본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%A7%80%EC%9B%90%EC%82%AC%EC%97%85
최신순
조회순
김신현 교수, 풍뎅이 외피 본뜬 머리카락 굵기 레이저 공진기 개발
〈 이상석 박사과정, 김신현 교수, 김종빈 박사과정 〉 우리 대학 생명화학공학과 김신현 교수 연구팀이 한국화학연구원 김윤호 박사와의 공동 연구를 통해 머리카락 굵기 수준의 캡슐형 레이저 공진기를 개발했다. 연구팀의 캡슐형 레이저 공진기는 크리슈나 글로리오사 풍뎅이(Chrysina gloriosa, 이하 글로리오사 풍뎅이)의 외피와 동일한 구조를 미세 캡슐에 탑재한 기술로 치료용 레이저 등 광범위한 분야에 적용 가능할 것으로 기대된다. 이상석 박사과정이 1저자로 참여한 이번 연구 결과는 사이언스 자매지 ‘사이언스 어드밴시스(Science Advances)’ 6월 22일자 온라인 판에 게재됐다. (논문명 : Wavelength-tunable and shape-reconfigurable photonic capsule resonators containing cholesteric liquid crystals , 파장 가변성과 모양 재구성성을 갖는 콜레스테릭 액정 기반의 캡슐형 레이저 공진기) 글로리오사 풍뎅이는 좌측으로 원편광된 빛을 비추면 나뭇잎과 비슷한 초록색을 띠고, 우측으로 원편광된 빛을 비추면 아무 색도 보이지 않는다. 이러한 독특한 광학 특성은 포식자들을 피해 글로리오사 풍뎅이 간의 통신 수단으로 활용된다고 알려져 있다. 글로리오사 풍뎅이가 편광 방향에 따라 다른 색을 보이는 이유는 외피에 왼쪽 방향으로 휘감아 도는 나선구조가 존재하기 때문이다. 이러한 나선구조는 동일한 방향의 원편광 빛만을 선택적으로 반사해 반사색을 보인다. 글로리오사 풍뎅이가 가진 나선구조를 활용하면 인공적으로 액정을 구현하는 것이 가능하다. 이러한 액정 나선구조는 글로리오사 풍뎅이의 외피처럼 편광 방향에 따른 반사 특성을 보이며 특정 파장의 빛을 제어할 수 있기 때문에 보통의 레이저와 달리 거울 없이도 레이저 공진기를 구현할 수 있다. 이러한 액정을 활용한 레이저 공진기는 필름 형태로 구현되곤 했는데 필름 형태의 공진기는 레이저의 발광 방향이 고정돼 있고 크기가 커 미세한 부분에 사용하기에는 한계가 있었다. 연구팀은 액정 레이저 공진기를 머리카락 크기 수준의 캡슐 내부에 제작해 목표 지점에 주사하거나 이식할 수 있는 새로운 형태의 레이저 공진기를 개발했다. 캡슐형 레이저 공진기는 삼중 구조로 구성된다. 코어의 액정 분자와 발광 분자의 혼합물을 액체 상태의 배향층과 고체 상태의 탄성층이 겹으로 감싸는 형태이다. 배향층은 코어의 액정 분자가 높은 배향 수준을 갖게 하는 역할을 통해 레이저 공진기의 성능을 향상시키고, 탄성층은 캡슐의 기계적 안정성을 높인다. 연구팀은 미세유체기술을 이용해 복잡한 삼중 구조를 제어된 방식으로 설계했다. 캡슐형 레이저 공진기는 공기 중에서도 안정적으로 구형을 유지하며 레이저 발광이 캡슐 표면을 따라 수직 발생해 3차원의 전방향(omnidirectional) 레이저 발광이 가능하다. 또한 캡슐형 공진기를 기계적으로 변형시켜 발광 방향과 레이저의 세기를 조절할 수 있고 온도 조절을 통해 액정의 나선구조 간격을 변화시키면 레이저 발광의 파장도 조절이 가능하다. 김 교수는 “개발한 새로운 형태의 캡슐형 레이저는 작은 크기와 높은 기계적 안정성을 가져 주사 및 이식이 가능하며 국부적인 영역에만 조사할 수 있는 치료용 레이저로 사용 가능하다”며 “자연에 존재하는 C.글로리오사 풍뎅이의 외피 구조를 모방해 발전시킨 것으로 인간은 자연에서부터 배우고 공학적으로 창조하게 됨을 증명한 연구이다”고 말했다. 이번 연구는 한국연구재단의 중견연구자지원사업과 X-project 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 좌원편광 빛과 우원편광 빛에 노출된 C. gloriosa 풍뎅이의 사진 그림2. 캡슐형 레이저 공진기의 구성 (좌) 및 광학 현미경 사진 (우)
2018.07.03
조회수 10226
서민호 박사, 윤준보 교수, 완벽 정렬된 나노와이어 옮기는 기술 개발
