-
로봇 손의 미끄럼 막아주는 인공 피부 개발
우리대학 기계공학과 박형순, 김택수 교수 연구팀이 사람 손바닥 피부의 기계적 특성을 모사, 로봇 손의 조작성능을 높여줄 인공피부를 개발했다.
의수나 산업용 집게, 산업용 로봇손 등에 부착하는 것만으로 물체 조작 능력이나 작업능력을 향상시킬 유용한 말단 인터페이스가 될 수 있을지 기대된다.
기존 기능성 인공피부가 주로 미관상 기능이나 감각기능 재현에 초점을 두었던데 반해, 이번에 개발된 인공피부는 구조 그 자체로 조작기능 향상에 기여하기에 복잡한 제어알고리즘이나 추가적인 동작 없이 간단히 부착하는 것만으로 조작성능 향상을 도울 수 있다.
연구팀은 손바닥 피부를 물리적 장벽이자 다양한 감각을 수용하는 기관으로만 보지 않고, 임의의 모양의 물체에 밀착되도록 변형되면서 물체를 안정적으로 고정한다는 점에서 손의 조작기능에 영향을 미치는 중요한 변수로 주목했다.
이에 손바닥 피부를 겉 피부층, 피하지방층, 근육층으로 구조화하여 각 특성을 분석, 피하 지방층의 비대칭적인 물리적 특성이 기능적 장점을 만들어 내는 핵심요소임을 알아냈다. 부드러운 지방조직과 질긴 섬유질 조직이 복합되어 누름에 유연하면서도 비틀림이나 당김에 의한 변형에 대해서는 강인하게 버틸 수 있다는 것이다.
이를 토대로 손바닥처럼 말랑한 다공성 라텍스 및 실리콘을 이용해 손바닥 피부와 동일한 비선형적·비대칭적 물리적 특성을 지니는 3중층 인공피부를 제작했다. 기공들이 누름에 대해서는 쉽게 압축되어 물체의 형상에 맞게 쉽게 변형되도록 하는 한편, 기공 사이사이 질긴 라텍스 격벽이 비틀림이나 당김에 강하게 저항함으로써 대상 물체를 견고하게 잡을 수 있도록 한 것이다.
실제 이렇게 만들어진 3중층 인공피부를 부착한 로봇 손은 기존 실리콘 소재의 단일층 인공피부를 부착한 로봇 손 대비 물체를 고정할 수 있는 작업 안정성과 물체를 움직일 수 있는 조작성이 30% 향상된 것으로 나타났다.
연구팀은 향후 나사처럼 작은 물체나 계란처럼 쉽게 깨질 수 있는 매끄러운 물체 등 조작대상의 크기나 단단함, 표면특성을 고려하여 인공피부의 질감, 두께, 형상을 조절하는 등 용도에 맞는 최적의 피부구조를 설계하는 방안에 대한 연구를 지속할 계획이다.
이반 연구는 과학기술정보통신부와 한국연구재단이 추진하는 바이오닉암메카트로 닉스융합연구사업 및 선도연구센터사업의 지원으로 수행되었으며, 신소재 분야 국제학술지‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 속표지 논문으로 5월 8일 선공개 되었다.
2020.06.01
조회수 10387
-
다양한 바이러스 감염병을 쉽고 빠르게 찾아내는 만능 진단기술 개발
우리 연구진이 감염된 세포의 용해액만으로도 바이러스의 존재 여부를 핵산 증폭 없이 판독이 가능한 신기술을 개발했다. 이 기술은 바이러스의 특이적으로 존재한다고 알려진 ‘이중나선 RNA(이하 dsRNA)’검출을 기반으로 한다.
이 기술이 실용화되면 현재의 유전자 증폭(PCR) 검사와는 달리 시료 준비나 핵산 증폭, RNA 핵산 서열 정보가 필요 없어 각종 바이러스 감염병이나 신·변종 바이러스를 쉽고 빠르게 진단하는 기술이나 키트(Kit) 등을 개발하는 데 큰 도움이 될 것으로 기대된다.
우리 대학 생명화학공학과 리섕·김유식 교수 공동연구팀은 바이러스의 특징을 이용해 다양한 종류의 바이러스를 검출할 수 있는 만능 진단기술을 개발했다고 28일 밝혔다. 생명화학공학과 박사과정에 재학 중인 구자영, 김수라 학생이 공동 제1 저자로 참여한 이번 연구결과는 국제 학술지 `바이오마크로몰레큘스(Biomacromolecules' 4월 9일 字 온라인 판에 게재됐다. (논문명: Reactive Polymer Targeting dsRNA as Universal Virus Detection Platform with Enhanced Sensitivity).
RNA(리보핵산)는 일반적으로 DNA(디옥시리보핵산)가 가진 유전정보를 운반해 단백질을 생산하게 한다. 그러나 단백질을 만들지 않는 다양한 `비번역 RNA(non-coding RNA)'가 존재하는데 이들은 세포 내 신호전달, 유전자 발현 조절, 그리고 RNA 효소적 작용 등의 다양한 역할을 맡는다. 이러한 비번역 RNA들에 상보적인 핵산 서열을 가지는 RNA가 결합해 형성된 `dsRNA'는 특히 바이러스에서 특이적으로 많이 발견된다.
dsRNA는 DNA 바이러스의 전사 또는 RNA 바이러스의 복제 과정에서 생산되는데, 인간 세포는 바이러스 dsRNA를 외부 물질로 인지해 면역반응을 일으킨다. 특이하게도 바이러스 dsRNA를 인지하는 인간의 선천성 면역반응시스템은 핵산 서열 정보를 무시한 채 dsRNA의 길이나 말단 구조와 같은 형태적 특징을 이용해 dsRNA와 반응한다. 인간 면역체계가 다양한 종류의 바이러스에 대처를 가능케 하는 이유다.
