-
정확한 우울증 예측 이제는 손목에서 가능하다
정신질환 팬데믹이 발생했다. 전 세계적으로 약 10억 명이 크고 작은 정신질환을 앓고 있다. 한국도 더욱 심각하여 현재 우울증 및 불안장애 환자는 약 180만 명이며 총 정신질환자는 5년 새 37% 증가하여 약 465만 명이다. 한미 공동 연구진이 웨어러블 기기를 통해 수집되는 생체 데이터를 활용해 내일의 기분을 예측하고, 나아가 우울증 증상의 발현 가능성을 예측하는 기술을 개발했다.
우리 대학 뇌인지과학과 김대욱 교수 연구팀이 미국 미시간 대학교 수학과 대니엘 포저(Daniel B. Forger) 교수팀과 공동연구로 스마트워치로부터 수집되는 활동량, 심박수 데이터로부터 교대 근무자의 수면 장애, 우울감, 식욕부진, 과식, 집중력 저하와 같은 우울증 관련 증상을 예측하는 기술을 개발했다고 15일 밝혔다.
WHO에 따르면 정신질환의 새로운 유망한 치료 방향은 충동성, 감정 반응, 의사 결정 및 전반적인 기분에 직접적인 영향을 주는 뇌 시상하부에 위치한 생체시계(circadian clock)와 수면(sleep stage)에 중점을 두는 것이다.
하지만 현재 내재적 생체리듬(endogenous circadian rhythms)과 수면 상태를 측정하기 위해서는 하룻밤 동안 30분 간격으로 피를 뽑아 우리 몸의 멜라토닌 호르몬 농도 변화를 측정하고 수면다원검사(polysomnography, PSG)를 수행해야 한다. 이 때문에 병원 입원이 불가피하여, 통원 치료를 받는 정신질환자가 대부분인 실제 의료 현장에서 두 요소를 고려한 치료법 개발은 지난 반세기 동안 큰 진전이 없었다. 더불어 검사 비용 또한 무시할 수 없어(PSG: 보험료 적용 없을 시 약 100만원) 사회적 약자는 현재 정신건강치료의 사각지대에 있다.
이러한 문제를 극복하기 위한 해결책은 공간의 제약 없이 실시간으로 심박수, 체온, 활동량 등 다양한 생체 데이터를 손쉽게 수집할 수 있다는 웨어러블 기기다. 그러나 현재 웨어러블 기기는 생체시계의 위상과 같은 의료 현장에서 필요로 하는 바이오마커(Biomarker)의 간접적인 정보만을 제공하는 한계를 가지고 있다.
공동연구팀은 스마트워치로부터 수집된 심박수와 활동량 시계열 데이터 등 매일 변화하는 생체시계의 위상을 정확히 추정하는 필터링(Filtering) 기술을 개발했다. 이는 뇌 속 일주기 리듬을 정밀하게 묘사하는 디지털 트윈(Digital twin)을 구현한 것으로, 이를 활용해 일주기 리듬 교란을 추정하는 데 활용될 수 있다.
이 생체시계 디지털 트윈의 우울증 증상 예측 활용 가능성을 미시간 대학교 신경과학 연구소의 스리잔 센(Srijan Sen) 교수 및 정신건강의학과의 에이미 보너트(Amy Bohnert) 교수 연구팀과의 협업을 통해 검증했다.
협업 연구팀은 약 800명의 교대 근무자가 참여한 대규모 전향 코호트 연구를 수행해 해당 기술을 통해 추정된 일주기 리듬 교란 디지털 바이오마커가 내일의 기분과 우울증의 대표적인 증상인 수면 문제, 식욕 변화, 집중력 저하, 자살 생각을 포함한 총 6가지 증상을 예측할 수 있음을 보였다.
김대욱 교수는 “수학을 활용해 그동안 잘 활용되지 못했던 웨어러블 생체 데이터를 실제 질병 관리에 적용할 수 있는 실마리를 제공하는 연구를 진행할 수 있어 매우 뜻깊다”라며, “이번 연구를 통해 연속적이고 비침습적인 정신건강 모니터링 기술을 제시할 수 있을 것으로 기대된다. 이는 현재 사회적 약자들이 우울증 증상을 경험할 때 상담센터에 연락하는 등 스스로 능동적인 행동을 취해야만 도움을 받을 수 있는 문제를 해결해, 정신건강 관리의 새로운 패러다임을 제시할 것으로 보인다”고 말했다.