〈 서 민 호 박사, 윤 준 보 교수 〉 우리 대학 전기및전자공학부 서민호 박사, 윤준보 교수 연구팀이 완벽하게 정렬된 나노와이어 다발을 대면적의 유연 기판에 옮기는 데 성공했다. 이 나노와이어 전사(transfer) 기술은 기존 화학 반응 기반의 나노와이어 제작 기술이 갖고 있던 낮은 응용성과 생산성을 높였다는 의의를 갖는다. 서민호 박사가 1저자로 참여한 이번 연구는 나노 과학 및 공학 분야 국제 학술지 ‘에이씨에스 나노(ACS Nano)’ 5월 24일자에 게재됐다. (논문명 : Material-Independent Nano-Transfer onto a Flexible Substrate Using Mechanical-Interlocking Structure, 기계식 연동 구조를 활용하는 재료 선택폭 넓은 나노와이어 전사 방법) 대표적 나노 물질인 나노와이어는 작고 가볍다는 구조적 장점과 우수한 물리적, 화학적 특성 덕분에 소형 및 유연 전자 소자에 사용될 수 있다. 기존 나노와이어 전자 소자 제작은 화학적 합성법으로 제조된 나노와이어를 용액에 섞어 유연 기판에 무작위로 뿌리는 방식을 활용했다. 이로 인해 같은 방법을 사용해도 제작된 전자 소자들의 특성이 매우 다르다는 불균일성 문제가 있었다. 이러한 문제 때문에 화학적 표면 처리를 이용한 나노와이어 전사 공정이 개발돼 유연 기판 위 정렬된 나노와이어를 균일하게 제작하는 방법이 개발되기도 했다. 그러나 이 기술은 화학적인 접촉력의 조절이 가능한 일부 나노와이어만 제작 가능하기 때문에 사용 범위가 극히 제한적이다. 연구팀은 문제 해결을 위해 기계식 접촉력 조절 원리를 활용하는 새로운 나노와이어 전사 기술을 개발했다. 이 기술은 전사의 모체(master mold)가 되는 나노그레이팅 기판(nanograting substrate)에 나노희생 층(nanosacrificial layer)과 나노와이어를 순차적으로 형성한 후, 나노희생 층을 건식 식각 공정을 통해 구조적으로 약하게 만든다. 나노희생 층은 나노와이어와 모체를 매우 약하게 연결하고 있기 때문에 이후 유연 기판이 되는 재료를 이용하면 마치 테이프를 이용해 바닥의 먼지를 떼어내듯 나노와이어를 쉽게 모체에서 유연 기판으로 옮길 수 있다.이 기술은 일반적인 물리적 증착법을 기반으로 제작되고 재료 의존성이 낮기 때문에 손쉽게 나노와이어를 유연 기판에 제작할 수 있다. 연구팀은 개발한 기술을 이용해 금, 백금, 구리 등 다양한 금속 나노와이어와 결정화된 금속 산화물을 유연 기판 위에 완벽하게 정렬해 제작했다. 또한 이를 유연 히터와 가스 센서 소자에 응용함으로써 실제 생활에 사용될 수 있는 안정적인 응용 소자를 구현할 수 있음을 증명했다. 서민호 박사는 “우수한 물성의 다양한 금속, 반도체 나노와이어를 웨이퍼 수준으로 완벽 정렬해 유연 기판에 옮기고 이를 소자 제작에 응용했다”며 “다양한 나노와이어 재료의 유연 기판 위 제작을 위한 플랫폼 기술로 고성능 유연 전자 소자의 안정적 개발에 기여할 것이다”고 말했다. 이번 연구는 한국연구재단의 중견연구자지원사업, 나노종합기술원 오픈 이노베이션 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 연구팀의 기술로 제작된 금 단면
2018.05.29
조회수 10428
김희탁 교수, 도넛모양 황화리튬 이용 리튬황이온전지 개발
〈 팽민 예 연구교수, 김희탁 교수 〉 우리대학 생명화학공학과 김희탁 교수(나노융합연구소 차세대배터리센터) 연구팀이 기존 리튬이온전지보다 높은 에너지 밀도를 가지면서 저렴하고 600사이클 이상의 수명을 갖는 도넛 모양 활물질 구조의 리튬황이온전지를 개발하는데 성공했다. 전기자동차의 배터리로 사용되는 리튬이온전지는 낮은 에너지 밀도 때문에 1회 충전시 가능 주행 거리가 짧아 높은 에너지 밀도를 구현할 수 있는 리튬황전지의 개발이 10여 년 간 경쟁적으로 이뤄져 왔지만 리튬황전지는 음극인 리튬금속전극의 취약한 가역성으로 인해 전지의 사이클 수명을 확보하는데 어려움이 많았다. 이러한 문제 해결을 위해 연구팀은 리튬금속음극 대신 리튬이온전지에 사용되는 사이클 수명이 우수한 흑연음극 이용과 함께 용량이 높은 황화리튬(Li2S) 양극을 결합해 에너지 밀도와 수명 향상에 힘썼다. 그러나 황화리튬이 고가이고, 흑연음극과 황화리튬 양극의 사이클 수명을 동시에 만족하는 전극 및 전해액 설계기술이 없어 기술적인 한계가 있었다. 이에 연구팀은 저가의 황산리튬(Li2SO4)을 원재료로 도넛 모양의 황화리튬 양극 활물질을 제조했다. 그러면서 고농도 염 전해액을 이용해 흑연음극과 황화리튬 양극을 이용한 리튬황이온 전지를 구현했다. 내부가 비어있는 도넛 모양의 황화리튬은 리튬이온의 전달력을 향상시켜 높은 충, 방전 가역성을 보였고, 고농도 염 전해액은 흑연전극 표면에 안정적인 막을 형성해 우수한 내구성을 보였다. 연구팀은 이 기술을 통해 기존 리튬이온전지보다 30% 높은 에너지 밀도를 구현함과 동시에 600사이클 이상의 수명을 확보하는 데 성공했다. 연구팀의 도넛모양 황화리튬 전극은 저가의 원재료를 이용하면서 단일 열처리 공정으로 제조할 수 있고, 기존 리튬이온전지에 적용할 수 있어 산업적으로 활용할 수 있을 것으로 보인다. 김희탁 교수는 “저가 황 화합물을 리튬이온전지에 적용해 에너지 밀도와 수명을 동시에 향상시킬 수 있음을 증명했다”고 말했다. 이번 연구는 KAIST 나노융합연구소와 한국과학기술연구원 및 한국연구재단 기초연구지원사업의 지원으로 수행됐다. 팽민 예(Fangmin Ye) 연구교수가 1저자로 참여한 이번 연구 결과는 재료과학분야 국제학술지 ‘어드밴스드 사이언스(Advanced Science)’ 지난 7일자 온라인 판 논문에 게재됐다. □ 그림 설명 그림1. 도넛 모양 황화리튬 활물질 구조 및 제조 원리
