-
디스플레이 구동 가능한 OLED 전자 섬유 개발
우리 대학 전기및전자공학부 최경철 교수 연구팀이 정보 출력이 가능한 유기발광다이오드(OLED) 전자 섬유를 개발했다고 12일 밝혔다.
전자 섬유는 실제 입을 수 있는 형태의 소자로서 기존 2차원 평면 소자와는 다르게 인체의 다양한 움직임에 순응하고 뛰어난 착용성과 휴대성을 제공할 수 있는 섬유의 1차원 구조 덕분에 차세대 폼 팩터(form-factor)로 주목받고 있다. 특히나 빛을 방출하는 전자 섬유는 패션, 기능성 의류, 의료, 안전, 차량 디자인 등 다양한 응용 잠재력에 많은 주목을 받고 있다.
하지만 지금까지의 발광 전자 섬유 연구는 디스플레이로 활용되기엔 부족한 전기광학적 성능을 보여 왔거나 단순히 소자 단위로만 연구가 진행 또는 종횡비가 긴 2차원 평면 단위에서 연구가 이루어져 응용 기술 개발에 어려움이 있었다.
최경철 교수 연구팀은 OLED 전자 섬유 디스플레이 구현을 위해 높은 전기광학적 성능 구현과 함께 주소 지정 체계 구축에 주목했다. 연구팀은 먼저 300 마이크로미터(µm) 직경의 원통형 섬유 구조에 적합한 RGB 인광 OLED 소자 구조를 설계했고 연구팀이 보유한 원천기술인 딥 코팅 공정을 활용해 평면 OLED 소자에 버금가는 수준의 OLED 전자 섬유를 개발했다.
특히 고효율을 얻을 수 있는 인광 OLED를 섬유에 성공적으로 구현해 최고 1만 cd/m2(칸델라/제곱미터) 수준의 휘도, 60 cd/A(칸델라/암페어) 수준의 높은 전류 효율을 보였다. (이는 기존 기술 대비 약 5배 이상의 전류 효율에 해당하는 수치다.)
연구팀은 아울러 OLED 전자 섬유를 기반으로 안정적인 디스플레이 구동을 위해, OLED 전자 섬유 위에 접촉 영역을 설계해 직조된 주소 지정 체계를 구축했다. 그리고 문자와 같은 정보를 디스플레이 해 실제 입을 수 있는 기능성을 확인했다.
최 교수 연구팀 관계자는 이 전자 섬유가 디스플레이라는 표시 장치 관점에서 반드시 요구되는 밝은 밝기와 낮은 전력 소모를 위한 높은 전류 효율, 낮은 구동 전압, 그리고 주소 지정성을 갖췄다고 밝혔다.
이번 연구를 주도한 최 교수 연구팀의 황용하 박사과정은 "섬유 기반 디스플레이 구현을 위해 필수적으로 요구되는 요소 기술들을 구현하는 데 집중했다ˮ며 "전자 섬유가 가진 뛰어난 착용성과 휴대성을 제공함과 동시에 디스플레이 기능성을 구현해 패션, 기능성 의류 등 다양한 응용 분야에 적할 수 있을 것이라 기대된다ˮ고 말했다.
최경철 교수 연구팀의 황용하 박사과정이 제1 저자로 주도한 이번 연구 결과는 나노 분야의 권위 있는 국제 학술지 `어드밴스드 펑셔널 머터리얼즈(Advanced Functional Materials)' (피인용지수(IF) 16.836) 2월 4일 字로 온라인 게재됐으며, 5월 3일 字로 전면 표지 논문(Front Cover)으로 게재됐다. (논문명: Bright-Multicolor, Highly Efficient, and Addressable Phosphorescent Organic Light-Emitting Fibers: Toward Wearable Textile Information Displays)
한편, 이번 연구는 산업통상자원부 전자부품산업핵심기술개발사업과 LG디스플레이의 지원을 받아 수행됐다.
2021.05.12
조회수 48615
-
유전자 가위를 이용한 새로운 유전자 돌연변이 검출 기술 개발
우리 대학 생명화학공학과 박현규 교수 연구팀이 유전자 가위로 불리는 *크리스퍼(CRISPR-Cas9) 시스템에 의해서 구동되는 *EXPAR 반응을 이용해 유전자 돌연변이를 검출하는 신기술을 개발했다고 11일 밝혔다.
☞ 크리스퍼 (CRISPR-Cas9): 유전자 편집 기술로 DNA를 가위로 자르듯이 특정 부위를 자를 수 있으며, 가이드 RNA(guideRNA)와 Cas9 단백질로 구성된다. 안내자 역할을 하는 guideRNA가 특정 유전자의 위치를 찾아가는 역할을 하고, Cas9 단백질이 유전자를 잘라내는 가위 역할을 한다.
☞ EXPAR: 엑스파(Exponential amplification reaction, EXPAR) 기술은 약 30분의 짧은 반응 시간 내 최대 1억(108)배의 표적 핵산 증폭 효율을 구현함으로써, 높은 활용 가능성을 보유한 기술이다. 구체적으로, EXPAR 기술은 절단 효소 인식 염기서열(템플릿의 중심)과 표적 핵산 상보 염기서열(템플릿의 양 말단)이 수식된 템플릿과 표적 핵산의 혼성화 반응 후, 절단 효소와 DNA 중합 효소의 작용으로 인해 이중가닥 DNA 산물이 지수함수적으로 증폭되는 기술이다.
우리 대학 생명화학공학과 송자연, 김수현 박사가 공동 제1 저자로 참여한 이번 연구는 영국왕립화학회가 발행하는 국제학술지 `나노스케일 (Nanoscale)'에 2021년도 15호 표지(Back cover) 논문으로 지난달 14일 선정됐다. (논문명: A novel method to detect mutation in DNA by utilizing exponential amplification reaction triggered by the CRISPR-Cas9 system)
일반적으로 유전자 돌연변이를 검출하기 위해 중합 효소 연쇄 반응(PCR)을 이용한다. 하지만, 현재까지 개발된 유전자 돌연변이 검출기술들은 낮은 특이도, 낮은 검출 성능, 복잡한 검출 방법, 긴 검출 시간 등의 단점들을 지니고 있다.
