를 낮출 수 있다.
이번 연구는 소재의 구조를 이론적으로 모델링했기 때문에 목적에 따라 금속 나노구조를 간단하게 새로 디자인해 조절할 수 있다.
조 교수는 “향후 퀀텀닷 디스플레이에 금속 나노구조를 도입하는 기술이 적절히 도입된다면 소재에 필요한 퀀텀닷의 양을 줄이고 효율적인 색 변환을 통해 단가를 줄일 수 있을 것으로 기대된다”고 말했다.
박현철 박사과정이 1저자로 참여한 이번 연구는 나노과학 분야 국제 학술지 ‘스몰(Small)’ 12월 27일자 표지 논문에 선정되었으며, 한국연구재단의 중견연구자 지원사업과 KAIST 기후변화연구 허브사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 스몰(Small)저널의 12월 27일자 표지 논문 그림
.
그림2. 금속 나노구조가 있을 경우와 없을 경우의 발광 세기 차이를 보인 스펙트럼
2018.01.15
조회수 15229
-
김상규 교수, 화학반응 교차점에서 반응 메커니즘 규명
〈 우경철 박사과정, 김상규 교수, 강도형 박사과정 〉
우리 대학 화학과 김상규 교수 연구팀이 분자의 결합이 떨어지는 화학반응의 교차점에서 발생하는 두 가지 반응 경로를 실시간으로 관찰해 정확한 속도를 측정하는 데 성공했다.
김 교수는 지난 2010년 실험을 통해 두 반응의 위치에너지의 곡면이 만나는 화학반응의 핵심인 ‘원뿔형 교차점’의 존재와 분자구조를 규명한 바 있다.
이어서 이번 연구를 통해 화학반응의 교차점에서 발생하는 두 반응의 속도를 정확하게 측정함으로써 관련 연구의 이론적, 실험적 발전에 기여할 것으로 기대된다.
우경철, 강도형 박사과정이 1저자로 참여한 이번 연구는 ‘미국화학회지(JACS)’ 11월 7일자 온라인 판에 게재됐다.
빛을 받아 일어나는 화학반응은 전자적으로 들뜬 상태에서의 상호작용을 통해 발생한다. 일반적으로 전자상태 간의 상호작용은 한 개의 경로를 갖는 것이 보통이다. 하지만 양자상태에 따라 반응속도가 변하는 현상이 종종 발견되기도 한다.
이렇게 두 개 이상의 서로 다른 성격을 지닌 위치에너지곡면들이 교차하는 지점을 원뿔형 교차점(conical intersection)이라고 부른다. 이 구간은 화학반응에 대한 양자역학적 기술을 가능케 하는 ‘본-오펜하이머 가정(Born Oppenheimer approximation)’이 성립하지 않는 영역으로 알려져 있다.
김 교수는 2010년 분광학적 방법을 통해 이 원뿔형 교차점의 존재를 발견했고 이는 곧 에너지곡면 교차점의 양자상태 반응의 시작점임을 증명했다. 또한 여기서 출발한 반응은 매우 다른 반응속도를 가진 서로 다른 두 경로로 분리돼 진행된다는 것을 밝혔다.
그러나 일반적인 분광법을 통해서 교차점의 시작점은 알 수 있었지만 각 곡면이 갖는 속도를 측정하는 것은 불가능했다.
연구팀은 기존의 분광법이 아닌 피코초(10-12초) 시간분해능 분광법을 이용했다. 기존 기술은 나노초를(10-9초) 기반으로 한 실험을 이용한하기 때문에 에너지 부분에서는 정확하게 측정할 수 있지만 나노초로는 반응의 속도를 측정할 수 없다. 화학반응이 나노초 이내에서 이뤄지기 때문이다.
연구팀의 피코초 시간분해능 분광법은 에너지와 시간 모두 정확하게 측정할 수 있기 때문에 원하는 결과를 얻을 수 있었다.
연구팀은 본-오펜하이머 가정이 성립하는 단열 반응(adiabatic reaction)과 본-오펜하이머 가정이 성립하지 않는 비단열 반응(non-adiabatic reaction) 각각 두 개의 경로가 활성화되고 반응 속도 뿐 아니라 생성물의 에너지 분포 등이 큰 차이를 보임을 확인했다.