2018.05.24
조회수 13971
예종철 교수, 인공지능 블랙박스의 원리 밝혀
〈 예종철 교수, 한요섭 연구원, 차은주 연구원 〉 우리 대학 바이오및뇌공학과 예종철 석좌교수 연구팀이 인공지능의 기하학적인 구조를 규명하고 이를 통해 의료영상 및 정밀분야에 활용 가능한 고성능 인공신경망 제작의 수학적인 원리를 밝혔다. 연구팀의 ‘심층 합성곱 프레임렛(Deep Convolutional Framelets)’이라는 새로운 조화분석학적 기술은 인공지능의 블랙박스로 알려진 심층 신경망의 수학적 원리를 밝혀 기존 심층 신경망 구조의 단점을 보완하고 이를 다양하게 응용 가능할 것으로 기대된다. 예종철 석좌교수가 주도하고 한요섭, 차은주 박사과정이 참여한 이번 연구는 응용수학 분야 국제 학술지 ‘사이암 저널 온 이매징 사이언스(SIAM Journal on Imaging Sciences)’ 4월 26일자 온라인 판에 게재됐다. 심층신경망은 최근 폭발적으로 성장하는 인공지능의 핵심을 이루는 딥 러닝의 대표적인 구현 방법이다. 이를 이용한 영상, 음성 인식 및 영상처리 기법, 바둑, 체스 등은 이미 사람의 능력을 뛰어넘고 있으며 현재 4차 산업혁명의 핵심기술로 알려져 있다. 그러나 이러한 심층신경망은 그 뛰어난 성능에도 불구하고 정확한 동작원리가 밝혀지지 않아 예상하지 못한 결과가 나오거나 오류가 발생하는 문제가 있다. 이로 인해 ‘설명 가능한 인공지능(explainable AI: XAI)’에 대한 사회적, 기술적 요구가 커지고 있다. 연구팀은 심층신경망의 구조가 얻어지는 고차원 공간에서의 기하학적 구조를 찾기 위해 노력했다. 그 결과 기존의 신호처리 분야에서 집중 연구된 고차원 구조인 행켈구조 행렬(Hankel matrix)을 기저함수로 분해하는 과정에서 심층신경망 구조가 나오는 것을 발견했다. 행켈 행렬이 분해되는 과정에서 기저함수는 국지기저함수(local basis)와 광역기저함수(non-local basis)로 나눠진다. 연구팀은 광역기저함수와 국지기저함수가 각각 인공지능의 풀링(pooling)과 필터링(filtering) 역할을 한다는 것을 밝혔다. 기존에는 인공지능을 구현하기 위한 심층신경망을 구성할 때 구체적인 작동 원리를 모른 채 실험적으로 구현했다면, 연구팀은 신호를 효과적으로 나타내는 고차원 공간인 행켈 행렬를 찾고 이를 분리하는 방식을 통해 필터링, 풀링 구조를 얻는 이론적인 구조를 제시한 것이다. 이러한 성질을 이용하면 입력신호의 복잡성에 따라 기저함수의 개수와 심층신경망의 깊이를 정해 원하는 심층신경망의 구조를 제시할 수 있다. 연구팀은 수학적 원리를 통해 제안된 인공신경망 구조를 영상잡음제거, 영상 화소복원 및 의료영상 복원 문제에 적용했고 매우 우수한 성능을 보임을 확인했다. 예종철 교수는 “시행착오를 반복해 설계하는 기존의 심층신경망과는 달리 원하는 응용에 따라 최적화된 심층신경망구조를 수학적 원리로 디자인하고 그 영향을 예측할 수 있다”며 “이 결과를 통해 의료 영상 등 설명 가능한 인공지능이 필요한 다양한 분야에 응용될 수 있다”고 말했다. 이번 연구는 과학기술정보통신부의 중견연구자지원사업(도약연구) 및 뇌과학원천기술사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 수학적인 원리를 이용한 심층신경망의 설계 예시 그림2. 영상잡음제거 결과 그림3. 영상에서 80% 화소가 사라진 경우 인공신경망을 통해 복원한 결과
2018.05.10
조회수 17453
김용훈 교수, 차세대 탄소섬유 개발 위한 이론 규명
우리 대학 EEWS대학원 김용훈 교수 연구팀이 고품질 탄소섬유 개발에 필요한 고분자 전구체와 저차원 탄소 나노소재 간 계면의 원자구조 및 전자구조적 특성을 규명했다. 이번 연구로 차세대 탄소섬유 개발의 이론적 청사진을 제시할 것으로 기대된다. 이주호 박사과정이 1저자로 참여한 이번 연구 성과는 국제 과학 학술지인 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 4월 11일자에 속표지(Inside Back Cover) 논문으로 게재됐다. 탄소섬유는 매우 가벼우면서도 뛰어난 기계적, 열적 특성을 갖고 있기 때문에 초경량 자전거, 골프 클럽 등 스포츠 용품부터 자동차, 항공우주, 원자력 등 다양한 첨단 기술 분야에 활발히 활용되고 있는 신소재이다. 탄소섬유는 전구체(precursor) 고분자를 방사, 안정화 및 탄화 등의 작업을 통해 얻어지며 현재 폴리아크릴로나이트릴(polyacrylonitrile, PAN)이 탄소섬유의 주 전구체로 사용되고 있다. 고품질 차세대 탄소섬유를 얻는 방법으로 탄소나노튜브(carbon nanotube, CNT)를 탄소섬유 전구체 고분자 매트릭스에 분산시켜 고분자의 결정성을 높이는 연구가 대표적이다. 