연구팀은 이러한 현행 기술의 한계를 극복하기 위해서, 크리스퍼 (CRISPR-Cas9) 시스템을 활용해 검출 특이도를 높이고 EXPAR 등온 증폭 반응을 통해 검출 민감도를 크게 향상시켜서 표적 유전자 돌연변이를 고감도로(검출 한계: 437 aM (아토몰라, Attomolar)) 30분 이내에 검출하는 데 성공했다. 이는 기존 기술 대비 증폭효율 약 10만 배 증가, 검출 시간 약 50% 감소에 해당하는 수치다.
연구팀은 2개의 Cas9/sgRNA 복합체로 구성된 크리스퍼(CRISPR-Cas9) 시스템으로 유전자 돌연변이의 양 끝단을 절단했다. 절단된 짧은 이중 나선 유전자 돌연변이가 EXPAR 반응을 구동시키고 EXPAR 반응 생성물을 통해서 형광 신호가 발생하도록 설계함으로써 표적 유전자 돌연변이를 고감도로 매우 정확하게 검출했다.
연구팀은 이 기술을 통해서, 염색체 DNA 내 HER2와 EGFR 유전자 돌연변이를 성공적으로 검출할 수 있었다. 이러한 유전자 돌연변이는 유방암 및 폐암의 발생에 관여할 뿐만 아니라 특정 치료 약제에 대한 반응을 예측하기 위해서 대표적으로 활용되는 중요한 바이오 마커다.
박현규 교수는 "이번 기술은 CRISPR-Cas9 시스템에 크리스퍼 (CRISPR-Cas9) 시스템에 의해서 구동되는 EXPAR 반응을 이용하여 암 등 다양한 질병에 관여되는 유전자 돌연변이를 고감도로 검출함으로써, 다양한 질병을 조기 진단하고 환자 맞춤형 치료를 구현하는 데 크게 활용될 수 있다ˮ라고 이번 연구의 의의를 설명했다.
한편 이번 연구는 한국연구재단의 지원을 받아 중견연구자지원사업과 글로벌 프런티어지원사업의 일환으로 수행됐다.
2021.05.11
조회수 30178
-
서성배 교수 연구팀, 동물의 식습관을 조절하는 원리 규명해 네이처 게재
우리 대학 생명과학과 서성배 교수 연구팀이 서울대학교 생명과학부 이원재 교수 연구팀과 공동연구를 통해 체내 단백질, 필수아미노산 부족을 감지하는 장 세포와 필수아미노산을 섭취하도록 섭식행동을 조절하는 구체적인 원리를 규명했다고 7일 밝혔다. 그뿐만 아니라, 공동연구팀은 필수아미노산을 생산하는 장내미생물이 이러한 메커니즘에 어떠한 영향을 미치는 지도 규명했다.
사람이든 동물이든 수분이 부족하면 갈증을 느끼고 물을 마시고, 혈당량이 떨어지면 당을 찾아 먹는다. 필수 영양소가 부족하면 자연스럽게 이를 섭취하기 위한 행동 변화가 있다는 것은 누구나 경험적으로 쉽게 알 수 있는 사실이다. 과학자들은 수분이나 당분뿐만 아니라 필수아미노산과 같은 영양소에 대해서도 동물들이 결핍을 인지하여 항상성을 유지하는 메커니즘을 가지고 있을 것이라 오랫동안 예상해 왔지만, 그동안 이를 구체적으로 밝힌 연구는 없었다.
필수아미노산 항상성은 수분 항상성보다 복잡한 메커니즘을 가질 수밖에 없다. 장내미생물의 종류에 따라 반드시 섭취해야 하는 필수아미노산의 종류가 달라지기 때문이다. 예를 들면, 코알라의 경우 주된 먹이가 되는 나뭇잎의 섬유질을 직접 소화하지 못하고, 장내미생물이 나뭇잎을 분해하여 흡수 가능한 영양소를 만들어 내면 이를 흡수한다. 그런데 장내미생물의 종류에 따라 분해할 수 있는 나뭇잎의 종류가 달라지고, 이에 따라 코알라의 식성도 달라진다. 이는 필수아미노산과 같이 미생물을 통해 합성이 가능한 영양소의 경우, 똑같은 종의 동물들이라 해도, 동일한 필수아미노산이 부족한 상황에서 각 개체가 보유하고 있는 장내미생물의 종류에 따라 다른 식성을 보일 수 있다는 것을 의미한다.
공동연구팀은 이번 연구에서 어떤 유전자가 체내 필수아미노산 부족을 감지하는지 찾아내고, 어떤 신호를 통해 부족한 아미노산을 섭취하도록 섭식행동을 조절하는지 규명했으며, 필수아미노산을 생산하는 장내미생물이 이러한 메커니즘에 어떠한 영향을 미치는지 확인하기 위한 실험을 진행했다.
연구진은 초파리에 필수아미노산이 결핍된 먹이를 제공하거나 유전적 결핍 혹은 유전자 조작을 이용해 필수아미노산을 생산하지 못하는 장내미생물을 초파리에 도입하면, 초파리의 장 호르몬 중 하나인 CNMa 호르몬의 발현이 유도됨을 확인했다. 흥미롭게도, 이 호르몬은 그동안 장 호르몬이 발현된다고 알려진 내분비세포 (enteroendocrine cells)가 아닌 장 상피세포(enterocytes)에서 발현되는데 이는 장 상피세포가 필수아미노산 결핍을 직접 인지한다는 것을 의미한다. 또한 공동연구팀은 CNMa 호르몬이 발현되는 과정에서 기존에 세포 내 아미노산 센서로 잘 알려진 Gcn2와 Tor 분자들이 관여한다는 사실도 증명했다. CNMa 호르몬의 수용체는 두뇌와 장 신경세포(enteric neuron)에서 발현하는데 CNMa 수용체를 발현하는 신경세포가 활성화되는지 여부에 따라 필수아미노산을 섭취하려는 섭식행동이 증가하거나 감소한다.