뇌인지과학과 김대욱 교수가 공동 제1 저자 및 교신저자로 참여한 이번 연구 결과는 국제 학술지 ‘npj Digital Medicine’ 12월 5일 온라인판에 게재됐다. (논문명: The real-world association between digital markers of circadian disruption and mental health risks) DOI: 10.1038/s41746-024-01348-6
한편 이번 연구는 KAIST 신임교원 연구지원사업, 미국 국립과학재단, 미국 국립보건원, 미국 육군연구소 MURI 프로그램의 지원을 받아 수행됐다.
2025.01.15
조회수 2172
-
뇌 오가노이드의 매우 작은 전기신호도 측정 가능하다
오가노이드*는 인체 조직을 높은 정확도로 모사하기 때문에 질병 모델 개발이나 약물 스크리닝뿐만 아니라 개인 맞춤형 의학에도 활용이 가능하다. 하지만 매우 작은 크기의 전기 신호가 발생하는 심장과 뇌 오가노이드는 전기생리신호를 측정하는 것이 매우 어려웠다. 한국 연구진이 다양한 오가노이드에 손쉽게 적용가능한 전기생리신호 모니터링 시스템을 개발하는 데 성공했다.
*오가노이드 : 인간유래 줄기세포를 기반으로 제작되는 3차원 형태의 세포 집합체로, 동물 실험 모델과 2차원 세포 배양 모델을 대체할 실험 모델로 큰 주목을 받고 있다.
우리 대학 전기및전자공학부 이현주 교수 연구팀이 한국생명공학연구원(원장 김장성, KRIBB) 국가아젠다연구부 손미영 부장 연구팀 및 줄기세포융합연구센터 이미옥 박사 연구팀과 공동 연구를 통해 오가노이드의 비침습적 전기생리신호 측정을 위한 고신축성 돌출형 미세전극 어레이 플랫폼을 개발했다고 14일 밝혔다.
기존의 오가노이드 관련 연구는 유전자 분석을 위주로 진행되어 왔으며, 상대적으로 오가노이드의 기능성에 대한 연구는 미비한 상태다. 효과적인 약물 평가와 정밀한 생물학 연구를 위해서는 오가노이드의 3차원 형태와 상태를 보존하며 그 기능을 실시간으로 모니터링할 수 있는 기술의 개발이 필요하다.
이 중 전기신호가 발생하는 심장과 뇌 오가노이드의 전기생리신호 측정의 경우, 오가노이드의 제작 방식에 따라 그 크기가 수백 마이크로미터(μm)부터 수 밀리미터(mm)까지 다양하고 형태가 불규칙하기 때문에 오가노이드를 파괴하지 않고 외부 표면에 전극을 밀착하여 측정하는 것은 매우 어려운 일이다.
연구팀은 오가노이드의 크기와 형태에 맞춰 스스로 늘어나 그 표면에 밀착할 수 있는 고신축성 돌출형 미세전극 어레이를 개발했다. 또한, 이를 활용해 오가노이드에서 발생하는 전기생리신호의 실시간 변화를 성공적으로 측정하여 평가했다.
연구팀은 미소 전자 기계 시스템(Micro Electro Mechanical Systems; MEMS) 공정을 개발해 서펜타인(Serpentine) 구조 기반의 고신축성 미세전극 어레이를 제작했으며, 전기증착 공정을 통해 돌출형 미세전극을 제작했다. 돌출형 미세전극은 오가노이드에 전극을 좀 더 강하게 밀착시켜 주어 오가노이드에는 손상이 가하지 않으면서도 안정적으로 전기생리신호를 측정할 수 있게 하였다.
이현주 교수는 “다양한 크기의 오가노이드에 활용 가능한 고신축성 돌출형 미세전극 어레이를 개발하여 실시간으로 오가노이드의 상태를 평가할 수 있다. 이번 기술은 신약 개발 시 실험동물을 대체하거나 재생 치료제로써 사용되는 오가노이드의 품질 평가에 바로 적용할 수 있을 것”이라고 말했다.