자유도의 수가 많은 복잡한 분자 반응에서 양자상태에 근거한 반응교차점에서의 비 단열성을 정량적으로 관찰하고 설명한 경우는 처음이다. 이를 통해 향후 있을 이론적, 실험적 연구의 촉진에 기여할 것으로 기대된다.
김 교수는 “기초과학 연구는 인류가 자연을 이해하고 지혜롭게 이용하는데 필수적이며 기초과학의 발전 없이 새로운 기술적 진보를 기대하기는 힘들다”며 “이번 연구를 통해 기초과학의 연구에 열정을 다할 수 있는 젊은 학문적 기대주들이 많이 성장할 수 있길 바란다”고 말했다.
이번 연구는 삼성미래기술육성재단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 반응교차점에서 시작된 반응 그래프, 단열반응경로 (빨간색)와 비단열반응경로 (파란색)로 나눠짐
그림2. 반응교차점 입체도
그림3. 반응교차점 메커니즘 개념도
2017.11.30
조회수 17575
-
박병국 교수, 열로 스핀전류를 얻는 소재기술 개발
〈 박병국 교수, 김동준 박사 〉
우리 대학 신소재공학과 박병국 교수 연구팀이 자성메모리(MRAM)의 새로운 동작 원리인 열로 스핀전류를 생성하는 소재기술을 개발했다.
이 연구는 고려대 이경진 교수, 충남대 정종율 교수와 공동으로 수행했고 ‘네이쳐 커뮤니케이션즈(Nature Communications)’ 11월 9일자에 게재됐다.
- 논문명: Observation of transverse spin Nernst magnetoresistance induced by thermal spin current in ferromagnet/non-magnet bilayers - 저자 정보 : 김동준(제1저자, 한국과학기술원 박사과정), 전철연, 최종국, 이재욱(한국과학기술원), Srivathsava Surabhi, 정종율 교수(충남대학교), 이경진 교수(고려대학교), 박병국 교수(교신저자, 한국과학기술원) 포함 총 8명
자성메모리는 실리콘 기반의 기존 반도체 메모리와 달리 얇은 자성 박막으로 만들어진 비휘발성 메모리 소자다.
외부 전원 공급이 없는 상태에서 정보를 유지할 수 있으며 집적도가 높고 고속동작이 가능한 장점이 있어 차세대 메모리 기술로 경쟁적으로 개발되고 있다.
자성메모리의 동작은 자성소재에 스핀전류를 주어 자성의 방향을 제어하는 방식으로 이루어진다. 기존 자성메모리에서는 스핀전류를 전기로 생성하는데, 본 연구에서 열로 스핀전류를 발생시키는 소재기술을 개발했다.
그동안 열에 의해 스핀전류가 생성되는 현상, 즉 스핀너런스트 효과(spin Nernst effect)가 이론적으로 발표됐으나 최근까지 기술적 한계로 실험적으로 증명되지 못하였다.
하지만 이번 연구에서 스핀궤도결합이 큰 텅스텐(W)과 백금(Pt) 소재를 활용하고 스핀너른스트 자기저항 측정방식을 도입해 스핀너른스트 효과를 실험적으로 규명했고 열에 의한 스핀전류의 생성효율이 기존의 전기에 의한 스핀전류의 생성효율과 유사함을 밝혔다.
박병국 교수는 “본 연구는 열에 의한 스핀전류 생성이라는 새로운 물리현상을 실험적으로 규명한 것에 의미가 크고, 추가 연구를 통하여 자성메모리의 새로운 동작방식으로 개발할 예정이다.” 라고 밝혔다.
열에 의해 동작하는 자성메모리의 개발은 전력소모를 획기적으로 낮출 수 있어 웨어러블, 모바일 및 사물인터넷 등 저전력 동작이 요구되는 전자기기의 발전에 기여할 것으로 기대된다.
이 연구성과는 과기정통부 미래소재디스커버리사업과 중견연구자사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 스핀너른스트 현상을 이용한 열인가 자성메모리의 개념도
그림2. 스핀너른스트 기반 열인가 스핀전류 생성에 관한 주요 연구 결과
2017.11.27
조회수 19389
-
박현규 교수, RNA 분해효소의 활성 검출기술 개발
〈 이 창 열 박사과정 〉
우리 대학 생명화학공학과 박현규 교수 연구팀이 새로운 RNA 분해효소(RNase H)의 활성을 검출하는 기술을 개발했다.