이번 논문은 동물이 필수아미노산의 부족을 인지한 후 필수아미노산이 풍부한 음식을 섭취하는 행동을 장내미생물-장-뇌 축(microbiome-gut-brain axis)을 통해 분자적 수준에서 설명한 최초의 논문이다.
제 1저자인 우리 대학 김보람 연구원은 “이번 연구 결과는 장내미생물에서 동물의 장 그리고 뇌로 이어지는 장내미생물-장-뇌 축을 통해 아미노산 결핍이 일어난다는 사실을 처음으로 밝혔다는데 큰 의미가 있으며, 초파리뿐만 아니라, 사람을 포함한 척추동물에서도 이런 경로를 통해 장내미생물이 동물의 식성을 조절할 가능성을 제기한다. 만약 장내미생물과 동물의 식습관이 장뇌 축을 통해 조절된다면, 미생물 섭취라는 방법을 통해 현대인의 불균형한 식습관으로 인한 만성 질병을 개선할 수도 있을 것이며, 그런 점에서 이 논문의 가치를 찾을 수 있다”라고 말했다.
최근 10여 년간 탄수화물 영양소를 감지하는 체내의 센서나 센싱세포를 두뇌나 다른 기관에서 규명했고 이번 공동연구를 통해 장 세포에서 필수아미노산 결핍을 인지하는 원리를 밝힌 서성배 교수는 “여러 영양소가 미각에 의해 피상적으로 1차 감지되지만 어떻게 체내에서 인지되고 섭식행동을 유도하는 연구는 그의 중요성에 비해 아직 매우 제한적이다. 그 이유는 체내의 영양소 센서를 마우스나 복잡한 포유류에서 발견하기는 쉽지 않기에 유전자 조작이 용이한 초파리를 이용해서 영양소 센서를 초파리에서 규명한 후에 쥐나 인간에서 그의 대응체를 찾는 방법을 선택했다. 영양소 센서는 모든 개체에 중요하고 진화적으로도 보존이 돼 있을 것 같아 초파리에서 밝힌 센서들이 포유류에서도 비슷한 역할을 할 것이라고 추측된다. 영양소에는 탄수화물, 단백질, 지방 같은 거대영양소뿐 아니라 비타민, 아연, 소금 등 소량영양소가 존재하는데 그 센서들을 규명하고 섭식행동에 미치는 영향이나 대사 질환, 성인병에 관련성 연구는 더욱 증폭될 것이라 예상된다.”고 말했다.
김보람 박사가 제1 저자로 참여하고 우리 대학 서성배 교수, 서울대학교 이원재 교수가 공동교신저자로 참여한 이번 연구 결과는 국제학술지 ‘네이처(Nature)’ 5월 5일 자 온라인판에 게재됐다 (논문명 : Response of the Drosophila microbiome-gut-brain axis to amino acid deficit).
2021.05.07
조회수 25634
-
땀 검사로 건강 상태를 진단할 수 있는 전자소자 개발
우리 대학 전기및전자공학부 권경하 교수 연구팀이 성균관대학교 화학공학과 김종욱 박사과정 연구원(지도교수:김태일 교수, 성균관대학교 화학공학/고분자 공학부)과 땀의 체적 유량 및 총 손실을 실시간으로 측정하는 무선 전자 패치를 개발했다고 6일 밝혔다.
이 기술은 미국 노스웨스턴대 존 로저스 교수, 보스턴 소재 웨어리파이(Wearifi)사와 특허 출원 진행 중이며, 해당 연구 결과는 국제 학술지 `네이처 일렉트로닉스(Nature Electronics)'에 지난 3월 말 발표됐다. (논문명 : An on-skin platform for wireless monitoring of flow rate, cumulative loss and temperature of sweat in real time)
땀은 비침습적으로 수집할 수 있는 생체 유체로, 침습적인 혈액 채취와 비교해 채취하기가 쉽다는 분명한 이점을 제공한다. 이에 일상에서 실시간으로 땀 수집 및 성분 분석을 제공할 수 있는 웨어러블 기술에 대한 수요가 증가하고 있다.
땀과 화학 시약의 변색 반응을 이용해 다양한 생체 지표 수집이 가능하지만, 정확한 측정(발색)을 하려면 땀의 유량과 총 손실을 실시간으로 측정하는 것이 핵심적으로 요구된다. 이에 연구팀은 땀의 정량적 속도 및 체적 측정이 가능한 웨어러블 무선 전자 패치를 개발했고, 변색 반응을 이용해 땀 성분 분석이 가능한 미세 유체 시스템과 통합했다.
그 결과, 연구팀은 땀 내 염화물, 포도당 및 크레아틴 농도, 수소이온지수(pH) 및 체적 유량을 동시에 측정하는 데 최초로 성공했다. 측정한 지표는 낭포성 섬유증, 당뇨병, 신장 기능 장애, 대사성 알칼리증 진단 등에 활용할 수 있다.
연구팀은 땀이 수집되는 짧고 정교한 미세 유체 채널 외벽에 저전력 열원을 배치해 채널을 통과하는 땀과 열 교환을 유도했다. 땀의 유속이 증가함에 따라 열원의 하류와 상류의 온도 차이가 증가하는 것에 착안, 상·하류 온도 차이와 땀의 배출 속도 간의 정확한 관계를 규명했다. 그 결과, 생리학적으로 유의미하다고 인정되는 0~5마이크로리터/분(μl/min) 범위의 땀 속도를 정확하게 측정하는 데 성공했다. 웨어러블 패치로 측정한 데이터는 블루투스 통신이 가능한 스마트폰 앱을 통해 실시간 확인이 가능하다.
이 패치는 미세 유체 채널을 통과하는 땀과 전자 회로가 완전히 분리되어, 기존 유속 측정 기기들의 유체와의 접촉으로 인한 부식 및 노후화에 취약하다는 단점을 극복했다. 또한, 얇고 유연한 회로 기판 인쇄 기법과 신축성 있는 실리콘 봉합 기술을 접목해 다양한 굴곡을 가진 피부 위에 편안하게 부착할 수 있도록 제작됐다. 땀 배출로 인한 피부 온도 변화를 실시간으로 감지하는 센서도 부착돼 있어 다양한 응용 분야에서 활용이 기대된다.