공동연구팀은 이런 인간 면역체계의 원리에 착안해 바이러스의 특징인 길이가 긴 dsRNA를 검출할 수 있는 기판 제작을 통해 다양한 종류의 바이러스를 핵산 서열 정보 없이 검출할 수 있도록 했다. 실리카 기판 표면에는 펜타 플루오르 페닐 아크릴레이트(PPFPA) 반응성 고분자를 코팅해 높은 효율로 빠르고 간편하게 dsRNA를 인지하는 항체를 고정시켰다. 이렇게 개발된 기판에서 면역반응을 일으키는 76bp(base pair, 염기 쌍 개수를 의미하는 길이 단위) 이상의 긴 길이를 가지는 dsRNA를 검출할 수 있었다. 또한, 감염이 되지 않은 세포에서 발견되는 단일 가닥 RNA와 함께 19bp의 짧은 dsRNA는 전혀 검출되지 않아 바이러스 감염 진단용으로 활용 가능성을 확인했다.
연구팀은 이어 바이러스 dsRNA의 긴 길이를 활용한 2단계 검출 방법을 찾기 위해 많은 도전 끝에 특이도 및 민감도가 향상된 바이러스 dsRNA 검출기술을 개발하는 데 성공했다.
연구팀은 이와 함께 시료 준비과정도 대폭 간편화시켜 세포에서 RNA를 분리하거나 정제 작업 없이 감염된 세포의 용해액만을 이용해 바이러스 dsRNA를 검출할 수 있는 기술을 개발했다. 이 기술을 A형과 C형 간염 바이러스에 감염된 세포에 적용한 결과, 바이러스 dsRNA의 존재 여부를 핵산 증폭 없이 판독하는 데에도 성공했다.
KAIST 생명화학공학과 리섕 교수는 "이번 연구에서는 A형 간염과 C형 간염 dsRNA만을 검출했지만, 바이러스 dsRNA는 다양한 종류의 바이러스에서 발견된다ˮ 면서 "이번에 개발한 dsRNA 검출기술은 다양한 바이러스에 적용 가능해 만능 감염병 진단기술로 발전될 수 있고, 특히 공항·학교 등 공공장소에서도 쉽고 빠르게 감염병을 검출할 수 있어 효과적인 방역대책을 마련하는데 유용할 것ˮ 이라고 말했다.
한편 이번 연구는 한국연구재단 신진연구자지원사업과 국방과학연구소 순수기초연구 용역사업에 지원을 받아 수행됐다.
2020.06.01
조회수 13639
-
피부형 센서 패치 하나로 사람 움직임을 측정하는 기술 개발
우리 대학 전산학부 조성호 교수 연구팀이 서울대 기계공학과 고승환 교수 연구팀과 협력 연구를 통해 딥러닝 기술을 센서와 결합, 최소한의 데이터로 인체 움직임을 정확하게 측정 가능한 유연한 `피부 형 센서'를 개발했다.
공동연구팀이 개발한 피부 형 센서에는 인체의 움직임에 의해 발생하는 복합적 신호를 피부에 부착한 최소한의 센서로 정밀하게 측정하고, 이를 딥러닝 기술로 분리, 분석하는 기술이 적용됐다.
이번 연구에는 김민(우리 대학), 김권규(서울대), 하인호(서울대) 박사과정이 공동 제1 저자로 참여했으며 국제 학술지 `네이처 커뮤니케이션스(Nature Communications)' 5월 1일 字 온라인판에 게재됐다. (논문명 : A deep-learned skin decoding the epicentral human motions).
사람의 움직임 측정 방법 중 가장 널리 쓰이는 방식인 모션 캡처 카메라를 사용하는 방식은 카메라가 설치된 공간에서만 움직임 측정이 가능해 장소적 제약을 받아왔다. 반면 웨어러블 장비를 사용할 경우 장소제약 없이 사용자의 상태 변화를 측정할 수 있어, 다양한 환경에서 사람의 상태를 전달할 수 있다.
다만 기존 웨어러블 기기들은 측정 부위에 직접 센서를 부착해 측정이 이뤄지기 때문에 측정 부위, 즉 관절이 늘어나면 더 많은 센서가 수십 개에서 많게는 수백 개까지 요구된다는 단점이 있다.
공동연구팀이 개발한 피부 형 센서는 `크랙' 에 기반한 고(高) 민감 센서로, 인체의 움직임이 발생하는 근원지에서 먼 위치에 부착해서 간접적으로도 인체의 움직임을 측정할 수 있다. `크랙' 이란 나노 입자에 균열이 생긴다는 뜻인데, 연구팀은 이 균열로 인해 발생하는 센서값을 변화시켜 미세한 손목 움직임 변화까지 측정할 수 있다고 설명했다.
연구팀은 또 딥러닝 모델을 사용, 센서의 시계열 신호를 분석해 손목에 부착된 단 하나의 센서 신호로 여러 가지 손가락 관절 움직임을 측정할 수 있게 했다. 사용자별 신호 차이를 교정하고, 데이터 수집을 최소화하기 위해서는 전이학습(Transfer Learning)을 통해 기존 학습된 지식을 전달했다. 이로써 적은 양의 데이터와 적은 학습 시간으로 모델을 학습하는 시스템을 완성하는 데 성공했다.
우리 대학 전산학부 조성호 교수는 "이번 연구는 딥러닝 기술을 활용해 실제 환경에서 더욱 효과적으로 사람의 실시간 정보를 획득하는 방법을 제시했다는 점에서 의미가 있다ˮ며 "이 측정 방법을 적용하면 웨어러블 증강현실 기술의 보편화 시대는 더욱 빨리 다가올 것ˮ 이라고 예상했다.
한편, 이번 연구는 한국연구재단 기초연구사업(선도 연구센터 지원사업 ERC)과 기초연구사업 (중견연구자)의 지원을 받아 수행됐다.
< 피부형 센서 패치로 손가락 움직임 측정 모습 >
2020.05.20
조회수 13007
-
원자간력 현미경(AFM)을 이용한 배터리 전극의 구성 성분 분포 영상화 기법 개발
우리 대학 신소재공학과 홍승범 교수 연구팀이 원자간력 현미경(AFM, Atomic Force Microscope)을 이용해 배터리 전극의 구성성분 분포를 파악하는 영상화 기법을 개발하는 데 성공했다.