연구팀은 헤어핀 자기조립 반응이라는 고효율의 신호증폭 반응을 이용해 RNA 분해효소의 활성을 효과적으로 분석하는 기술을 개발했다.
RNA 분해효소가 HIV 바이러스 증식에 필수적으로 관여하는 물질임을 고려할 때 박 교수 연구팀의 연구가 향후 에이즈를 치료하는 데 기여할 수 있을 것으로 기대된다.
이창열, 장효원 박사과정이 공동 1저자로 참여한 이번 연구는 영국왕립화학회가 발행하는 국제 학술지 ‘나노스케일(Nanoscale)’ 2017년도 42호(11월 14일 발행) 표지논문으로 선정됐다.
현재 개발된 RNA 분해효소의 활성을 검출하는 기술들은 일반적으로 값비싼 형광체, 소광체가 필수적이고 그 도입 과정도 복잡하다는 한계가 있다. 또한 신호를 증폭시킬 수단이 없기 때문에 전반적으로 검출 성능이 매우 낮다.
연구팀은 기술의 한계를 극복하기 위해 헤어핀 자기조립 반응이라는 기술을 이용했다. 이 기술은 검출신호를 증폭시켜 RNA 분해효소 활성이 더 민감하게 검출될 수 있도록 도와준다.
그리고 연구팀은 이 헤어핀 자기조립 반응의 결과물이 형광신호의 발생에 적합한 지-쿼드러플렉스(G-quadruplex) 구조를 갖도록 반응시스템을 설계했다. 지-쿼드러플렉스 구조와 결합해 강한 형광을 내는 형광물질을 사용함으로써 기존의 RNA 분해효소 활성 검출 기술의 한계를 극복하는 고성능의 RNA 분해효소 활성 검출 기술을 개발했다.
또한 이 기술을 이용해 RNA 분해효소의 활성 저해제를 선별할 수 있었다.
연구팀의 연구 성과는 일반에 잘 알려진 에이즈를 치료하는 데 기여할 수 있을 것으로 예상된다. 에이즈는 HIV 바이러스가 발병하면 나타나는 전염병으로 HIV 바이러스는 역전사 반응의 특성을 갖는 일명 레트로 바이러스이다.
레트로 바이러스는 RNA가 DNA로 변하는 특성을 갖는다. 그리고 이 과정에서 RNA 분해효소가 개입해야만 이 특성을 유지할 수 있다. RNA 분해효소의 활성을 막을 수 있다면 HIV 바이러스의 발현을 막을 수 있는 것이다.
박 교수는 “이번 연구에서 개발된 기술은 RNA 분해효소의 활성 외에도 다양한 효소 활성 검출 기술 개발에 응용 가능하다”며 “이를 통해 효소 관련 질병 치료 연구에 다양하게 활용될 수 있을 것으로 기대한다”고 말했다.
이번 연구는 과학기술정보통신부가 시행하는 글로벌프론티어사업(바이오나노헬스가드연구단)과 중견연구자지원사업(도약연구)의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 나노스케일 42호 표지
2017.11.22
조회수 18813
-
전상용 교수, 인체 담석형성반응 이용한 항암치료 시스템 개발
〈 전상용 교수, 이동윤 박사과정 〉
우리 대학 생명과학과 전상용 교수 연구팀이 인간 체내의 물질을 이용해 광학영상 진단 및 광열 치료가 가능한 항암시스템을 개발했다.
연구팀은 빌리루빈이라는 체내 물질과 그 빌리루빈으로 인해 발생하는 담석형성반응을 응용했다. 인체 내 강력한 항산화제인 빌리루빈의 담석 형성 과정에서 관찰되는 자체 금속 결합 기능과 신생아 황달 치료에 쓰이는 푸른빛에 반응하는 성질을 동시에 이용했다.
이를 통해 높은 생체 적합성과 우수한 광음향 진단 기능 및 광열 치료 효능을 보여 항암 치료 분야에서 적합한 치료 시스템이 될 것으로 기대된다.
이동윤 박사과정이 1저자로 참여한 이번 연구는 응용화학분야 저명학술지 앙케반테 케미(Angewandte Chemie International Edition) 9월 4일자 온라인 판에 게재됐다.
전 교수 연구팀은 과거 연구에서 물과 화합하지 않는 소수성을 갖는 빌리루빈과, 그 반대로 초 친수성 고분자인 폴리에틸렌글리콜(PEG)을 결합한 ‘페길화된 빌리루빈’ 기반의 나노입자 시스템을 개발한 경험이 있다.