권경하 교수는 "개발된 무선 전자 패치는 개인별 수분 보충 전략, 탈수 증세 감지 및 기타 건강 관리에 폭넓게 활용할 수 있다ˮ면서 "피부 표면 근처의 혈관에서 혈류 속도를 측정하거나, 약물의 방출 속도를 실시간으로 측정해 정확한 투여량을 계산하는 등 체계화된 약물 전달 시스템에도 활용할 수 있을 것ˮ이라고 말했다.
한편, 이번 연구는 한국연구재단의 뇌과학원천기술개발사업의 지원을 받아 수행됐다.
2021.05.06
조회수 27083
-
이상수 교수팀, iF 디자인 어워드 금상 포함 8개상 석권
우리 대학 이상수 산업디자인학과 교수가 이끄는 디자인팀이 세계 최고 권위의 디자인 공모전인 'iF 디자인 어워드 2021(International Forum Design Award 2021)'에서 최고상인 금상(Gold Award)을 비롯해 총 8개의 상을 받았다.
이 교수팀의 이번 성과는 우리 대학이 iF 디자인 어워드에서 금상을 받은 최초의 사례로 산학 연계 수업을 통해 수상작을 배출했다는 점에서 특히 주목할 만하다. 금상을 수상한 얼라인(ALINE, 정은희, 남서우, 박수연, 황영주, Edwin Truman, 이선옥, 최다솜 학생 참여)은 최근 화두로 떠오르고 있는 ESG 투자(사회적책임투자)를 기반으로 디자인됐다. 새로운 개념으로 투자할 수 있게 도와주는 모바일 애플리케이션 솔루션으로 수익률을 중심으로 판단하던 기존의 방식에서 벗어나 사용자의 가치관을 반영해 투자와 소비를 유도하는 서비스다. 심사위원단은 "정제된 사용자경험(UX) 디자인을 통해 투자 및 소비의 새로운 장을 열었다”고 평가했다.
이뿐만이 아니라 iF 디자인어워드 2021의 서비스디자인 부문 표지 작품으로 게재된 것과 동시에 iF가 지구의 날을 맞아 발행한 '2020-2021 지속 가능한(sustainable) 소비를 위한 디자인 10선'에도 선정되는 등 많은 관심을 받았다.
또한, 대학에서 구성된 디자인팀이 학생 부문이 아닌 일반 기업 경쟁 부문에 참가해 한 번에 8개의 상을 수상한 것 역시 국제적으로도 극히 이례적인 성과로 평가받고 있다. 이상수 교수팀은 52개국 1만여 개 작품이 출품된 올해 공모전에서 서비스 디자인 부문 3개, 사용자 인터페이스(UI) 부문 2개, 사용자 경험(UX) 부문 2개, 커뮤니케이션 부문 1개 등 4개 부문에 걸쳐 총 8개의 상을 받았다. 특히, 금상은 1만여 개의 경쟁 작품 중에서 75개의 출품작에만 주어지는 최고 등급의 상이라는 점에서 이 교수팀의 이번 성과는 더욱 큰 의미를 가진다. 그밖에, 서비스 디자인 부문에서는 부모와 자녀가 함께하는 투자 서비스 핀토(Pinto, 김영우, 김태륜, 조해나 학생 참여), UI부문에서는 멘탈 어카운팅을 반영한 인터페이스 디자인 아쿠아(Aqua, 정기항, 신동욱, 최성민, 임현승 학생 참여), 커뮤니케이션 부문에서는 주식 선물 모바일 애플리케이션 스톡박스(Stockbox, 김병재, 박찬형, 신준범, 이민하, 김우석 학생 참여) 등이 본상을 받았다.
이번 성과를 이끈 이상수 교수는 2020년 NH투자증권-KAIST UX디자인 연구센터를 개소해 새로운 투자 서비스 및 UX디자인을 목표로 연구해왔다. 이 교수(NH투자증권-KAIST UX디자인 연구센터장)는 "KAIST 산업디자인학과 학생들이 세계 최고 수준의 디자인 역량을 갖췄다는 것을 입증받아 기쁘다”라고 소감을 전했다. 이어, "디자인이 단순히 사용자를 즐겁게 만드는 것에 그치는 것이 아니라 더 좋은 사회를 만드는데 기여할 수 있도록 앞으로도 최선을 다할 것ˮ 이라고 수상 소감을 밝혔다.
이상수 교수는 매년 산학 연계 수업을 통해 산업 현장에서 쓰일 수 있는 실질적인 디자인 교육을 지향하고 있으며, 지난 2018년에도 네이버와의 협업을 통해 레드닷 디자인 어워드에서 본상 3개를 한 번에 수상하며 주목받은 바 있다. 한편, iF 디자인 어워드는 레드닷, IDEA 디자인상과 더불어 세계 3대 디자인상으로 손꼽히는 권위 있는 시상식이다. 제품·패키지·커뮤니케이션·서비스디자인·사용자 경험(UX)·사용자 인터페이스(UI)·콘셉트·인테리어·건축 등 총 9개 부문에서 디자인 차별성과 영향력 등을 종합적으로 평가해 수상작을 선정하고 있다.
2021.05.04
조회수 26843
-
커피링 얼룩 없는 디스플레이용 퀀텀닷 균일 코팅 기술 개발
우리 대학 기계공학과 김형수 교수 연구팀이 커피링 얼룩 자국이 남지 않는 균일 코팅 기술을 개발했다고 3일 밝혔다. 이는 디스플레이용 양자점(퀀텀닷)을 균일하게 코팅해 유연 디스플레이 소자 등에 적용할 수 있는 기술이다.
커피 한 방울이 고체 표면 위에서 마르면 액적(물방울) 표면의 상대적 증발률 차로 인해서 커피링 얼룩 자국이 남게 된다. 이를 커피링 효과라고 한다.