탄소나노튜브와 전구체 고분자의 조합이 탄소섬유의 물성을 향상시킬 수 있다는 것도 실험을 통해 확인된 바 있다. 그러나 20년 이상의 연구에도 탄소나노튜브와 전구체 고분자 간 상호작용에 대한 이해는 실험적 접근법의 어려움으로 인해 부족한 상황이다. 따라서 탄소나노튜브를 활용한 고품질 탄소섬유 제작 기술은 한계가 있었다. 김 교수 연구팀은 슈퍼컴퓨터를 활용해 양자역학적 제1원리 기반 멀티스케일 시뮬레이션을 수행해 대표적인 탄소섬유 전구체인 폴리아크릴로나이트릴 고분자가 탄소나노튜브 계면에서 배열되는 과정을 원자 수준에서 체계적으로 재현했다. 또한 탄소나노튜브-폴리아크릴로나이트릴 고분자 계면이 특히 좋은 특성을 보일 수 있는 이유를 연구했다. 폴리아크릴로나이트릴 고분자의 단위체가 누워있는 형태의 특정 원자구조를 선호하고, 이 때 양전하와 음전하가 균형 있게 이동하는 계면 특유의 특성이 발현되므로 이 계면 구조를 최대화 시키는 것이 최적의 대규모 폴리아크릴로나이트릴 고분자 정렬을 유도할 수 있음을 밝혔다. 또한 폴리아크릴로나이트릴 고분자의 정렬도가 그래핀 나노리본과의 계면에서 극대화되는 것을 확인해 최근 각광을 받고 있는 그래핀을 이용해 탄소 섬유의 품질을 더욱 향상시킬 수 있다는 가능성도 제시했다. “김 교수는 양자역학에 기반한 전산모사가 첨단 소재·소자의 개발을 위한 기본원리를 제공해 줄 수 있음을 보여준 연구의 예다”며 “이러한 전산모사 연구의 중요성은 컴퓨터 성능 및 전산모사 이론체계의 비약적인 발전과 더불어 더욱 커질 것이다”라고 말했다. 이번 연구는 미래창조과학부 중견연구자지원사업, 나노소재원천기술개발사업, 기초연구실지원사업, 글로벌프론티어사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 어드밴스드 펑셔널 머티리얼즈 표지 그림2. 연구 개요 모식도
2018.04.26
조회수 20265
김유천 교수, 부작용 낮춘 레이저 치료제 개발
〈 노 일 구 박사과정, 김 유 천 교수 〉 우리 대학 생명화학공학과 김유천 교수 연구팀이 기존 광역학 치료제(PhotoDynamic Therapy, 이하 PDT)의 단점을 보완한 근적외선 형광물질 기반의 PDT를 개발했다. 노일구 박사과정이 1저자로 참여하고 바이오및뇌공학과 박지호 교수 연구팀이 공동으로 참여한 이번 연구 결과는 국제 학술지 ‘어드밴스드 사이언스(Advanced Science)’ 2018년도 3월 25일자 표지논문에 게재됐다. PDT는 약물이나 유전자가 아닌 빛을 이용하는 치료법으로 레이저를 특정부위에 쬐어 산소를 독성을 갖는 활성산소로 변화시켜 세포를 자가 사멸(apoptosis)로 유도할 수 있는 기술이다. 이 기술은 피부병 치료 등 일상에서도 많이 활용되는 치료법이다. 그러나 기존에 이용하는 PDT 조영제의 경우 낮은 효율을 가질 때 오히려 암세포의 유전변형이 발생해 치료효과 감소 등의 부작용이 나올 수 있다. 따라서 치료효과를 극대화하기 위해선 원하는 위치에 많은 물질을 전달하는 것이 중요하며 이를 위해 세포 소기관인 미토콘드리아에 치료효과를 집중시키는 연구가 진행 중이다. PDT 조영제로 인해 만들어진 활성산소는 미토콘드리아의 막을 공격해 세포 사멸을 일으킨다. 암세포의 미토콘드리아는 일반 세포와 비교했을 때 미토콘드리아 막의 전위 차이가 높아 양전하의 소수성 물질이 더 잘 투입되는 특성이 있다. 연구팀은 이러한 PDT 조영제 효과를 극대화하기 위해 미토콘드리아 타겟팅 그룹인 트리페닐포스포늄, PDT 증강제인 브롬화물, 그리고 용해도 증가를 위한 아민 그룹으로 구성된 물질을 개발했다. 연구팀은 이 기술을 종양이 이식된 실험용 쥐에 주입한 후 종양 부위에 빛을 조사해 항암효과를 유도했고 이를 분석했을 때 효과적으로 표적 치료가 이뤄지는 것을 확인했다. 이 물질은 근적외선 영역에서의 흡광 및 발광을 통한 662 나노미터(nm) 영역 레이저를 사용한다. 이를 통해 기존 가시광선 조영제가 마이크로미터 수준의 깊이를 보였다면 연구팀의 기술은 밀리미터까지 투과성을 가지며 진단 시 가시광역 조영제 보다 100배 이상 감도가 우수한 특성을 갖고 있다고 밝혔다. 연구를 주도한 노일구 박사과정은 “암세포 미토콘드리아에 오래 머물러 있어 레이저를 조사했을 때 원하는 부분에만 부작용 없이 효과적인 치료가 가능하다는 장점이 있다”며 “치료 후 독성이 없이 분해돼 기존 조영제의 단점을 극복할 수 있을 것이다”고 말했다. 김유천 교수는 “기존에 이용되는 진단 및 치료제를 한 단계 더 발전시킨 새로운 플랫폼의 개발을 통해 부작용을 최소화하고 다양한 질병을 치료하는 데 유용하게 사용될 것으로 기대한다”고 말했다. 이번 연구는 글로벌프론티어 지원사업 ABC 바이오매스 사업단 및 한국연구재단의 중견연구자지원사업, 바이오의료기술개발지원사업을 통해 수행됐다. □ 그림 설명 그림1. Advanced science 3월 25일자 3호 표지 그림2. 완성된 물질의 화학구조, 미토콘드리아 타겟팅 효과 및 레이저에 따른 ROS 생성 그래프