이는 빌리루빈의 항산화 기능을 그대로 유지하면서 체내로 축적되지 않게 해 빌리루빈의 장점만을 취하는 기술이다. 이를 바탕으로 염증성 장 질환, 허혈/재관류, 췌도세포 이식, 천식 등의 동물 질병 모델에서 효능 및 안정성을 확인했다.
이번 연구에서는 앞선 연구의 접근 방식과 다르게 빌리루빈이 갖고 있는 다른 물리 화학적 성질을 이용해 항암 치료에 적용했다.
먼저 황달의 주요 원인체인 노란색 빌리루빈에 특정 파장대의 빛(푸른 빛)을 쬐어주면 이에 반응해 광이성질체(빛에 의해 모양이 변형된 물체)가 되고 배설이 활성화돼 신생아 황달 치료에 널리 쓰일 수 있는 광학물질인 점을 첫 번째 근거로 활용했다.
두 번째로는 인체 내의 쓸개관 혹은 쓸개 등에서 병이 생길 때 종종 발견할 수 있는 검은 색소 담석의 주성분 또한 빌리루빈이라는 점에 주목했다. 빌리루빈이 칼슘이나 구리 등 양이온과 중간 매개체 없이도 결합할 때 검은 색소 담석이 형성되는 점을 응용했다.
연구팀은 구리나 칼슘 대신 시스플라틴이라는 백금 금속 기반 항암제와 빌리루빈을 결합해 노란색의 빌리루빈을 보라색의 복합체로 변환시켰다.
이후 근적외선 파장대의 빛을 쬐었을 때 기존에 비해 크게 향상된 광감응성을 보였고, 실제 정맥 주사된 대장암 동물 모델에서도 종양 부분에서의 유의미한 광음향 신호 증가를 확인했다. 이 기술로 향후 더 향상된 종양 진단을 할 수 있을 것으로 기대된다.
또한 종양 부위에 근적외선 빛을 쬐었을 때 광열 효과에 의해 5분 내에 25℃ 이상의 온도 상승을 확인했고, 2주 후 다른 그룹에 비해 종양 크기의 감소 및 괴사를 확인했다.
전 교수는 “현재 개발된 물질들은 생체 적합성이 낮고 잠재적 생체 독성 가능성이 있는 인공소재 위주이기 때문에 임상으로 이어지는 데 한계가 있었다”며 “이번에 개발한 인체 유래 빌리루빈 기반의 광학물질은 광음향 영상 및 광열 치료의 전임상 중개연구 및 임상 적용에 새로운 플랫폼이 될 것으로 기대한다”고 말했다.
이번 연구는 한국연구재단 글로벌연구실사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 빌리루빈의 담석형성반응 및 광감응성을 이용한 본 연구의 모식도
그림2. 빌리루빈 나노입자 (왼쪽)와 시스플라틴이 결합된 빌리루빈 나노입자 (오른쪽) 수용액
2017.09.20
조회수 18444
-
김상욱 교수, 카메라 플래시로 7나노미터 반도체 패턴 제작 기술 개발
〈 김상욱 교수, 진형민 연구원 〉
우리 대학 신소재공학과 김상욱 교수 연구팀이 카메라의 플래시를 이용해 반도체를 제작하는 기술을 개발했다.
이 기술은 반도체용 7나노미터 패턴 기법으로 한 번의 플래시를 조사하는 것만으로 대면적에서 초미세 패턴을 제작할 수 있다. 향후 고효율, 고집적 반도체 소자 제작 등에 활용 가능할 것으로 기대된다.
진형민 연구원, 박대용 박사과정이 공동 1저자로 참여한 이번 연구 결과는 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 8월 21일자 온라인 판에 게재됐다.
4차 산업혁명의 주요 요소인 인공지능, 사물인터넷, 빅데이터 등의 기술에는 고용량, 고성능 반도체 소자가 핵심적으로 필요하다. 이러한 차세대 고집적 반도체 소자를 만들기 위해서는 패턴을 매우 작게 형성하는 리소그래피(Lithography) 기술의 개발이 필수적이다.
현재 관련 업계에서는 작은 패턴 제작에 주로 광 리소그래피(Photolithograph) 기술을 이용하고 있다. 하지만 이 기술은 10나노미터 이하의 패턴을 형성하기엔 한계가 있다.