액적의 증발은 잉크젯 프린팅과 같은 기술에서 기능성 유연 재료의 균일 코팅이라는 문제와 직결된다. 최근 잉크젯 프린팅 기술은 단순 패턴 인쇄를 넘어 차세대 에너지 및 디스플레이를 포함한 전기‧전자 소자의 융복합 생산시스템 기술에 활용되고 있다.
그동안 과학기술계에서는 액적의 커피링 패턴을 제어하고 균일 마름 자국을 얻기 위해서 계면활성제를 사용하거나 부분적인 표면장력 변화를 발생시켜 *마랑고니 효과를 이용한 여러 방법이 소개돼왔다.
☞ 마랑고니 효과(Marangoni effect): 서로 다른 액체 등이 경계면을 따라 표면장력의 크기가 일정하지 않을 때 발생하는 현상을 말한다. 흔히 알려진 ‘와인의 눈물’ 현상이 대표적인 예다.
특히, 김형수 교수는 박사후연구원(프린스턴 대학 소속) 때부터 커피링을 효과적으로 제어하는 방법에 관한 연구를 해왔고, 2016년에는 위스키가 특이하게 마르는 현상을 규명해 획기적으로 커피링을 없애는 연구를 해왔다. 하지만, 물방울의 접촉선 위치에서의 커피링 효과는 줄일 수 있으나 여전히 효과가 존재한다는 문제가 있다.
김 교수 연구팀의 편정수 석사과정은 액적이 증발하는 공간을 한시적으로 밀폐시켜 커피링을 완전히 소멸시키는 방법을 개발했다. 이 기술은 증발율이 다른 두 액체를 효과적으로 혼합하고, 먼저 증발하는 휘발성 액체의 몰 분자량이 공기보다 큼을 이용해 밀폐된 공간에 갇힌 휘발성 증기가 연속적으로 용질성 마랑고니 효과(Solutal Marangoni effects)를 일으켜 커피링을 완전히 사라지게 만드는 기술이다.
김형수 교수는 "증발 물질을 잘 이해하고 물질전달 메커니즘을 활용해 증발 시스템을 최적화하면, 디스플레이 원료 퀀텀닷과 태양광 패널 원료 페로브스카이트와 같은 기능성 소자들을 대량 생산이 가능한 잉크젯 프린팅 기술로 균일한 패터닝을 가능하게 할 수 있다ˮ라며, "현재 해당 기술을 특허 출원했고 유연 디스플레이 소자에 적용하기 위해 연구를 진행하고 있다ˮ라고 덧붙였다.
이번 연구 결과는 국제적 권위 학술단체 `영국왕립화학회(Royal Society of Chemistry)'의 저명학술지 `Soft Matter(연성물질)' 誌 가 특별 기획한 `신진과학자 특집호(2021 Soft Matter Emerging Investigator Special Issue)'에 초청되어 지난달 7일 字 표지논문으로 게재됐다.
(논문명: Uniform coating pattern of multi-component droplets in a confined geometry)
(DOI: https://doi.org/10.1039/D0SM01872D)
2021.05.03
조회수 27484
-
암 면역치료를 위한 새로운 세포사멸 유도체 개발
우리 대학 생명화학공학과 김유천 교수와 한양대학교 생명공학과 윤채옥 교수 공동연구팀이 암 치료에 이용되는 면역항암제인 면역관문억제제와 협력 효과를 내는 *펩타이드 기반의 면역원성 세포사멸 유도체를 개발했다고 27일 밝혔다.
☞ 펩타이드(peptide): 아미노산이 2~50개 정도 결합된 물질을 뜻하며, 아미노산이 50개 이상 결합된 물질이 단백질이다.
연구팀이 개발한 펩타이드는 암세포 내의 미토콘드리아 외막을 붕괴시켜 활성산소 농도를 높이고, 이를 통해 형성된 산화적 스트레스가 소포체를 자극해 면역원성 세포사멸을 유도한다.
우리 대학 생명화학공학과 정성동 박사와 한양대학교 생명공학과 정보경 박사가 공동 제1 저자로 참여하고, 한양대학교 생명공학과 윤채옥 교수가 공동 교신저자로 참여한 이번 연구 결과는 국제 학술지 `어드밴스드 사이언스 (Advanced Science)' 4월 7일 字 표지논문(Back cover)으로 게재됐다. (논문명 : Immunogenic Cell Death Inducing Fluorinated Mitochondria-Disrupting Helical Polypeptide Synergizes with PD-L1 Immune Checkpoint Blockade).
면역관문억제제는 T세포(CTLA-4, PD-1)나 암세포(PD-L1)에 발현된 면역세포의 활성을 저해하는 면역관문을 차단해서 면역세포의 작용을 활발하게 하는 치료제다. 2011년 미국 식품 의약국에 최초로 승인을 받은 후, 다양한 면역관문억제제가 환자들에게 이용되고 있다.
하지만 면역관문억제제도 몇 가지 한계점을 가지고 있다. 먼저 이 치료법은 모든 환자에게 효과가 있는 것이 아니라 10~40% 정도의 환자에게만 효과가 있다. 그리고 기존에 존재하는 항암 능력을 갖춘 T세포가 필요하다는 단점이 있다.
연구팀은 이러한 문제점들을 해결하기 위해 항암 면역반응을 유도하는 면역원성 세포사멸 유도체와 면역관문억제제를 병용투여 해 문제점을 해결하고자 했다.
연구팀은 펩타이드 기반의 면역원성 세포사멸 유도체가 미토콘드리아 외막 붕괴를 통해 세포 내의 활성산소를 과잉생산하고, 이렇게 생성된 산화적 스트레스가 소포체를 자극해 최종적으로 면역원성 세포사멸을 유도하는 것을 검증했다.
또한, 동물실험을 통해 펩타이드와 면역관문억제제인 anti-PD-L1을 병용 투여했을 때, 단독 투여에 비해 종양 억제 능력이 향상되고, 활성화된 면역반응을 통해 폐로의 전이가 줄어드는 것을 확인했다.
연구를 주도한 김유천 교수는 "이번 새로운 면역원성 세포사멸 유도체 개발을 통해, 기존 면역관문억제제의 낮은 반응률을 보이는 암에서 치료 효과를 높일 수 있는 다양한 방법을 제시할 것으로 기대한다ˮ고 말했다.