관련 기술은 차세대 배터리로 주목받는 전고체전지 설계를 용이하게 할 수 있고 다른 전기화학 소재에도 제조 공정을 크게 혁신하는 토대가 될 것으로 기대된다.
김홍준 연구원이 제1 저자로 참여한 이번 연구는 국제 학술지 `ACS 어플라이드 에너지 머티리얼스(ACS Applied Energy Materials)'지 4월 27일 字에 게재됐다. (논문명: Visualization of Functional Components in a Lithium Silicon Titanium Phosphate-Natural Graphite Composite Anode)
리튬이온전지는 휴대용 장비와 전기자동차 등 여러 분야에서 강력한 전기 에너지저장장치(ESS)로 사용되고 있다. 그러나 액체나 젤 형태의 전해질을 사용하는 리튬이온전지는 충격이나 압력으로 인한 발화 가능성이 크고 충전소요 시간이 길어지는 취약점을 안고 있다. 따라서 지난 13일 국내 1, 2위 대기업인 삼성그룹과 현대차 그룹 수장들이 첫 단독 회동을 통해 협업을 논의한 사례에서 보듯 고체 전해질을 이용한 전고체전지가 가장 유망한 차세대 배터리로 주목을 받고 있다.
전고체전지는 양극과 음극 사이의 전해질을 액체가 아닌 고체로 대체한 전지다. 전고체전지는 특히 부피를 절반으로 줄이면서 대용량 구현이 가능해 완전 충전 시 최대 주행거리가 800Km에 달하기 때문에 글로벌완성차 업체와 배터리 업체를 중심으로 기술 상용화를 위한 연구개발(R&D) 움직임이 활발하다.
다만 전고체전지가 차세대 배터리로 확고히 자리를 잡기 위해서는 낮은 이온전도도와 전극-전해질 계면의 접합성 문제를 해결해야 한다. 이를 위해 리튬이온전도체가 분산된 복합 전극에 관한 연구가 활발히 진행되고 있다. 또 전지 구동 성능에 큰 영향을 미치는 복합 전극의 재료적 특성을 이해하기 위해서는 미시적 규모로 혼합된 활물질, 이온전도체, 바인더 그리고 도전재와 같은 구성성분들의 형상과 분포를 파악할 수 있는 기술이 필요하다.
홍승범 교수 연구팀이 개발한 영상화 기법은 이러한 문제점들을 거시·미시적 다중 스케일에서 전기화학 변위 현미경과 횡력 현미경 등 원자간력 현미경의 다양한 기능을 활용해 위치에 따른 검출 신호의 감도 차이로 구성성분들의 영역을 구별해 해결했다. 기존 전극과 복합 전극을 비교해서 결과를 제시했으며, 영역들의 구별뿐만 아니라 단일 영역 내에서 나노 스케일의 이온 반응성 세기 분포와 마찰력 세기 분포의 상관관계 파악을 통해 바인더 구성 비율이 이온 반응성에 미치는 영향을 파악했다.
또 기존 전자 현미경을 이용해 관찰할 경우, 진공 환경이 필수적으로 필요하고, 분석을 위한 시편 제작 시 매우 얇은 막 형태로 제작 및 백금 입자를 코팅해야 하는 등 특별한 사전처리 절차가 필요했다. 반면 홍 교수 연구팀이 이번 연구를 통해 제시한 관찰 방법은 일반적인 환경에서 수행할 수 있고, 특별한 사전처리 절차가 필요하지 않다. 이와 함께 다른 영상화 장비보다 관찰의 준비 과정이 편리하며, 공간 분해 능력과 검출 신호의 세기 분해 능력이 월등하고, 성분 관찰 시에는 3차원 표면 형상 정보가 제공된다는 장점이 있다.
홍승범 교수는 "원자간력 현미경을 이용해 개발된 분석 기법은 복합 소재 내의 각 구성성분이 물질의 최종적인 성질에 기여하는 역할을 정량적으로 이해하는 데 유리하다ˮ 면서 "이 기술은 차세대 전고체전지의 설계 방향을 다중 스케일에서 제시할 뿐만 아니라, 다른 전기화학 소재의 제조 공정에도 혁신의 기틀을 마련할 수 있을 것으로 기대된다ˮ 고 강조했다.
한편 이번 연구는 과학기술정보통신부·한국연구재단 거대과학연구개발사업, 웨어러블 플랫폼 소재 기술센터 지원 기초연구사업 및 KAIST 글로벌특이점연구 지원으로 수행됐다.
2020.05.19
조회수 13367
-
MOSFET보다 빠른 저전력 트랜지스터 개발
우리 대학 물리학과 조성재 교수 연구팀이 기존의 금속 산화물 반도체 전계효과 트랜지스터(metal-oxide-semiconductor field-effect transistor, MOSFET) 대비 작동 전력 소모량이 10배 이상 낮고 동작 속도가 2배 이상 빠른 저전력, 고속 터널 트랜지스터를 개발했다. 이제까지 구현된 저전력 트랜지스터 중 MOSFET보다 빠른 트랜지스터의 개발은 최초이다.
조 교수 연구팀은 흑린(black phosphorus)의 두께에 따라 밴드갭이 변하는 독특한 성질을 이용해 트랜지스터 채널을 구성함으로써 전력소모를 줄이고, 단층 붕화 질소 (hexagonal boron nitride)를 트랜지스터의 drain 접합에 이용해 터널 트랜지스터의 작동 상태 전류를 높이는데 성공했다. 이제까지의 저전력 트랜지스터는 전력 소모는 낮지만, 작동 상태 전류가 기존 MOSFET에 비해 현저히 작아서 작동 속도가 느린 문제점이 있었다.