2018.04.17
조회수 17389
김도경 교수, 모세관현상 이용한 리튬-황 전지 소재 개발
우리 대학 신소재공학과 김도경 교수 연구팀이 종이가 물을 흡수하는 모세관 현상처럼 탄소나노섬유 사이에 황을 잡아두는 방식을 통해 리튬-황 기반 이차전지 전극 소재를 개발했다. 연구팀이 개발한 면적당 용량(mAh/㎠)이 우수한 저중량, 고용량 리튬-황 기반 이차전지 전극소재를 통해 리튬-황 전지의 상용화를 앞당길 수 있을 것으로 기대된다. 윤종혁 박사과정이 1저자로 참여하고 김도경 교수, UNIST 이현욱 교수가 교신저자로 참여한 이번 연구는 국제 학술지 ‘나노 레터스(Nano Letters)’ 2018년도 18호에 게재됐다. 최근 전기자동차, 대용량 에너지 저장장치의 수요가 급증함에 따라 기존 리튬이온 전지를 뛰어넘는 높은 에너지 밀도의 이차전지 개발 필요성이 커지고 있다. 리튬-황 전지는 차세대 고용량 리튬이차전지로 각광받고 있으며 이론적으로 리튬이온 전지보다 약 6배 이상 높은 에너지 밀도를 갖는다. 하지만 황의 낮은 전기전도도, 충전과 방전으로 인해 발생하는 부피 변화, 리튬 폴리설파이드 중간상이 전해질로 녹아 배출되는 현상은 리튬-황 전지 상용화의 걸림돌이다. 이를 해결하기 위해 다공성 탄소 분말로 황을 감싸 전기전도도를 향상시키고 부피변화를 완화시키며 폴리설파이드가 녹는 것을 방지하는 황-탄소 전극 개발에 대한 연구가 주로 진행돼 왔다. 그러나 이러한 구형의 0차원 탄소 분말들은 입자 간 무수한 접촉 저항이 발생하고 황을 감싸는 합성 과정이 까다로울 뿐 아니라 입자들을 연결하기 위해 고분자 바인더를 사용해야한다는 단점이 있다. 연구팀은 기존 탄소 재료의 단점을 극복하기 위해 전기방사를 통해 대량으로 1차원 형태의 탄소나노섬유를 제작하고 고체 황 분말이 분산된 슬러리(slurry, 고체와 액체 혼합물 또는 미세 고체입자가 물 속에 현탁된 현탁액)에 적신 뒤 건조하는 간단한 방법을 통해 접촉 저항을 대폭 줄인 황-탄소 전극을 개발했다. 연구팀은 주사전자현미경(SEM)을 통해 현상을 관찰했다. 종이가 물을 흡수하듯 고체 황이 전기화학 반응 중 중간 산물인 액체 리튬 폴리설파이드로 변화하고 이들이 탄소나노섬유들 사이에 일정한 모양으로 맺힌 후 충전과 방전 과정에서 그 형태를 유지하며 밖으로 녹아나가지 않음을 확인했다. 이는 복잡하게 황을 감싸지 않고도 황이 탄소 섬유들 사이에 효과적으로 가둬지는 것을 발견한 것이다. 또한 기존 연구 결과가 단위 면적당 황 함량이 2mg/㎠ 이내인 것에 비해 이번 연구에서는 10mg/㎠이 넘는 황 함량을 달성했고 이를 기반으로 7mAh/㎠의 높은 면적당용량을 기록했다. 이는 기존 리튬이온전지의 면적당용량인 1~3mAh/㎠를 능가하는 값이다. 1저자인 윤종혁 박사과정은 “금속집전체 위에 전극물질을 도포하는 기존의 전극 제조 방법과는 전혀 다른 전극 구조 및 제조 방식을 적용한 연구로 향후 리튬 이차전지의 연구 범위를 넓히는 데에 기여할 수 있을 것이다”고 말했다. 김도경 교수는 “고용량 리튬-황 상용화에 한 단계 다가선 연구성과로 전기자동차뿐만 아니라 무인항공기(UAV) 및 드론 등에도 폭넓게 적용될 수 있을 것으로 기대된다”고 말했다. 이번 연구는 EEWS 연구센터의 기후변화연구허브사업과 한국연구재단의 중견연구자 지원사업을 통해 수행됐다. □ 그림 설명 그림1. 전기화학 반응을 통해 탄소나노섬유에 황이 맺히는 현상과 그로 인한 전지의 안정적인 수명 특성 그림2. 탄소나노섬유들 사이에 흡수되어 맺힌 형태 그대로 고체화 된 황의 미세구조와 모식도 그림3. 액상의 리튬 폴리설파이드를 효과적으로 흡수하는 탄소나노섬유 구조체
2018.03.22
조회수 17267
성형진 교수, 미세유체 칩 내 액적 부피 제어 기술 개발
우리 대학 기계공학과 성형진 교수 연구팀(유동제어연구실)이 고주파수의 음향방사현상을 이용해 미세유체 칩 내 액적의 부피를 정교하게 제어하는 기술을 개발했다. 초소형 미세유체 칩 내에서 극미량의 유체 샘플을 이용해 복잡한 반응 및 실험을 수행하기 위해서는 정교한 미세유체역학기술이 요구된다. 특히 서로 섞이지 않는 두 유체로 구성된 미세액적을 기반으로 하는 액적 기반 미세유체역학 분야에서 액적의 부피를 정교하게 제어하기 위한 액적 분할 기술의 개발을 위해 많은 노력이 있었다. 하지만 지금까지 개발된 미세액적 분할 기술은 정교한 액적 부피 제어가 어렵고 복잡한 시스템이 요구되며 제한된 유체 샘플에만 적용 가능하고 병렬 조작이 어려운 한계를 지니고 있었다. 이번 연구에서 연구팀은 고주파수 음파를 이용해 미세유체 칩 내 움직이는 미세액적에 국소적으로 음향 방사력을 인가해 원하는 크기로 액적을 분할할 수 있음을 보였다. 개발된 음향방사현상 기반 액적 분할 기술은 액적 내 샘플에 물리적 손상을 가하지 않으면서도 비접촉식으로 표지 없이 액적을 정교하게 분할할 수 있다는 점에서 기존 기술 보다 진일보한 기술이라는 평가를 받았다. 