고분자를 이용한 분자조립 패턴 기술은 공정비용이 저렴하고 10나노미터 이하 패턴 형성이 가능해 광 리소그래피를 대신할 차세대 기술로 각광받고 있다. 그러나 고온 열처리나 유독성 증기 처리에 시간이 많이 소요되기 때문에 대량 생산이 어려워 상용화에 한계가 있다.
연구팀은 고분자 분자조립 패턴 기술의 문제 해결을 위해 순간적으로 강한 빛을 내는 카메라 플래시를 활용했다. 플래시 빛을 이용하면 15 밀리 초(1밀리 초 : 천분의 1초) 내에 7나노미터의 반도체 패턴을 구현할 수 있고, 대면적에서 수십 밀리 초의 짧은 시간 내에 수 백도의 고온을 낼 수 있다.
연구팀은 이 기술을 고분자 분자 조립에 응용해 단 한 번의 플래시를 조사하는 것으로 분자 조립 패턴을 형성할 수 있음을 증명했다.
또한 연구팀은 고온 열처리 공정이 불가능한 고분자 유연 기판에도 적용이 가능함을 확인했다. 이를 통해 차세대 유연 반도체 제작에 응용할 수 있을 것으로 보인다.
연구팀은 카메라 플래시 광열 공정을 분자 조립 기술에 도입해 분자 조립 반도체기술의 실현을 앞당길 수 있는 고효율의 기술이라고 밝혔다.
연구를 주도한 김상욱 교수는 “분자조립 반도체 기술은 그 잠재성에도 불구하고 공정효율 제고가 큰 숙제로 남아 있었다”며 “이번 기술은 분자조립기반 반도체의 실용화에 획기적 해결책이 될 것이다”고 말했다.
신소재공학과 이건재 교수, 부산대학교 재료공학과 김광호 교수와의 공동으로 진행된 이번 연구는 과학기술정보통신부 리더연구자지원사업인 다차원 나노조립제어 창의연구단과 글로벌프론티어사업의 지원을 받아 수행됐다.
□ 사진 설명
사진1. 플래시 광을 이용한 반도체 패턴 형성
사진2. 플래시 광을 이용한 분자조립 패턴 형성 모식도
사진3. 다양한 가이드 패턴을 이용한 자기조립 패턴 제어와 고분자 유연기판에서의 플래시 자기조립 패턴 형성
2017.09.13
조회수 20083
-
최경철 교수, 초고유연성 의류형 디스플레이 개발
〈 최 승 엽 박사과정 〉
우리 대학 전기및전자공학부 최경철 교수 연구팀이 직물과 유기발광다이오드(OLED)를 융합해 높은 유연성을 갖는 최고 효율의 의류형 디스플레이 기술을 개발했다.
최승엽 박사과정이 1저자로 참여한 이번 연구는 국제 학술지 ‘사이언티픽 리포트(Scientific Reports)’ 7월 21자 온라인 판에 게재됐다.
디스플레이는 차세대 스마트 제품 외형의 대부분을 차지할 정도로 그 중요성이 커지고 있다. 더불어 사물인터넷과 웨어러블 기술의 비중이 늘어나면서 의류 형태의 웨어러블 디스플레이 기술도 주목받고 있다.
2011년 직물 위에 발광체를 형성한 연구 이후 실제 옷감 위에 디스플레이를 구현하기 위한 노력이 계속됐다. 하지만 직물 특유의 거친 표면과 유연한 특성 때문에 상용화 수준의 성능을 보여주지 못했다.
최 교수 연구팀은 의류 형태의 웨어러블 디스플레이 구현을 위해 직물(fabric)형과 섬유(fiber)형 두 가지 방식으로 연구를 진행했다.
연구팀은 2015년에 열접착 평탄화 기술을 통해 거친 직물 위에서 수백 나노미터 두께의 유기발광소자를 동작하는 데 성공했다. 2016년에는 용액 속 실을 균일한 속도로 뽑는 딥 코팅(dip-coating) 기술을 통해 얇은 섬유 위에서도 높은 휘도를 갖는 고분자발광소자를 개발했다.
위와 같은 연구를 바탕으로 최 교수 연구팀은 옷감의 유연성을 유지하면서 높은 휘도와 효율 특성을 갖는 직물형 유기발광소자를 구현했다.