김성호 연구원이 1 저자로 참여한 이번 연구는 국제 학술지 ‘나노 레터스 (Nano Letters)’ 4월 24일 자 온라인판에 게재됐다. (논문명 : Monolayer Hexagonal Boron Nitride Tunnel Barrier Contact for Low-Power Black Phosphorus Heterojunction Tunnel Field-Effect Transistors)
트랜지스터의 전력 소모를 감소시키기 위해서는 트랜지스터의 작동 전압과 대기 상태 전류를 동시에 낮추는 것이 필수적이다. 이를 위해서는 subthreshold swing (SS, 전류를 10배 증가시키는데 필요한 전압값, 단위: mV/decade = mV/dec)을 낮추는 것이 필요한데, 기존의 MOSFET은 thermal carrier injection mechanism 때문에 SS 값이 상온에서 60 mV/dec 이하로 낮아질 수 없다는 한계를 지닌다. band-to-band-tunneling을 carrier injection mechanism으로 가지는 터널 트랜지스터는 상온에서 SS 값이 60 mV/dec 미만으로 낮아질 수 있기 때문에 MOSFET을 대체할 수 있는 저전력 소자로 제안되어왔다. 지난 1월 조교수 연구팀은 흑린을 사용하여 60 mV/dec미만의 SS를 가지는 저전력 트랜지스터를 개발하는데 성공하여 Nature Nanotechnology에 결과를 보고하였다. 하지만, 그 결과 또한 여전히 작동 상태 전류, 특히 SS = 60 mV/dec인 지점에서의 전류가 0.6 μA/μm로 MOSFET의 threshold에서의 전류값 1-10μA/μm보다 낮은 한계가 있었다.
조 교수 연구팀은 본 연구에서 단층 붕화 질소를 활용하여 지난 연구의 한계를 극복하고 SS = 60mV/dec 지점에서의 작동 상태 전류를 Nature Nanotechnology에 보고한 저전력 흑린 트랜지스터에서의 결과보다 10배 이상 크고, MOSFET의 threshold에서의 전류값보다도 큰 20 μA/μm을 달성했다. 흑린(black phosphorus)의 두께에 따라 밴드갭이 변하는 독특한 성질을 이용해 트랜지스터 채널을 구성함으로써 전력소모를 줄이고, 단층 hexagonal boron nitride를 트랜지스터의 drain 접합에 이용해 터널 트랜지스터의 작동 속도를 높이는데 성공하여 저전력 고속 트랜지스터의 구성 요건을 완성했다는 점에서 큰 의의가 있다.
조성재 교수는 “흑린 이종접합 트랜지스터가 기존의 어떤 트랜지스터보다 저전력, 고속으로 작동하는 것을 확인했다. 이는 기존 실리콘 기반의 MOSFET을 대체할 수 있는 새로운 트랜지스터의 가능성을 보여주는 결과이다.”라며 “이번 연구 결과를 바탕으로 기초 반도체 물리학 및 비메모리 반도체 산업에 다양한 응용이 가능할 것으로 기대한다.”라고 말했다.
이번 연구는 한국연구재단 미래반도체신소자원천기술개발사업의 지원을 받아 수행됐다.
2020.05.06
조회수 13000
-
머리에 빛을 비춰 신경세포 재생과 공간기억 향상
뇌질환 상태에서 신경재생으로 일시적인 기억향상이 일어나는 기전이 밝혀졌다.
우리 대학 생명과학과 허원도 교수 연구팀은 머리에 빛을 비춰 뇌신경세포 내 Fas 수용체의 활성을 조절함으로써 신경재생과 공간기억 능력이 향상됨을 보였다.
Fas 수용체는 허혈성 뇌질환, 염증성 뇌질환, 퇴행성 신경질환 등 다양한 대뇌질환에 걸린 경우 발현이 유도되는 단백질이다. 일반적으로는 세포를 죽음에 이르게 하지만, 신경계의 다양한 세포들에서는 세포증식 관련 신호전달 경로를 활성화시켜 세포를 재생시킨다. 특히, 뇌질환에 걸린 경우 대뇌 해마의 신경재생에 Fas 수용체가 관련되어 있다는 사실이 알려져 왔으나, 연구방법의 한계로 세부적인 기전에 대해서는 아직 자세히 알려진 바가 없다. 또한, 질환이 있는 뇌에서 해마가 관장하는 공간기억이 Fas 단백질에 의해 어떻게 영향받는지에 대해서도 논란이 되어 왔다.
연구팀은 광수용체 단백질의 유전자에 Fas 수용체 단백질의 유전자를 결합시킴으로써 청색광을 쬐어주면 Fas 단백질의 활성이 유도되는 옵토파스(OptoFAS) 기술을 개발했다. 살아있는 생쥐 대뇌에 다양한 시간동안 빛을 쬐어주면서 시공간적으로 Fas 수용체 단백질의 활성을 조절함으로써 대뇌 해마에서 여러 신호전달 경로들이 순차적으로 활성화되고, 그 결과로 신경재생과 공간기억 능력이 향상된다는 것을 확인했다.
옵토파스(OptoFAS) 기술은 빛을 이용하여 세포의 기능을 조절하는 광유전학(Optogenetics) 기술이다. 배양시킨 세포나 살아있는 생쥐 머리에 청색광을 쬐어주면 광수용체 단백질 여러 개가 결합되며, 이 단백질 복합체가 하위 신호전달경로들을 활성화시킨다. 생체 내에 광섬유를 삽입하여 원하는 시간에 빛을 뇌 조직 내로 전달하는 방식으로 선택적으로 단백질을 활성화시킬 수 있다.
연구팀은 빛을 이용해 대뇌 해마의 치아이랑에 존재하는 미성숙신경세포에서 옵토파스를 활성화시키고, 빛을 쬐어주는 시간에 따라 미성숙신경세포와 신경줄기세포에서 각각 서로 다른 하위 신호전달경로가 활성화됨을 관찰했다. 또한 이 현상에 특정 뇌유래 신경성장인자가 관여함을 밝혀내었다. 반복적으로 충분한 시간동안 빛을 쬐어주면 해마 치아이랑의 신경줄기세포가 증식하는 성체 신경재생이 관찰되었으며, 실험 대상 쥐에서는 일시적으로 공간기억 능력이 향상됨을 밝혔다.