아울러 기존의 액적 분할 기술들이 외력과 액적 이동 방향이 수직을 이루는 직교 배열을 차용하고 있는 것과 달리 두 방향이 나란한 평행 배열을 채택하여 병렬 조작이 가능하다. 또한 기존 기술과 달리 미세유체 칩과 외력 생성을 위한 기판의 비가역적 결합이 필요하지 않아 미세유체 칩을 손쉽게 교체할 수 있다는 특징을 지녀 기존 기술보다 상용화 유리한 기술이다. 박진수 박사과정이 제 1저자로 참여한 이번 연구는 영국왕립화학회(Royal Society of Chemistry)에서 발간하는 미세유체역학 및 마이크로타스(microTAS) 분야의 국제학술지 랩온어칩(Lab on a Chip)지 2018년 3호의 표지논문으로 선정됐다. 박진수 박사과정은 “본 연구에서 개발된 기술을 통해 미세액적에 국소적으로 음향방사력을 가해 미세유체칩 내 움직이는 미세액적을 원하는 크기로 정교하게 분할할 수 있다”고 말했다. 성형진 교수는 “본 연구에서 개발된 기술이 액적 기반 미세유체역학을 활용한 제약, 생화학, 물질합성, 의학, 생명공학 연구 등에 널리 활용될 수 있을 것으로 기대된다”고 말했다. 이번 연구는 KAIST-KUSTAR, 한국연구재단의 창의연구지원사업과 글로벌박사펠로우십, 극지연구소의 지원으로 수행됐다. □ 그림 설명 그림1. 랩온어칩 표지논문
2018.03.02
조회수 13695
남윤기 교수, 뇌질환 치료용 나노입자 프린팅 기술 개발
우리 대학 바이오및뇌공학과 남윤기 교수 연구팀이 잉크젯 프린팅으로 마이크로미터 수준의 열 패턴을 마음대로 찍어내고, 이를 이용해 원격으로 신경세포의 전기적 활성을 제어할 수 있는 기술을 개발했다. 선택적 나노 광열 신경자극이라 할 수 있는 이 기술은 잉크젯 프린팅 기술과 나노입자 기술을 융합한 것으로 뇌전증 등의 뇌질환 환자들에게 맞춤형 정밀 광열 자극을 도입할 수 있는 기반기술이 될 것으로 기대된다. 강홍기 박사가 주도하고 이구행, 정현준, 이지웅 박사과정이 참여한 이번 연구는 국제 학술지 ‘에이씨에스 나노(ACS Nano)’ 2월 5일자에 게재됐다. 나노 광열자극 기술은 금속 나노 입자의 열-플라즈모닉 현상을 이용해 신경 세포의 활성을 조절한다. 연구팀은 지난 4년간 연구를 통해 나노 광열효과에 의한 신경세포 활성 억제 현상을 발견했고, 이를 이용해 뇌전증 등의 뇌질환에서 발생하는 신경세포의 비정상적 활동을 조절하기 위한 기술을 연구했다. 연구팀은 기존의 나노 광열자극 기술이 갖는 공간적인 선택성의 한계와 해상도의 제약을 극복하기 위해 잉크젯 프린팅 기술을 이용한 나노 입자의 미세 패턴 작업을 통해 나노 광열자극 기술을 선택적인 부분에만 가할 수 있는 기술을 개발했다. 정밀 잉크젯 프린팅과 고분자전해질 적층 코팅법을 결합해 고해상도의 선택적 광열 자극 기술을 구현했다. 이 기술은 정밀 잉크젯 프린팅 기술은 금속 나노 입자를 잉크로 사용해 수십 마이크로미터 크기의 나노입자 패턴을 만들 수 있다. 이 기술과 고분자전해질 적층 코팅법을 결합하면 원하는 모양을 보다 정밀하게 인쇄할 수 있고 안정성이 높아 다양한 기판에 적용할 수 있다. 또한 고분자전해질 코팅법은 세포 친화적이기 때문에 세포실험 및 생체 기술에 적용 가능하다. 연구팀은 이 기술을 통해 금 나노막대 입자를 수십 마이크로미터 해상도로 인쇄해 수 센티미터 이상의 정밀한 나노입자 패턴을 손쉽게 제작했다. 이 패턴에 빛을 조사하면 인쇄한 모양대로 정밀한 열 패턴을 형성할 수 있다. 또한 이 기술로 배양된 뇌신경세포의 활동을 선택적, 일시적으로 빛 조사를 통해 억제할 수 있음을 실험을 통해 확인했다. 이 열 패턴 기술을 이용하면 신경세포의 전기적 활성을 열 발생 부분에만 일시적으로 억제할 수 있어 선택적으로 광열 신경자극을 줄 수 있다. 이를 통해 원하는 세포 영역만 구분해 활동을 억제시켜 환자에게 맞춤형 광열 신경자극 치료를 제공할 수 있다. 연구팀의 기술은 얇고 유연한 기판에도 적용 가능해 체내 이식용 뇌질환 치료 장치나 웨어러블 의료 장치에 응용 가능할 것으로 기대된다. 남 교수는 “원하는 형태의 열 모양을 손쉽게 어디든지 인쇄할 수 있다는 점에서 공학적으로 폭넓게 활용 가능하다”며 “바이오공학 분야에서 생체기능 조절을 위해 빛과 열을 이용한 다양한 인터페이스 제작에 적용할 수 있고 새로운 위조 방지 기술 등에도 적용 가능할 것이다”고 말했다. 이번 연구는 과학기술정보통신부의 중견연구자지원사업(도약연구)의 지원을 받아 수행됐다. □ 그림 설명 그림1. 기술을 통해 제작한 사례들 그림2. 잉크젯 프린팅을 이용한 광열 효과 패턴 방식 및 이를 이용한 뇌신경세포의 선택적 활동 조절 기술
2018.02.27
조회수 15921
양찬호 교수, 전기적 위상 결함 제어기술 개발