최고 수준의 전기 광학적 특성을 갖는 이 소자는 자체 개발한 유무기 복합 봉지(encapsulation) 기술을 통해 장기적 수명이 검증됐고, 굴곡 반경 2mm의 접히는 환경에서도 유기발광소자가 동작한다.
연구팀은 최고 수준의 휘도와 효율을 갖는 의류 형태의 유기발광 다이오드를 구현했다는 의의가 있으며 보고된 직물 기반의 발광소자 중 가장 유연하다고 밝혔다.
이번 연구를 통해 의류형 발광소자의 기계적 특성에 대한 심층적 분석이 더해져 직물 기반 전자산업 발전에 도움이 될 수 있을 것으로 기대된다.
최승엽 박사과정은 “직물 특유의 엮이는 구조와 빈 공간은 유기발광소자에 가해지는 기계적 스트레스를 크게 낮추는 역할을 한다”며 “직물을 기판으로 사용해 디스플레이를 구현하면 유연하며 구겨지는 화면을 볼 수 있다”고 말했다.
최경철 교수는 “우리가 매일 입는 옷 위에서 디스플레이를 보는 것이 먼 미래가 아니다”며 “앞으로 빛이 나는 옷은 패션, 이-텍스타일(E-textile) 뿐 아니라 자동차 산업, 광치료와 같은 헬스케어 산업에도 큰 영향을 끼칠 것이다”고 말했다.
이번 연구는 ㈜코오롱글로텍과의 공동 연구로 진행됐고 산업통상자원부 산업기술혁신사업의 지원으로 수행됐다.
□ 사진 설명
사진1. 옷감 위에서 구동 되고 있는 유기발광다이오드 사진
사진2. 유기발광다이오드
사진3.고유연성 직물 기반 유기발광다이오드의 전류-전압-휘도 및 효율 특성
2017.08.24
조회수 20495
-
성형진 교수, 미세유체칩 내 액적 위치 제어 기술 개발
우리 대학 기계공학과 성형진 교수 연구팀(유동제어연구실)이 열모세관 현상을 이용해 미세유체칩 내 액적의 위치를 정교하게 제어하는 기술을 개발했다.
박진수 박사과정이 1저자로 참여한 이번 연구는 영국왕립화학회(Royal Society of Chemistry)에서 발간하는 미세유체기술 및 마이크로타스(microTAS) 분야의 국제학술지인 랩온어칩(Lab on a Chip)지 2017년 6호의 표지논문으로 선정됐다.
(논문명: Acoustothermal tweezer for droplet sorting in a disposable microfluidic chip)
극소량의 유체 샘플을 이용해 동전만한 크기의 미세유체칩 내에서 복잡한 실험을 수행하기 위해서는 정교한 미세유체 기술이 필요하다.
특히 서로 섞이지 않는 두 유체로 구성된 액적을 기반으로 하는 미세유체역학 분야에서 액적의 위치를 정교하게 제어할 수 있는 기술이 필수적이다.
하지만 기존의 액적위치 제어기술은 한 쪽 방향으로만 제어할 수 있거나 마이크로 크기 수준에서는 정교하게 제어하지 못했다.
연구팀은 독자적으로 개발한 음향열적가열법을 통해 마이크로 수준의 동적 온도구배를 형성했고 이를 통해 미세유체칩 내에서 액적의 위치를 마이크로 크기 수준에서 정교하게 제어했다.
궁극적으로는 원하는 배출 유로로 액적을 분리할 수 있음을 증명했다.
성형진 교수 연구팀은 그동안 광력과 음향력 기반의 미세유체역학, 난류, 고체-유체 상호작용 연구 분야에서 탁월한 연구 성과를 내 SCI급 국제 학술지에 300여 편의 논문을 게재한 바 있다.
이번 연구는 한국연구재단의 창의연구지원사업, 글로벌박사펠로우십과 KAIST-KUSTAR의 지원으로 수행됐다.
박진수 박사과정은 “본 연구에서 개발된 기술은 액적의 양쪽에서 서로 반대방향으로 작용해 균형을 이루는 열모세관 힘을 이용해 액적의 위치를 마이크로스케일에서 정교하게 제어할 수 있다”고 말했다.
성 교수는 “본 연구에서 개발된 기술이 액적 기반 미세유체칩 내 생화학반응, 제약, 물질 합성 등에 널리 활용될 수 있을 것으로 기대된다”고 말했다.