옵토파스 기술을 이용하면 약물을 처리하거나 유전자변형 쥐를 사용하였을 때 발생하는 여러 부작용이 없이 빛 자극만으로 쥐의 생리현상에 지장을 주지 않으면서 뇌신경세포에서 Fas 단백질의 활성을 실시간으로 조절할 수 있다. 질환이 있는 뇌에서 Fas 단백질이 활성화되어 질병에 맞서 대뇌의 기능을 보호하는 여러 가지 역할을 한다는 사실을 생각해볼 때, 향후 세포 수준을 물론 개체 수준까지 뇌질환 상태에서의 신경행동적인 변화를 규명하는 연구에 활용될 것으로 기대한다.
허원도 교수는 “옵토파스(OptoFAS) 기술을 이용하면 빛만으로 살아있는 개체의 신경세포 내에서 단백질의 활성과 신호전달 경로를 쉽게 조절할 수 있다”며 “이 기술이 뇌인지 과학 연구를 비롯해 향후 대뇌질환 치료제 개발 등에 다양하게 적용되길 바란다”고 말했다.
이번 연구결과는 국제 학술지 사이언스 어드밴시즈(Science Advances, IF 12.80)에 4월 23일 오전 3시(한국시간) 온라인 게재됐다.
2020.04.27
조회수 12668
-
두뇌 인지 기능 조절하는 신경 펩타이드 발견
우리 대학 생명과학과 이승희 교수 연구팀이 두뇌에 존재하는 신경 펩타이드 중 하나인 소마토스타틴(somatostatin)이 두뇌 인지 기능을 높일 수 있음을 밝혔다.
이 교수 연구팀은 특정 가바(뇌세포 대사 기능을 억제 신경 안정 작용을 하는 신경 전달 억제 물질) 분비 신경 세포에서 분비되는 펩타이드 중 하나인 소마토스태틴이 시각 피질의 정보 처리 과정을 조절하고 높일 수 있음을 규명했다. 이번 연구 성과는 치매 등의 뇌 질환에서 인지 능력 회복을 위한 치료제 개발의 계기가 될 것으로 기대된다.
생명과학과 송유향 박사, 황양선 석사, 바이오및뇌공학과 김관수 박사과정, 서울대학교 의과학대학 이형로 박사과정이 공동 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘사이언스 어드밴시스 (Science Advances)’ 4월 22일 자 온라인판에 게재됐다(논문명 : Somatostatin enhances visual processing and perception by modulating excitatory inputs to the parvalbumin-positive interneurons in V1).
2019년 기준 국내 65세 이상 노인 중 10명 중 1명은 치매 질환을 갖고 있다. 치매는 기억력 손실, 인지 기능 및 운동기능 저하 등의 일상생활 장애를 유발해 그 심각성은 나날이 두드러지고 있다.
이승희 교수 연구팀은 치매의 한 종류인 알츠하이머 질환 환자의 뇌척수액에서 소마토스타틴의 발현율이 현저히 감소했다는 점에 주목해 소마토스타틴에 의한 인지 능력 회복 가능성을 밝히는 연구를 수행했다.
소마토스타틴은 인간을 포함한 포유류의 중추신경계에서 존재한다. 특히 정상적인 포유류의 대뇌 피질에서 소마토스타틴을 발현하는 신경 세포인 가바(GABA, γ-aminobutyric acid)를 신경전달물질로 분비해 흥분성 신경 세포의 활성을 억제함으로써 정보 처리 정도를 조율한다.
그러나 기존 연구는 가바의 효과에만 국한돼, 동시에 분비될 수 있는 신경 펩타이드인 소마토스타틴의 고유한 효과 관련 연구는 부족한 상황이다.
연구팀은 자유롭게 움직이는 실험용 생쥐에서 시각정보 인지 및 식별 능력을 측정할 수 있는 실험 장비를 개발 및 도입했다. 이를 통해 생쥐의 시각피질 또는 뇌척수액에 소마토스타틴을 직접 주입한 후 이를 관찰해 생쥐의 시각정보 인지 능력이 현저히 증가함을 발견했다.
나아가 소마토스타틴의 처리에 따른 생체 내 또는 뇌 절편에서의 신경 세포 간 신경전달 효율의 변화를 측정하고, 해당 신경망을 연속 볼록면 주사전자현미경(SBEM)으로 관찰해 소마토스타틴에 의한 시각인지 기능의 향상이 이루어지는 생체 내 신경 생리적 원리를 규명했다.
이러한 연구 성과는 향후 인간을 비롯한 포유류의 두뇌 인지 기능을 조절 가능할 수 있을 뿐 아니라 퇴행성 뇌 질환 등에서 나타나는 인지 기능 장애 치료에 폭넓게 응용 및 적용될 수 있을 것으로 기대된다.
이승희 교수는 “이번 연구는 두뇌 기능을 높이고, 뇌 질환을 치료할 수 있는 새로운 약물 개발로 이어질 수 있을 것으로 기대한다”라고 말했다.
이번 연구는 한국연구재단 중견연구자 지원사업의 지원을 받아 수행됐다.
2020.04.23
조회수 14447
-
실시간 영상 전송 보안 기술 개발
전산학부 김명철 교수 연구팀이 웹캠, 영상 드론, CCTV, 증강현실(AR), 가상현실(VR) 등에 사용하는 영상 전송 장비용 실시간 영상 암호화 및 전산 자원(CPU, 배터리 등) 소모 저감 기술을 개발했다.
연구팀의 실시간 영상 전송 보안기술은 비디오 코덱 종류에 상관없이 적용될 수 있는 범용성을 가질 뿐 아니라 영상전송기기의 CPU나 배터리를 최대 50%까지 절약하면서도 최고 수준의 보안성능을 제공하는 결과를 보였다.