한편, 이번 연구는 한국연구재단 중견연구자사업과 기초연구실 사업을 통해 수행됐다.
2021.04.27
조회수 28192
-
김성용 교수, UN 제2차 세계 해양 환경 평가 보고서 공동 발간
우리 대학 김성용 기계공학과 교수가 공동저자로 참여한 국제연합(United Nations, UN)의 제2차 세계해양환경평가(Second World Ocean Assessment; WOA II) 보고서가 4월 22일 발간됐다.
세계해양환경평가 보고서는 전 세계 해양환경의 현재 상태를 종합적이고 통합적인 과학정보로 기술한 문서로 ʻ국제연합의 지속가능한 발전을 위한 국제해양과학 10개년 계획(United Nations Decade of Ocean Science for Sustainable Development)ʼ을 실질적으로 수행하는 중요한 보고서로 꼽힌다. 유엔(UN)은 각국 정부가 해양환경을 보호하기 위한 공동의 노력을 강화하고 정책결정자들의 의사결정을 지원하기 위해 사회경제적인 측면을 포함한 전 지구적 차원의 해양환경을 평가 및 보고하는 ʻ정규과정(Regular Process)ʼ을 수행해오고 있다. 2009년 열린 제64차 유엔총회에서 정규과정 1차 주기(2010~2014)를 승인해 ʻ제1차 세계해양환경평가(First World Ocean Assessment) 보고서ʼ가 2015년 완성됐다. 김 교수는 1차 보고서의 전문가 그룹으로 참여한 데 이어 2016년부터 4년간 진행된 2차 주기(2016-2020) 세계해양환경평가 보고서 제작에 공동 저자로 참여해 전 세계 300여 명의 다학제간 전문가들과 의견을 공유했다. 총 28장으로 구성된 보고서 중 김 교수는 제5장 해양의 물리적 및 화학적 상태과 제9장 기후 대기 변화에 따른 영향 등 2개의 장을 공동 집필했다.이번 보고서는 전 세계의 해양 환경을 평가하기 위해 추진력(Drivers)-압력(Pressure)-상태(State)-영향(Impact)-반응(Response) 등을 종합한 ʻDPSIRʼ의 개념을 적용한 것이 특징이다. 이를 통해, 전 세계 해양을 환경·경제·사회적 측면을 통합하여 분석했으며, 각 지역 해양환경 특성을 구체화한 유일한 보고서로 평가받고 있다.
또한, 유엔(UN)의 모든 회원국이 해양 평가 및 정책을 결정할 때 가장 먼저 반영해야 할 내용이 담겨 있어 현재까지 발간된 해양 관련 보고서 중 영향력이 가장 큰 학술적 성과로 꼽히고 있다.
김 교수는 "전 지구적인 기후변화, 미세플라스틱, 후쿠시마 원전 오염수의 방류가 화두가 되는 시점에서 국가 간의 경계가 없이 전 세계 영향을 주는 해양에 관해 많은 관심과 연구가 필요하다ˮ라고 강조하며 "본 보고서가 각 국가의 해양상태를 판단하고 정책 입안에 기초자료가 되길 바란다.ˮ라고 소감을 전했다. 김 교수가 공동 저자로 참여한 보고서는 유엔(UN) 홈페이지에서 자세한 내용을 확인할 수 있다.
제2차 세계 해양 환경 평가 보고서 자세히 보기 (클릭☞) https://www.un.org/regularprocess/woa2launch
2021.04.26
조회수 24533
-
남택진 교수팀, 레드닷 어워드 2021 대상 수상
우리 대학 남택진 산업디자인학과 교수팀이 세계 최대 규모의 디자인 공모전인 독일 ʻ레드닷 디자인 어워드(Red Dot Design Award) 2021ʼ 제품디자인 부문에서 대상(best of the best award)을 받았다. 수상작은 남 교수팀이 개발한 ʻ코로나 중증 환자 치료용 이동형 감염병동(mobile clinic module, MCM)ʼ이다. 올해 공모전에는 60여 개국에서 총 7천8백여 개의 작품이 출품돼 제품 디자인·커뮤니케이션 디자인·콘셉트 디자인 등 3개 분야에서 경쟁을 펼쳤다. 주최 측은 "수상작들이 자동차·로봇·의료 기술·포장에 이르기까지 디자인을 통해 현대 사회가 가진 문제를 해결하고 인류의 생활 수준을 향상하는 데 중요한 역할을 했다ˮ라고 밝혔다. 특히, 남 교수팀의 이동형 감염병동은 "제품 디자인이 감염병 확산을 방지하는 일에 얼마나 가치 있게 기여할 수 있는지를 보여줬다ˮ라고 평가했다.
이동형 감염병동의 쾌거는 이뿐만이 아니다. 레드닷 디자인 어워드(Red Dot Design Award)와 함께 세계 최고 권위의 디자인 공모전으로 손꼽히는 iF 디자인 어워드(International Forum Design Award) 2021에서도 제품·실내건축·사용자인터페이스·사용자경험 등 총 4개 분야에서 본상을 수상했다.
이로써, 남 교수팀의 이동형 음압병동은 국제 권위의 디자인 공모전을 연이어 석권하며 기능성·경제성·효용성뿐만 아니라 독창적 디자인과 심미성까지 갖춘 의료 시설로서 가치를 인정받게 됐다.