이번 연구 결과는 전기및전자공학부 김기업 박사과정과 한국생명공학연구원 이영선 박사과정이 제1 저자로 참여했으며, 국제 학술지 ‘어드밴스드 머티리얼스 (Advanced Materials)’지에 지난 12월 15일 자 온라인에 게재됐다.
(논문명: Highly Stretchable 3D Microelectrode Array for Noninvasive Functional Evaluation of Cardiac Spheroids and Midbrain Organoids), DOI: https://doi.org/10.1002/adma.202412953
한편, 이번 연구는 산업통상자원부 3D생체조직칩기반신약개발플랫폼구축기술개발사업 및 과학기술정보통신부 국산연구장비기술경쟁력강화사업, 바이오의료기술개발사업의 지원을 받아 수행됐다.
2025.01.14
조회수 2197
-
신개념 생체형틀법 캠바이오(CamBio) 개발
생물학적 구조는 인공적으로 복제하기 어려운 정도의 복잡한 특징을 가지고 있지만 이러한 생체 구조체를 직접적으로 활용여 제작하는 생체형틀법*은 다양한 분야의 응용으로 사용됐다. KAIST 연구진이 이전에 활용할 수 없었던 생체 구조체를 활용하고, 생체형틀법을 통해 적용될 수 있는 영역을 넓히는데 성공했다.
*생체형틀법: 바이러스부터 우리의 몸을 구성하는 조직과 장기에 이르기까지 이러한 생체 구조의 기능을 활용하고자, 생체 구조를 형틀로 사용하여 기능성 구조재료를 만들어내는 방식
우리 대학 신소재공학과 장재범, 정연식 교수 공동연구팀이 생체 시료 안의 특정 내부 단백질을 활용하고 높은 조정성을 지닌 생체형틀법을 개발했다고 10일 밝혔다.
기존의 생체형틀법 방법은 주로 생체시료의 외부 표면만을 활용하거나, 한정된 치수와 샘플 크기로 인해 다양한 생체 구조체들의 구조-기능 상관성을 활용하여 기능성 나노구조체를 제작하기 어렵다는 한계를 가지고 있다.
이런 문제를 해결하고자 연구팀은 다양한 생체 내부 구조체를 활용하고, 높은 조정성을 가지는 생체형틀법을 연구했다.
연구 결과, 다양한 단백질들로 구성된 생체 시료 안에서 특정한 단백질 구조체로부터 선택적으로 다양한 특정 및 크기를 가진 나노구조체를 합성할 수 있는 ‘캠바이오(CamBio, Conversion to advanced materials via labeled Biostructure’라는 생체형틀법을 개발했다. 캠바이오(CamBio) 방식에서는 여러 제조·생물 분야 기술들을 병합하여 생체 시료에서 제작할 수 있는 기능성 나노구조체의 높은 조정성을 확보했다.
반복적으로 항체를 붙이는 기술, 세포를 일정한 모양으로 배열하는 기술, 그리고 조직을 얇게 자르는 기술을 통해, 캠바이오(CamBio)로 만든 기능성 나노구조체가 물질 감지에 사용되는 표면증강 라만산란(SERS)* 기판에서 향상된 성능을 보였다.
*표면증강 라만산란(SERS): 빛을 이용해 아주 적은 양의 물질도 감지할 수 있는 기술로, 금이나 은 같은 금속 표면에서 특정 물질이 빛과 반응하며 신호가 크게 증폭되는 원리
연구팀은 세포 속 골격 단백질을 이용해 만든 나노입자 체인은 반복적으로 항체를 붙이는 과정을 통해 구조를 더 자유롭게 조정할 수 있었고, 최대 230% 향상된 SERS 성능을 보였다.
또한, 연구팀은 세포 내부의 구조체를 활용하는 것에서 확장해 고기 내부에 있는 근육 조직을 동결 절편기를 활용해 시료를 얻고, 이에 캠바이오 과정을 수행해 금속 입자들로 이루어진 주기적인 밴드를 가지고 있는 기판 제작에도 성공했다. 이와 같은 방식으로 기판을 제작하는 것은 생체 시료를 활용해 대면적으로 제작할 수 있을 뿐만 아니라 가격 경쟁력을 가지는 방식임을 보인다.
연구팀이 개발한 캠바이오는 활용될 수 있는 생체시료의 범위를 넓힘으로써 다양한 연구 분야가 직면한 문제를 해결할 방식으로 생체형틀법이 사용될 것으로 기대된다.