고경민 박사 주도로 개발된 이번 연구결과는 보안 분야의 국제 학술지 IEEE TDSC(Transactions on Dependable and Secure Computing) 3월 13일 자 온라인판에 게재됐다. (논문명: Secure video transmission framework for battery-powered video devices) 또한, 국내 특허로 등록, 미국특허로 출원돼 2차 심사가 진행 중이다. (국내특허명: 통신 시스템의 암호화 패킷 전송 방법)
기존 실시간 영상 전송 보안기술은 촬영한 모든 영상을 암호화해 전송하거나 비디오 데이터 식별 없이 무작위로 암호화하기 때문에 전산 자원이 제한된 상황에서 적용하기에는 한계가 있다. 문제 해결을 위해 연구팀은 새로운 실시간 영상 암호화 및 배터리 소모 저감 기술을 개발했다. 이 기술은 영상전송 장비에서 동작하는 자원 모니터링 결과에 따라 카메라로 촬영한 영상을 구성하는 비디오 데이터를 데이터중요도 관점에서 선별적으로 암호화 전송을 수행한다.
암호화 전송 시에는 영상 송신 장비의 가용자원량에 따라 실시간으로 암호화 정도를 조정하며, 다중 전송경로 지원을 통해 보안성을 높인다. 수신된 영상 데이터는 실시간 영상 재생이 가능한 단위로 그 순서를 복원한 후 화면에 표시된다. 이 기술은 가용 전산 자원의 모니터링 결과에 따라 촬영된 영상을 구성하는 비디오 데이터 단위로 암호화가 가능해 전산 자원 가용량에 따른 선별적 적용이 가능하다.
연구팀은 카메라 장비를 상용 영상 드론에 탑재해 무선을 통한 영상전송 시 전산 자원 소모를 낮추면서 보안성을 높일 수 있음을 증명했다. 최근 코로나로 인해 널리 활용되는 비대면 강의 및 미팅의 보안성 강화에 기여할 수 있을 것으로 기대된다.
김명철 교수는 “영상전송 보안이 중요한 온라인 교육/회의, 스마트시티의 CCTV, 민군 드론 영상 송수신, 증강현실(AR), 가상현실(VR) 등에서 특허화된 개발기술이 원천기술로 활용될 수 있도록 산학협력을 활발히 추진하고 있다”라고 말했다.
2020.04.16
조회수 10050
-
초안정 광대역 광주파수 안정화 기술 개발
기계공학과 김정원 교수 연구팀이 광섬유 광학 기술을 이용한 고성능 주파수 안정화 기술을 개발했다.
이 기술을 이용하면 150테라헤르츠(THz)의 넓은 대역폭에 걸쳐 일정한 간격으로 분포한 60만 개 이상의 광주파수 모드들의 선폭을 동시에 1헤르츠(Hz) 수준으로 낮출 수 있다. 이를 통해 원자시계나 주파수 분광학에 활용할 수 있고, 광주파수를 기반으로 한 양자 센서의 성능도 크게 높일 수 있을 것으로 기대된다.
권도현 박사과정이 1 저자로 참여하고 한국표준과학연구원 시간표준센터와 공동연구로 수행된 이번 연구는 국제학술지 ‘사이언스 어드밴시스(Science Advances)’ 3월 27일 자에 게재됐다. (논문명: Generation of multiple ultrastable optical frequency combs from an all-fiber photonic platform)
레이저의 선폭과 광주파수의 안정도는 시간/주파수 표준, 양자광학, 분광학 등 기초과학 분야뿐 아니라 거리 측정, 형상 이미징 및 분산형 센서 등 다양한 공학 응용에서의 측정 분해능을 결정한다.
특히 작년 5월 기본단위의 재정의를 통해 7개의 국제 단위계(SI) 중 6개(시간, 길이, 질량, 전류, 온도 및 광도)가 주파수를 기반으로 정의되기 때문에 광주파수의 안정도를 확보하는 것은 초정밀 측정 및 센서 분야에서 매우 중요한 이슈이다.
기존에는 다수의 광주파수를 안정화하기 위해 Q인자가 높은 초안정 공진기에 연속파 레이저를 주파수 잠금한 후 이를 다시 펄스 레이저에 주파수 잠금하는 방식을 사용했다. 하지만 이 방식은 장치의 크기가 클 뿐 아니라 주변 환경에 매우 민감한 수억 원 이상의 고가 장치이기 때문에 소수의 표준 연구소에서만 활용됐다.
연구팀은 부품의 신뢰성과 가격 경쟁력이 확보된 광통신용 광섬유 광학 기술을 이용한 광주파수 안정화 기술을 개발했다. 그 결과 A4 용지 절반보다 작은 면적의 소형 장치를 이용해 펄스 레이저에서 발생하는 60만 개 이상의 광주파수 모드들의 선폭을 1Hz 수준으로 낮출 수 있었다. 또한, 각각의 주파수 모드에서 1천조 분의 1(10-15) 수준의 주파수 안정도를 확보했다.
연구팀의 기술은 다양하게 활용 가능해, 특히 최근 대기 중 유해물질 모니터링 등의 분야에서 활용되고 있는 듀얼콤 분광학을 위한 고성능 광원으로 활용할 수 있다.
연구팀은 하나의 광섬유 링크에 두 펄스 레이저를 동시에 안정화하는 방식을 통해 150THz의 넓은 주파수 대역에 걸쳐 1Hz 수준의 선폭으로 흡수 스펙트럼을 측정할 수 있는 고분해능 듀얼콤 분광학 광원을 선보였다.
불변하는 원자의 특성을 이용해 고정확도 측정이 가능한 양자 센서의 경우도 광주파수 분광학 기반이기 때문에, 광주파수의 선폭과 안정도가 측정의 정확도와 신뢰도에 매우 중요하다.
김 교수는 “이번 연구 결과를 활용하면 소형, 경량, 저가의 장치로 1천조분의 1 수준의 광주파수 안정화가 가능해 다양한 양자 센서를 센서 네트워크 형태로 확장하는 데 기여할 수 있을 것이다”라고 말했다.