〈 양 찬 호 교수, 김 광 은 박사과정 〉 우리 대학 물리학과 양찬호 교수 연구팀이 강유전체 나노구조에서 전기적인 위상 결함을 만들고 지울 수 있는 기술을 개발했다. 이 기술을 통해 전기적 위상 결함 기반의 저장 매체를 개발한다면 대용량의 정보를 안정적으로 저장할 수 있을 것으로 기대된다. 이번 연구는 포스텍 최시영 교수, 포항 가속기연구소 구태영 박사, 펜실베니아 주립대학 첸(Long-Qing Chen) 교수, 캘리포니아 대학 라메쉬 교수 등과 공동으로 수행됐다. 김광은 박사과정이 1저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 1월 26일자에 게재됐다. 위상학은 물체를 변형시켰을 때 물체가 가지는 성질에 대한 연구를 하는 학문으로, 원과 삼각형은 위상학적으로 동일한 물질이라고 할 수 있다. 2016년도 노벨 물리학상 발표 기자회견에서 노벨위원회는 위상학의 개념을 구멍이 한 개 뚫린 베이글 빵, 구멍이 없는 시나몬 빵, 유리컵 등에 비유했다. 시나몬 빵과 유리컵은 다르게 보이지만 구멍이 없다는 점만 따지면 위상학적으로 같은 물질이 된다. 하지만 구멍의 개수가 다른 베이글과 시나몬 빵은 위상학적으로 다른 물질이 되는 식이다. 즉 물질에서 위상학적이라 함은 연속적인 변형으로는 그 특성을 변화시킬 수 없는 절대적인 보존량을 말한다. 이러한 위상학적 특징을 이용해 정보저장 매체를 만들면 외부의 자극으로부터 보존되며 사용자의 의도대로 쓰고 지울 수 있는 이상적인 비휘발성 메모리를 제작할 수 있다. 강유전체와 달리 강자성체(자기적 균형이 깨진 상태, 외부 자기장을 제거해도 자기장이 그대로 남아있음)의 경우는 소용돌이 형태의 위상학적 결함 구조가 이미 구현됐다. 반면 외부 전기장 없이도 스스로 분극을 갖는 강유전체는 자성체에 비해 위상학적 결함 구조를 더 작은 크기로 안정시키고 더 적은 에너지를 이용해 조절할 수 있다는 장점이 있음에도 불구하고 초보적인 연구 단계에 머물러 있었다. 실험적으로 위상학적 결함 구조를 어떻게 안정화시키며 어떠한 방식으로 조절할 것인지에 대한 연구가 부족했기 때문이다. 연구팀은 문제 해결을 위해 강유전체 나노구조에서 비균일한 변형을 줘 위상학적 결함 구조를 안정시키는 데 성공했다. 연구팀은 강유전체 나노접시(ferroelectric nanoplate) 구조를 특정 기판 위에 제작해 접시의 바닥면에는 강한 압축 변형을 주는 동시에 옆면과 윗면은 변형에서 자유로운 구조를 만들었다. 이러한 구조는 방사형으로 압축변형 완화(Compressive strain relaxation)가 일어나 격자의 변형이 오히려 강유전체의 소용돌이 구조를 안정화시키게 된다. 연구팀은 이번 연구가 고밀도, 고효율, 고안정성을 갖춘 위상학적 결함기반 강유전 메모리에 핵심적인 원리를 제시했다고 말했다. 양 교수는 “강유전체는 부도체이지만 위상학적 강유전 준입자가 국소적으로 전자 전도성을 수반할 수 있어 새로운 양자소자 연구로 확대될 수 있을 것이다”고 말했다. 이번 연구는 한국연구재단의 창의연구지원사업, 선도연구센터지원사업, 글로벌프론티어사업 등의 지원을 받아 수행됐다. □ 그림 설명 그림1. 전기적 위상 결함 개수를 조절하여 만든 5가지의 다른 위상 구조
2018.02.08
조회수 29339
오일권 교수, 그래핀 기반의 소프트 액추에이터 개발
〈 타바시안 라솔 박사과정, 오 일 권 교수 〉 우리 대학 기계공학과 오일권 교수 연구팀이 두 개의 서로 상반된 그래핀 구조체를 전극으로 사용해 소프트 액추에이터(작동장치)의 성능을 높이는데 성공하였다. 연구팀이 이번 연구를 통해 제작한 액추에이터는 웨어러블 전자기기, 소프트 로봇 등의 분야에서 사용 가능할 것으로 기대된다. 타바시안 라솔(Tabassian Rassoul) 박사과정이 1저자로 참여한 이번 연구는 온라인 국제 학술지 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 1월 31일자에 게재됐으며 표지논문에 선정됐다. 차세대 전자기기에 능동형 소프트 액추에이터를 적용하기 위해서는 액추에이터의 전극이 유연성, 높은 전기 전도성 및 전기 화학적 활성, 내구성 등을 갖는 동시에 높은 효율성을 가져야 한다. 하지만 기존의 소프트 액추에이터는 백금 또는 금 등의 고가 귀금속이 사용됐기 때문에 실제 적용이 어려웠다. 연구팀은 문제 해결을 위해 기능적인 길항성(두 요인이 동시에 작용해 서로의 효과를 상쇄시키는 성질)을 갖는 각기 다른 두 종류의 그래핀 전극을 동시에 사용했다. 연구팀은 전기전도성은 매우 좋지만 전기화학적 활성이 낮은 그래핀 그물망의 단점을 보완하기 위해 질소가 증착된 구겨진 그래핀 입자들을 추가로 적용했다. 그물망 그래핀 메쉬(mesh)와 질소가 증착된 구겨진 그래핀을 결합해 전기화학적으로 기능적 길항성을 갖는 하이브리드 전극을 제작해 소프트 액추에이터에 적용했다. 연구팀이 합성한 그래핀 메쉬 구조는 그래핀 튜브들이 서로 엮인 그물망 형태의 구조를 갖는다. 특히 그물망 구조의 물결 모양 패턴 덕분에 다른 유형의 그래핀 구조보다 우수한 신축성을 갖는다. 