제1 저자인 송대현 박사과정은 “캠바이오를 통해서 더욱 다양한 단백질 구조체를 활용할 수 있는 생체형틀법을 포괄적으로 적립했다”라며 “유전자 편집이나 3D 바이오프린팅과 같은 최신 생물 기술 및 새로운 물질 합성 기술과 결합이 계속된다면, 다양한 응용 분야에 생체 구조가 활용될 수 있을 것이다”라고 말했다.
신소재공학과 송대현 박사과정, 송창우, 조승희 박사가 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스드 사이언스(Advanced Science )'에 지난해 11월 13일 자 온라인 공개됐다. (논문명 : Highly Tunable, Nanomaterial-Functionalized Structural Templating of Intracellular Protein Structures Within Biological Species) https://doi.org/10.1002/advs.202406492
한편 이번 연구는 과학기술정보통신부 과학난제도전융합연구개발사업 (한국연구재단 2024), 과학기술정보통신부 선도연구센터 (웨어러블 플랫폼소재 기술센터, 한국연구재단 2023), 과학기술정보통신부 선도연구센터 (글로벌 생체융합 인터페이싱 소재 센터, 한국연구재단 2024), 과학기술정보통신부 국가생명연구자원 선진화사업 (바이오 데이터 품질선도센터, 한국연구재단 2024) 등의 지원을 받아 수행됐다.
2025.01.10
조회수 1987
-
기존 양자점 뛰어넘는 적외선 센서 기술 개발
최근 양자 큐비트 기술 분야에서는 양자 상태를 확보하기 위해 결정질 반도체를 활용한 아발란체 광다이오드 소자*들이 활용되고 있으나, 높은 열잡음으로 인해 극저온 구동이 필수적이며, 적외선 대역에서 높은 탐지 효율을 갖는 소재의 부재로 기술적 한계에 직면했다. 우리 연구진이 양자점 소재가 차세대 양자 기술로 활용될 돌파구를 제시했다.
*아발란체 광다이오드 소자: 매우 미세한 빛을 증폭하여 감지하는 고성능 센서 소자로서 야간 투시경이나 자율주행차, 우주 관측, 양자통신 등에 사용
우리 대학 전기및전자공학부 이정용 교수 연구팀이 콜로이드 양자점을 활용해 하나의 적외선 광자 흡수를 통하여 85배의 전자를 생성할 수 있는 아발란체 전자 증폭 기술*을 개발하여 기존 기술의 한계를 뛰어 넘는 감도를 달성했다고 8일 밝혔다.
*아발란체 전자 증폭: 기술 강한 전기장이 인가된 반도체에서 전자가 가속되어 인접 원자와 충돌을 통해 다수의 전자를 생성하는 신호 증폭 기술
화학적으로 합성된 반도체 나노입자인 콜로이드 양자점은 용액 기반 반도체로서 적외선 센서의 실용적인 후보로 주목 받고 있으며, 결정질 반도체와 다른 에너지 구조를 가져 열잡음 생성을 억제하는 장점이 있지만, 전하 이동도가 낮고, 양자점 표면에서 자주 발생하는 불완전 결합 때문에 전하의 재결합이 촉진되어 전하 추출이 저하되는 문제가 있었다.
연구진은 강한 전기장을 인가해 전자를 가속하여 운동에너지를 얻고, 인접 양자점에서 다수의 추가 전자들을 생성함으로써 상온에서 적외선을 조사 시 신호가 85배 증폭되고 1.4×1014 Jones 이상의 탐지 감도를 가지는 소자를 구현하였는데 이는 일반 야간 투시경보다 수만 배 정도 높은 감도를 보여준다.
적외선 광검출기는 자율주행차부터 양자컴퓨팅에 이르기까지 다양한 응용 분야에서 핵심적인 역할을 하지만, 기존 양자점 기반 기술은 민감도와 잡음 문제로 한계가 있었다.
이번 연구는 새로운 패러다임 전환을 불러올 기술이 될 것으로 기대되며, 양자 기술이 관련된 핵심 원천 기술을 선점함으로써 글로벌 양자 기술 시장을 대한민국이 주도할 수 있는 중요한 기술적 토대를 확보했다고 평가받고 있다.