이번 연구는 한국연구재단 중견연구자지원사업의 지원을 받아 수행됐다.
2020.04.09
조회수 16505
-
스스로 그림 그리는 인공지능 반도체 칩 개발
전기및전자공학부 유회준 교수 연구팀이 생성적 적대 신경망(GAN: Generative Adversarial Network)을 저전력, 효율적으로 처리하는 인공지능(AI: Artificial Intelligent) 반도체를 개발했다.
연구팀이 개발한 인공지능 반도체는 다중-심층 신경망을 처리할 수 있고 이를 저전력의 모바일 기기에서도 학습할 수 있다. 연구팀은 이번 반도체 칩 개발을 통해 이미지 합성, 스타일 변환, 손상 이미지 복원 등의 생성형 인공지능 기술을 모바일 기기에서 구현하는 데 성공했다.
강상훈 박사과정이 1 저자로 참여한 이번 연구결과는 지난 2월 17일 3천여 명 반도체 연구자들이 미국 샌프란시스코에 모여 개최한 국제고체회로설계학회(ISSCC)에서 발표됐다. (논문명 : GANPU: A 135TFLOPS/W Multi-DNN Training Processor for GANs with Speculative Dual-Sparsity Exploitation)
기존에 많이 연구된 인공지능 기술인 분류형 모델(Discriminative Model)은 주어진 질문에 답을 하도록 학습된 인공지능 모델로 물체 인식 및 추적, 음성인식, 얼굴인식 등에 활용된다.
이와 달리 생성적 적대 신경망(GAN)은 새로운 이미지를 생성·재생성할 수 있어 이미지 스타일 변환, 영상 합성, 손상된 이미지 복원 등 광범위한 분야에 활용된다. 또한, 모바일 기기의 다양한 응용 프로그램(영상·이미지 내 사용자의 얼굴 합성)에도 사용돼 학계뿐만 아니라 산업계에서도 주목을 받고 있다.
그러나 생성적 적대 신경망은 기존의 딥러닝 네트워크와는 달리 여러 개의 심층 신경망으로 이루어진 구조로, 개별 심층 신경망마다 다른 요구 조건으로 최적화된 가속을 하는 것이 어렵다.
또한, 고해상도 이미지를 생성하기 위해 기존 심층 신경망 모델보다 수십 배 많은 연산량을 요구한다. 즉, 적대적 생성 신경망은 연산 능력이 제한적이고 사용되는 메모리가 작은 모바일 장치(스마트폰, 태블릿 등)에서는 소프트웨어만으로 구현할 수 없었다.
최근 모바일 기기에서 인공지능을 구현하기 위해 다양한 가속기 개발이 이뤄지고 있지만, 기존 연구들은 추론 단계만 지원하거나 단일-심층 신경망 학습에 한정돼 있다.
연구팀은 단일-심층 신경망뿐만 아니라 생성적 적대 신경망과 같은 다중-심층 신경망을 처리할 수 있으면서 모바일에서 학습도 가능한 인공지능 반도체 GANPU(Generative Adversarial Networks Processing Unit)를 개발해 모바일 장치의 인공지능 활용범위를 넓혔다.
연구팀이 개발한 인공지능 반도체는 서버로 데이터를 보내지 않고 모바일 장치 내에서 생성적 적대 신경망(GAN)을 스스로 학습할 수 있어 사생활을 보호를 가능케 하는 프로세서라는 점에서 그 활용도가 기대된다.
모바일 기기에서 저전력으로 다중-심층 신경망을 가속하기 위해서 다양한 핵심 기술이 필요하다. 연구팀이 개발한 GANPU에 사용된 핵심 기술 중 대표적인 기술 3가지는 ▲적응형 워크로드 할당(ASTM, 처리해야 할 워크로드*를 파악해 칩 상의 다중-심층 신경망의 연산 및 메모리 특성에 맞춰 시간·공간으로 나누어 할당함으로써 효율적으로 가속하는 방법) ▲입출력 희소성 활용 극대화(IOAS, 인공신경망 입력 데이터에서 나타나는 0뿐만 아니라 출력의 0도 예측해 연산에서 제외함으로써 추론 및 학습 과정에서의 속도와 에너지효율 극대화) ▲지수부만을 사용한 0 패턴 추측(EORS, 인공신경망 출력의 0을 예측하기 위한 알고리즘으로 인공신경망 입력과 연결 강도(weight)의 부동소수점 데이터 중 지수 부분만을 사용해 연산을 간단히 수행하는 방법)이다.
위의 기술을 사용함으로써 연구팀의 GANPU는 기존 최고 성능을 보이던 심층 신경망 학습 반도체 대비 4.8배 증가한 에너지효율을 달성했다.
연구팀은 GANPU의 활용 예시로 태블릿 카메라로 찍은 사진을 사용자가 직접 수정할 수 있는 응용 기술을 시연했다. 사진상의 얼굴에서 머리·안경·눈썹 등 17가지 특징에 대해 추가·삭제 및 수정사항을 입력하면 GANPU가 실시간으로 이를 자동으로 완성해 보여 주는 얼굴 수정 시스템을 개발했다.
2020.04.06
조회수 16792
-
광 투과 방식의 웨어러블 유연 인장 센서 개발
기계공학과 박인규 교수 연구팀이 신체 동작 및 자세 모니터링에 활용이 가능한 탄소 나노튜브–탄성 중합체 복합소재 광 투과 방식의 웨어러블 유연 인장 센서를 개발했다.
이번 기술을 통해 인체의 다양한 관절 굽힘 동작, 자세, 맥박 및 표정 등 다양한 생체 동작을 연속적으로 측정해, 운동 시 관절부 움직임 자세 교정 및 맥박 측정을 통한 헬스케어 모니터링 시스템 등에 활용할 수 있을 것으로 기대된다.