또한 화학기상증착법(Chemical vapor deposition, CVD) 방법으로 합성하기 때문에 높은 전기 전도도를 갖는 고품질 그래핀 그물망을 제작할 수 있다. 이 하이브리드 전극에서 그래핀 그물망은 신속하고 균일한 전하 분포 촉진, 질소가 증착된 구겨진 그래핀은 전하를 효율적으로 저장하는 서로 상반된 역할을 각각 수행한다. 이를 통해 재료의 비용적 단점을 보완함과 동시에 전극의 성능 요건을 충족했다. 연구팀은 이번 연구를 통해 제작된 액추에이터는 햅틱 피드백 시스템, 웨어러블 핼스케어 전자기기, 능동촉각 시스템, VR 및 AR용 능동형 디스플레이, 소프트 로봇 등의 분야에서 사용 가능할 것으로 기대된다. 오 교수는 “이번 연구결과를 통해 소프트 액추에이터의 성능향상 원리를 이해하는 기반 연구가 될 것이다”며 “차세대 유연 전자산업에서의 소프트 액추에이터 기술 활용이 가속화되는 계기가 될 것으로 기대한다”고 말했다. 이번 연구는 한국연구재단 리더연구자지원사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 논문 커버 이미지 그림2. 기능적 길항성을 갖는 그래핀 구조 전극 사진 및 소프트 액추에이터 개요
2018.02.07
조회수 12781
조영호 교수, 손목시계형 개인별 열적 쾌적감 측정기 개발
〈 조 영 호 교수, 윤 성 현 연구원 〉 우리 대학 바이오및뇌공학과 조영호 교수 연구팀이 손목의 땀을 측정해 인간의 개인별 열적 쾌적감을 측정할 수 있는 손목시계형 쾌적감 측정기를 개발했다. 심재경, 윤성현 연구원의 주도로 개발한 이번 연구 성과는 융합, 과학 분야의 네이처 자매지 ‘사이언티픽 리포트(Scientific Reports)’ 1월 19일자에 게재됐다. 인간이라면 누구나 더위를 느끼면 땀 발생률이 증가하며 추위를 느끼면 땀 발생률이 감소한다. 따라서 동일한 환경에서도 개인별 땀 발생률을 측정하면 개인마다 느끼는 더위와 추위 상태를 판별해 열적 쾌적감을 측정할 수 있다. 일반적인 냉, 난방기는 공기의 습도와 온도를 일정하게 유지하도록 동작하고 있기 때문에 동일한 온도와 습도여도 개인별 체질과 기후환경에 따라 개인마다 느끼는 추위와 더위 상태는 모두 다르다. 기존의 땀 발생률 측정기는 생리학 실험용으로 사용돼 펌프 및 냉각기 등의 큰 크기를 갖는 외부 장치가 필요하다. 피부 미용 용도는 크기가 작지만 장시간의 회복 시간을 필요로 하는 문제점이 있다. 연구팀은 작은 크기를 가지며 인간의 피부에 착용 가능하면서 환기구동기를 집적해 연속적으로 땀 발생률 측정이 가능한 손목시계형 쾌적감 측정기를 개발했다. 연구팀이 개발한 손목시계형 쾌적감 측정기는 인간이 느끼는 더위나 추위의 정도에 따라 땀 발생률이 변화하는 점에 착안해 땀 발생률을 측정해 주어진 환경 내에서 인간의 체감 더위와 추위를 파악할 수 있는 기술이다. 연구팀은 밀폐된 챔버가 피부에 부착됐을 때 습도가 증가하는 비율을 통해 땀 발생률을 측정하는 방식을 이용했다. 이 측정기는 피부에 챔버가 완전히 부착된 후 측정하기 때문에 외부 공기나 인간의 움직임에도 안정적인 땀 발생률 측정이 가능하다. 또한 소형 열공압 구동기를 집적해 챔버를 피부 위로 들어올려 자동 환기가 가능하다. 연구팀의 손목시계형 쾌적감 측정기는 주위의 온도나 습도에 관계없이 인간의 인지기능에 따라 변화하는 땀 발생률을 측정할 수 있어 개인별 맞춤형 냉난방을 실현할 수 있다. 연구팀의 측정기는 직경 35mm, 두께 25mm, 배터리 포함 무게 30g으로 자동 환기기능을 갖추고 있으며 기존 측정기 대비 무게는 절반 이하(47.6%) 47.6%, 소비전력은 12.8%에 불과하다. 6V 소형 손목시계용 배터리로 4시간 동작이 가능하며 사람의 걸음에 해당하는 공기흐름인 0~1.5m/s에서 안정적으로 작동하기 때문에 움직이는 상태에서 성능을 유지하여야 하는 포터블, 웨어러블 기기로 사용가능하다는 장점이 있다. 이를 이용해 연구팀은 실내 또는 자동차 내에서 기존의 냉, 난방기에 비해 훨씬 더 인간과 교감 기능이 뛰어난 새로운 개념의 인지형 냉, 난방기를 제작할 예정이다. 조영호 교수는 “기존 냉난방기는 주변의 온, 습도 기준으로 쾌적감을 판단해 개인적으로 느끼는 쾌적감과 무관하지만 우리가 개발한 쾌적감 측정기는 개인적 쾌적감을 판단할 수 있어 새 개념의 개인맞춤형 지능형 냉, 난방기로 활용 가능하다”며 “나아가 미래사회에서는 인간의 신체적 건강 뿐 아니라 정신적 건강과 감정 상태의 관리가 필요하기에 향후 인간과 기계의 감성 교감을 이룰 수 있을 것이다”고 말했다. 이번 연구는 과학기술정보통신부의 중견연구자지원사업을 통해 수행됐으며 국내특허로 등록을 완료했다. □ 그림 설명 그림1. 인간 열적 쾌적감 측정이 가능한 손목시계형 쾌적감 측정기 그림2. 손목시계형 쾌적감 측정기 그림3. 손목시계형 쾌적감 측정기의 동작 원리
2018.02.01
조회수 12830
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 12