이동형 음압병동은 고급 의료 설비를 갖춘 음압 격리 시설로 신속하게 변형하거나 개조해 사용할 수 있도록 디자인됐다. 음압 프레임·에어 텐트·기능 패널 등의 각 모듈을 조합해 단시간 내에 음압 병동이나 선별진료소 등을 구축할 수 있다. 또한, 소규모의 장비와 인력으로도 관리·이송·설치가 가능해 기존의 조립식 병동 대비 경제적·시간적 효율을 높인 것이 가장 큰 특징이다. 남택진 교수팀은 작년 7월부터 KAIST 코로나 대응 과학기술 뉴딜사업(단장 배충식)의 일환으로 이동형 음압병동을 개발했다. 조스리 스튜디오·20Plus 등과 협력해 디자인을 진행했고 신성이엔지가 제작을 담당했다. 배상민(산업디자인학과)·이태식(산업및시스템 공학과)·김형수(기계공학과) 교수 등이 자문했으며, 석현정(산업디자인학과), 박해원·김성수(기계공학과), 한동수(전산학과) 교수 등이 감염병원 서비스 주제로 연구에 참여했다. 현재 한국 원자력의학원·제주도 백신 접종센터에 시제품이 설치돼 코로나 환자 및 백신 접종자들을 대상으로 시범 운영 중이다. 향후, 건양대 병원 등으로 적용 범위를 확대해나갈 예정이다. 디자인 총괄한 남택진 교수는 "현실 세계의 문제를 발견하고 해결하여 책임지는 디자이너가 더 많아지기를 바란다ˮ라고 수상 소감을 전했다. 이어, 남 교수는 "MCM의 생산 효율성과 안정된 운영을 위해 엔지니어링 디자인 측면을 개선하는 연구를 진행 중이며, 빠른 시일 내에 상용화와 수출이 이뤄질 수 있도록 박차를 가할 예정이다ˮ라고 전했다. KAIST 코로나 대응 과학기술 뉴딜사업단은 KAIST의 과학기술 역량을 기반으로 감염 예방·보호·진단·치료 등 감염병의 전 주기에 대응하는 치료 분야에서 산·학·연·병이 협력해 방역 요소기술 개발과 과학기술 기반의 방역 시스템을 구축하는 연구를 수행하고 있다.
2021.04.19
조회수 43918
-
고체 전해질 내부 나노 단위 영상화 성공
오늘날 리튬이온전지는 휴대용 전자 장비와 전기차를 비롯한 각종 이동 수단에 필수적인 에너지 저장 매체로 사용되고 있다. 폭발적인 수요에 발맞춰 리튬이온전지의 에너지 용량, 충전 속도 등의 전기화학적 특성을 향상하려는 연구들이 가속화되고 있다.
그러나 기존의 전기화학 특성 평가 방법은 소재 혹은 소자 특성의 평균값을 측정하는 것에 집중되어 있기에, 나노미터 수준의 미시세계에서 벌어지고 있는 현상들을 이해하기에는 충분하지 않다. 따라서 전기화학 특성에 대한 통합적인 이해를 위해 미시적 수준에서 공간 분해능을 가진 분석 기술의 개발은 필수적이다.
우리 대학 신소재공학과 홍승범 교수 연구팀이 원자간력 현미경(Atomic force microscope, AFM)의 한 모드인 전기화학 변위 현미경(Electrochemical strain microscopy, ESM)을 이용해 리튬이온전지 소재 내부의 이온 이동 특성을 나노미터 수준에서 정량적으로 측정하는 방법을 개발했다고 13일 밝혔다.
전기화학 변위 현미경은 나노 크기의 탐침에 전압을 가했을 때, 이온의 이동이 유발하는 시료 표면의 변형(displacement)을 측정하는 기술로서 이 변형을 발생시킨 이온의 양과 이온의 이동도 등을 간접적으로 측정할 수 있게 도와주는 기술이다.
홍 교수 연구팀은 비행시간형 2차 이온 질량 분석법(Time-of-flight secondary ion mass spectroscopy, ToF-SIMS)과 유도결합 플라즈마 분광분석기(Inductively coupled plasma optical emission spectrometer, ICP-OES)를 이용해 고체 전해질 시료의 깊이에 따른 이온 분포를 정량적으로 계산하고, 전기화학 변위 현미경 결과와의 캘리브레이션(calibration, 계측기 등의 눈금을 표준기 등을 사용해 바로잡는 일)에 성공했다.
이후, 연구진에 의해 고안된 직류 전압 펄스(pulse)를 시료의 깊이에 따라 가했으며, 전기장에 의해 표면으로 이동했다가 다시 내부 쪽으로 확산하는 이온을 전기화학 변위 현미경으로 영상화했다. 특히, 해당 펄스를 설계하는 과정에서 기존 전기화학 변위 현미경 사용에 대한 오류를 지적하고, 개선된 사용 방법에 대해 안내했다. 그 결과, 연구팀은 시간 및 거리의 함수로 이온의 이동 과정을 영상화하는 데 성공했으며, 이 결과를 이용해 깊이 및 이온의 농도에 따라 변화하는 확산계수 값을 정량적으로 보여줬다.
홍승범 교수는 "이온의 움직임을 나노미터 수준에서 정량적으로 관찰할 수 있는 방법론이 다양한 이온 거동의 메커니즘을 규명하는데 기여할 것ˮ이라며, "추후 다양한 실제 소자 구동 환경을 모사한 상태에서 이번 방법론을 적용하는 후속 연구를 진행할 것ˮ이라고 설명했다.
우리 대학 신소재공학과 박건 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 ACS 어플라이드 에너지 머티리얼스(ACS Applied Energy Materials)에 게재됐다. (논문명: Quantitative Measurement of Li-Ion Concentration and Diffusivity in Solid-State Electrolyte)
한편 이번 연구는 과학기술정보통신부·한국연구재단 거대과학연구개발사업 및 KAIST 글로벌특이점연구 지원으로 수행됐다.
2021.04.13
조회수 60997
-
이수현 교수팀, 뇌 복부선조영역의 새로운 기억관련 기능 규명
우리 대학 바이오및뇌공학과 이수현 교수 연구팀과 서울대학교 생명과학부 김형 교수 연구팀이 공동연구를 통해 복부선조영역(ventral striatum)에서 습관행동을 제어하는데 필요한 장기기억이 자동적으로 인출된다는 사실을 밝혔다. 이러한 복부선조영역의 기능을 그 영역과 회로별로 규명하는 것은 인간에게 직접 적용할 수 있는 뇌질환 치료방법 개발과 뇌영역 맞춤형 치료의 이론적 기반이 될 수 있다.