구지민 박사과정이 1 저자로 참여한 이번 연구는 나노기술 분야 국제 학술지 ‘ACS Applied Materials & Interfaces’ 3월 4일 자 표지 논문에 게재됐다. (논문명: Wearable Strain Sensor Using Light Transmittance Change of Carbon Nanotube Embedded Elastomer with Microcrack)
최근 헬스케어에 대한 관심이 커짐에 따라 웨어러블 유연 센서 개발이 활발히 진행되면서 인체에 적용하는 센서로서의 유연 소재를 기반으로 다양한 전기저항식, 정전용량 방식의 플랫폼을 이용한 인장 센서가 많이 개발되고 있다.
그러나 기존의 전기저항식 센서는 장시간 반복 신호 안정성, 선형성에 한계를 보이며, 정전용량식 센서의 경우 외부 전기장의 영향에 취약하고 센서 민감도가 낮다. 이러한 점을 보완하기 위해 광학 방식의 유연 인장 센서가 개발됐으나 여전히 민감도가 낮다는 한계점이 있다.
문제 해결을 위해 연구팀은 탄소 나노튜브가 함침된 탄성중합체의 인장에 따른 광 투과도 변화 현상을 활용해 수 퍼센트에서 400%에 달하는 넓은 범위의 인장률을 안정적으로 측정할 수 있는 유연 인장 센서를 개발했다.
연구팀이 개발한 센서는 외부 인장에 따라 탄성중합체에 함침된 탄소 나노튜브 필름에 틈이 형성돼 광 투과도를 크게 변화시켜 기존의 광학 방식 인장 센서에 비해 10배 이상의 높은 감도를 가진다. 또한, 1만 3천 회 이상의 인장 변형에도 안정적인 신호 회복을 보이고, 다양한 환경 요인(온도, 습도)에도 안정적인 감지 성능을 보여 웨어러블 기기로 활용할 수 있는 큰 가능성을 보였다.
연구팀은 이러한 성능을 바탕으로 손가락 굽힘 동작을 측정해 이를 로봇 조종에 활용했으며, 3축 센서로 패키징 해 인체 자세 모니터링에 활용했다. 또한, 경동맥 근처의 맥박 모니터링과 발음할 때의 입 주변 근육 움직임 등 미세한 동작도 관찰하는 데 성공했다.
박인규 교수는 “이번 연구에서는 기존의 전기저항식, 정전용량식 및 광학 방식의 유연 인장률 센서가 갖는 한계점을 극복할 수 있는 새로운 플랫폼을 개발했다”라며 “헬스케어, 엔터테인먼트, 로보틱스 등 다양한 분야에 널리 활용할 수 있는 우수한 성능의 웨어러블 센서를 실현했다”라고 말했다.
이번 연구는 한국연구재단의 중견 연구 과제(올인원 스마트 스킨을 위한 웨어러블 멀티센서 시스템 핵심기술 연구)와 선도연구센터지원 사업(초정밀 광 기계기술 연구센터)의 지원을 통해 수행됐다.
2020.04.02
조회수 18315
-
딥러닝 통해 MRI 다중 대조도 영상 복원 기법 개발
바이오및뇌공학과 박성홍 교수 연구팀이 자기공명영상장치(MRI)의 다중 대조도 영상을 복원하기 위한 새로운 딥러닝 네트워크를 개발했다. 이번 연구를 통해 병원에서 반복적으로 획득하는 다중 대조도 MRI 영상을 얻는 시간이 크게 줄어 편의성 증대, 촬영비용 절감 등의 효과를 볼 것으로 기대된다.
도원준 박사가 1 저자로, 서성훈 박사과정이 공동 1 저자로 참여한 이번 연구는 우수성을 인정받아 국제 학술지 ‘메디컬 피직스 (Medical Physics)’ 2020년 3월호 표지 논문으로 게재됐다.
일반적으로 임상적 환경에서 MRI 촬영은 정확한 진단을 위해 두 개 이상의 대조도로 진행돼 촬영시간이 길어진다. 이에 따라 MRI 촬영비용도 비싸지며 환자들의 불편함을 유발하고, 영상의 품질 역시 환자의 움직임 등으로 인해 낮아질 수 있다.
문제 해결을 보완하기 위해 박 교수 연구팀은 다중 대조도 획득의 특징을 활용한 새로운 딥러닝 기법을 개발해 기존 방식보다 데이터를 적게 수집하는 방식으로 MRI 영상획득 시간을 크게 단축했다. MRI 영상에서 데이터를 적게 수집하는 것은 영상의 주파수 영역에서 이뤄지며, 일반적으로 위상 인코딩의 개수를 줄이는 것으로 영상획득 시간을 감소시키는 것을 뜻한다. 영상획득 시간은 줄어든 인코딩 개수의 비율만큼 줄어들게 되며, 이번 연구에서는 촬영시간을 최대 8배까지 줄여 영상을 복원했다.
연구팀은 임상에서 정확한 진단을 위해 MRI 영상을 다중 대조도로 얻는다는 점을 활용해 복원의 효율을 높였으며, 실제로 데이터를 얻을 당시의 전략을 고려해 네트워크들을 따로 개발했다. 구체적으로 ▲다중 대조도 전체 프로토콜의 촬영시간을 모두 줄이는 네트워크(X-net)와 ▲하나의 프로토콜은 전체 인코딩 데이터를 획득하고 나머지 프로토콜들은 촬영시간을 크게 줄이는 네트워크(Y-net)를 따로 개발해 MRI 다중 대조도 영상을 촬영하는 목적에 맞춰 다르게 최적화했다.
박성홍 교수는 “병원에서 반복적으로 시행하는 다중 대조도 MRI 촬영의 특성을 잘 살려서 성능을 극대화한 딥러닝 네트워크의 개발에 의의가 있다”라며, “병원에서 환자의 MRI 촬영시간을 줄이는 데 도움을 줄 것으로 기대한다”라고 말했다.
서울대학교병원 최승홍 교수와 공동연구로 진행한 이번 연구는 한국연구재단과 한국보건산업진흥원의 지원을 받아 수행됐다.
2020.03.27
조회수 12891