□ 그림 설명
그림1. 랩온어칩 표지
2017.03.20
조회수 19806
-
윤준보 교수, 700℃로 열처리된 나노와이어 옮기는 기술 개발
우리 대학 전기및전자공학부 윤준보 교수 연구팀이 고온에 열처리된 나노와이어 다발 물질을 유연 기판에 옮기는 기술과 이를 이용한 고성능의 유연 에너지 수확 소자를 개발했다.
서민호 박사과정이 1저자로 참여한 이번 연구는 나노과학 및 공학 분야 국제 학술지 ‘에이씨에스 나노(ACS Nano)’ 1월 30일자 온라인 판에 게재됐다.
대표적인 나노물질인 나노와이어(nanowire)는 나노미터 단위의 크기를 가지는 와이어 구조체를 말한다. 1차원 구조에 기반한 우수한 물리, 화학적 특성과 높은 응용성 덕분에 과학 및 공학적으로 중요하게 사용되고 있다.
특히 완벽하게 정렬된 배열, 평균보다 긴 길이 등 특수한 구조를 갖는 나노와이어는 그 성능이 더욱 우수한 것으로 밝혀졌다. 따라서 나노와이어들을 손쉽게 제작 및 분석하고 이를 통한 고성능의 응용 소자를 구현하려는 연구가 활발히 진행 중이다.
최근에는 물리, 화학적으로 우수한 나노와이어를 유연 기판에 제작하고 고성능 웨어러블 센서 등의 유연 전자소자에 응용하는 연구가 각광을 받고 있다.
그러나 기존 기술은 화학적 합성법으로 제조된 나노와이어를 용액에 섞어 유연 기판에 도포하는 무작위 분포 방식을 활용했기 때문에, 나노와이어의 구조적 장점을 활용하는 고성능 소자의 구현에는 어려움이 있다.
최첨단 나노 공정법과 내열성을 갖는 유연 물질을 이용하기도 하지만 이는 경제적으로 비효율적이고 700℃ 이상의 초고온에서 안정적인 재료를 제작하기에는 부적합해 사용 범위가 제한적이다.
연구팀은 문제 해결을 위해 대면적으로 제작된 실리콘 나노그레이팅(nano-grating) 기판과 나노희생 층(nano-sacrificial layer) 공정을 결합하는 새로운 나노 옮기기(nano-transfer) 기술을 개발했다.
이 기술은 옮기기의 틀(mold)이 되는 나노그레이팅 기판과 나노와이어 사이에 존재하던 나노희생 층이 열처리 이후 나노와이어를 유연 기판으로 옮길 때 희생 층이 없어진다.
이를 통해서 초고온에서 물성 확보가 된 나노와이어를 정렬된 형태로 유연 기판에 안정적으로 제작할 수 있다.
연구팀은 개발된 기술을 이용해 700℃ 이상부터 물성이 확보되는 티탄산바륨 나노와이어를 유연 기판 위에 완벽하게 정렬해 제작했다.
또한 이를 웨어러블 에너지 수확에 응용해 기존에 보고된 일반적인 티탄산바륨 나노와이어 기반 에너지 수확 소자의 특성을 뛰어넘는 높은 전기적 에너지를 얻었다.
이 기술은 반도체식 공정인 물리기상 증착법을 기반으로 제작하기 때문에 세라믹, 반도체 등 다양한 물질을 나노와이어의 유연 기판 위 제작에 활용 가능하다.
유연 트랜지스터, 열전소자 등 다양한 고성능 유연 전자소자 제작에 활발히 이용 가능할 것으로 기대된다.
서민호 박사과정은 “물성이 향상된 나노와이어 물질을 유연 기판 위에 옮기고 이를 이용한 소자 수준의 성능 향상을 선보였다”며 “다양한 나노와이어 물질의 유연 기판 위 제작 및 고성능 웨어러블 전자 소자의 구현에 기반이 될 것이다”고 말했다.
이번 연구는 한국연구재단 도약연구지원사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1.티탄산바륨( BaTiO₃) 나노와이어를 이용한 전사의 광학적, 물질적, 단면 전자현미경 결과
그림2. 개발된 새로운 나노와이어 전사 공정 과정과 나노희생층 식각 원리의 모식도
그림3. 에너지 수확소자의 모식도와 검지에 부착된 소자의 에너지 수확 실험 광학사진
2017.02.23
조회수 17247