뇌의 복부선조영역은 새로운 가치학습에 중요하며, 중독행동과 조현병 관련 행동에도 연관된 것으로 알려져 왔지만 이러한 행동에 기반이 될 수 있는 기억정보를 처리하고 있는지에 대해서는 불분명했다.
이에 연구팀은 기능적 자기공명뇌영상과 전기생리학적 뇌세포 활성측정법을 모두 이용해 과거에 학습한 물체를 의식적으로 인지하고 있지 않는 상황에서도 복부선조에서 과거에 배운 좋은 물체에 대한 장기기억정보가 활발하게 처리되고 있다는 사실을 밝혀냈다.
또한 자동적으로 인출된 좋은 물체에 대한 기억은 무의식적이며 자동적인 행동, 즉 습관행동을 제어하고, 이를 통해 동물이 장기기억을 기반으로 최대이익을 얻을 수 있는 자동적 의사결정(automatic decision-making) 과정에 사용된다는 실험적 증거를 제시했다.
바이오및뇌공학과 뇌인지공학프로그램 강준영 석박사통합과정 학생이 제1 저자로 참여한 이번 연구는 국제학술지 네이쳐 커뮤니케이션즈(Nature Communications)에 4월 8일(목) 게재됐다.
복부선조영역에서 기억의 자동적 인출과정을 이해함으로써 자동적 행동인 습관과 중독행동 제어의 이론적 기반을 다지고, 나아가 기억의 자동인출(automatic retrieval)과 연관된 현저성(salience) 이상으로 조현병을 이해할 수 있는 이론적 발판을 마련한 것에 이번 연구의 의의가 있다고 볼 수 있다.
이번 연구는 한국연구재단 뇌질환극복사업 및 개인기초연구지원사업 등의 지원을 받아 수행됐다.
2021.04.09
조회수 70174
-
미생물 이용한 천연 붉은 색소 생산 기술 최초개발
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 `식용으로 널리 쓰이는 붉은색 천연색소인 카르민산을 생산하는 미생물 균주 개발'에 성공했다고 9일 밝혔다.
이번 연구결과는 국제 학술지인 `미국화학회지(Journal of the American Chemical Society)'에 4월 2일 字 온라인 게재됐다.
※ 논문명 : Production of carminic acid by metabolically engineered Escherichia coli
※ 저자 정보 : 이상엽(한국과학기술원, 교신저자), 양동수(한국과학기술원, 제1저자), 장우대(한국과학기술원, 제2저자), 포함 총 3명
카르민산은 붉은색 천연색소로 딸기우유, 사탕 등의 식품과 매니큐어, 립스틱 등 화장품 분야에서 널리 활용되고 있다. 카르민산은 연지벌레 추출을 통해 얻어지는데, 연지벌레는 한정된 지역(페루, 카나리아 제도 등지)에서만 재배할 수 있으며, 연지벌레로부터 카르민산을 추출하기 위해서는 복잡하고 비효율적인 다단계 반응을 거쳐야 한다.
또한, 카르민산은 대부분 연지벌레에서 기인한 단백질 오염물질을 포함하고 있는데 이는 알레르기 반응을 유발할 수도 있으며, 많은 사람이 벌레 기반 물질을 섭취하는 것을 꺼리고 있다. 이러한 이유로 몇몇 프랜차이즈 업체는 카르민산 사용을 중단하고 대체 식용색소를 활용하고 있다.
이에 따라 연지벌레를 사용하지 않는 카르민산 생산 방법 개발의 필요성이 제기됐으나, 카르민산 생합성 경로의 일부가 아직 밝혀지지 않았으며 곰팡이를 제외한 다른 미생물에서 카르민산 생산이 보고된 바가 없었다.
이에 이상엽 특훈교수 연구팀은 포도당으로부터 카르민산을 생산할 수 있는 대장균 균주 개발 연구를 수행했다.
연구팀은 우선 타입 II 폴리케타이드 생합성 효소를 최적화해 카르민산의 전구체(전 단계의 물질)를 생산하는 대장균 균주를 구축했다. 하지만 남은 두 단계의 반응을 수행하기 위한 효소가 아직 발굴되지 않았거나 대장균 내에서 작동하지 않는 문제가 있었다. 이러한 문제를 해결하기 위해 연구팀은 생화학 반응 분석을 통해 카르민산 생산을 위한 효소 후보군을 선정했다. 그 후 세포 배양 실험을 통해 성공적으로 작동하는 효소들을 선정했다.
이렇게 선정된 효소 두 종에 대해 컴퓨터 기반 상동 모형 및 도킹 시뮬레이션을 수행 후 활성이 증대된 돌연변이 효소를 예측했다. 그 후 이에 기반을 둔 효소 개량을 수행함으로써 증대된 활성을 지니는 효소를 개발하는 데 성공했다.
이번 연구를 통해 폐목재, 잡초 등 지구상에서 가장 풍부한 바이오매스의 주원료인 포도당을 단일 탄소원으로 사용해 카르민산을 생산하는 대장균 균주를 최초로 개발했다고 연구팀 관계자는 설명했다.
연구팀이 개발한 대사공학 및 가상 시뮬레이션 기반 효소 개량 전략은 생산경로가 규명되지 않은 다른 천연물의 생산에도 유용하게 쓰일 것으로 기대된다. 연구팀은 이번 연구에서 개발한 C-글리코실 전이효소를 적용해 카르민산 뿐만 아니라 알로에로부터 생산 가능했던 미백제인 알로에신 생산에도 세계 최초로 성공함으로써 이를 증명했다.
이상엽 특훈교수는 “연지벌레를 사용하지 않는 카르민산 생산 프로세스를 세계 최초로 개발했으며, 이번 연구는 특히 천연물 생산의 고질적인 문제인 효소 발굴과 개량에 대한 효과적인 해결책을 제시했다는 점에 의의가 있다”며 “이번 기술을 활용해 의학적 또는 영양학적으로 중요한 다양한 천연물을 고효율로 생산할 수 있을 것”이라고 밝혔다.
한편 이번 연구는 과기정통부가 지원하는 기후변화대응기술개발사업의 '바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제'의 지원을 받아 수행됐다.
2021.04.09
조회수 72513