제1 저자인 김병수 박사는 “양자점 아발란체 소자는 기존에 보고된 바 없는 신개념 연구 분야로서, 본 원천 기술을 통해 글로벌 자율주행차와 양자 컴퓨팅, 의료 영상 시장 등을 선도할 벤처 기업 육성을 주도할 수 있을 것”이라고 말했다.
KAIST 정보전자연구소 김병수 박사와 IMEC의 이상연 박사 및 한국세라믹기술원의 고현석 박사가 공동 제1 저자로 참여한 이번 연구는 국제 최상위 학술지 `네이처 나노테크놀로지(Nature Nanotechnology)' 12월 18일 자 온라인판에 게재됐다. (논문명 : Ultrahigh-gain colloidal quantum dot infrared avalanche photodetectors DOI: https://doi.org/10.1038/s41565-024-01831-x)
한편 이번 연구는 한국연구재단의 지원을 받아 수행됐으며, 주요 지원 사업으로는 나노및소재기술개발사업(경쟁형), 미래디스플레이 전략연구실사업, 개인기초연구사업 중견연구가 있다.
2025.01.08
조회수 2481
-
면역관문억제제의 한계를 극복할 수 있는 수지상세포 기반 면역치료
우리 대학 생명과학과 강석조 교수 연구팀이 성장인자 FLT3L에 의해 종양 내에서 증대된 제1형 수지상세포(cDC1, conventional dendritic cell type 1)가 종양침윤 항암 CD8+ T 세포의 기능과 클론의 다양성을 향상한다고 7일 밝혔다.
제1형 수지상세포는 종양 유래 항원을 림프절로 운반하여 CD8+ T 세포에 제시하고, IL-12를 비롯한 사이토카인(cytokine)을 생성하여 T 세포의 항종양 면역반응을 촉진한다고 이해되어 왔다. 하지만, 종양내에 존재하는 제1형 수지상세포가 항종양 CD8+ T 세포의 분화와 이들의 다양성에 어떤 영향을 미치는 지는 알려진 바가 없다.
강 교수 연구팀은 종양미세환경 내 CD8+ T 세포를 asialoGM1 (asGM1) 발현을 기반으로 두 집단으로 구별하고, 기존 연구에서 밝혀진 종양 침윤 T 세포 아형(subset)과 비교한 결과, asGM1neg CD8+ T 세포는 자가재생능을 갖는 Tpex (precursor exhausted T cells)와 전사체가 유사하고, asGM1pos CD8+ T 세포는 탈진된(exhausted) 세포와 유사함을 확인했다.
연구팀은 종양 내에 수지상세포의 성장인자인 FLT3L를 발현시켜 수지상세포를 증대시키고 활성화하였을 때, asGM1neg CD8+ T 세포의 Tpex 특성은 더욱 강화되었으며, 동시에 asGM1neg CD8+ T 세포가 asGM1pos CD8+ T 세포로의 분화가 촉진되었는데, 이 때 asGM1pos CD8+ T 세포가 작용 T 세포(effector T cell)의 기능을 확보하면서 항암 면역기능이 향상됨을 확인하였다. 특히 연구팀은 이러한 분화가 제1형 수지상세포의 확장 및 활성으로 분비되는 IL-12에 의해 매개됨을 밝혔다. 연구팀은 나아가 항암치료의 혁신을 가져온 면역관문억제제인 PD-1 억제제 처리가 공통적으로 asGM1을 발현하는 작용 T 세포로의 분화를 유도함을 보였다.
하지만, 본 연구진은 놀랍게도 종양 내 FLT3L 발현은 PD-1 억제제와는 전혀 다른 T 세포 다이내믹스를 통하여 항종양 T 세포 클론의 다양성을 증대시킴을 밝혔다. 이러한 T 세포 수용체의 클론 다양성 증대는 면역관문억제제가 일부 환자에게만 작용하는 제한점을 극복하는 중요 전략이 될 것임을 시사하였다.
강석조 교수는 “본 연구는 제1형 수지상세포의 증대를 통하여 감춰져있던 종양항원의 제시를 증가시켰고, 이를 인식하는 새로운 항종양 CD8+ T 세포가 활성됨을 보인 연구”라고 언급하면서, “본 연구 결과는 면역관문억제제의 항암면역 활성기전과 차별적인 기전을 제시함으로써 합리적인 병용요법의 논거를 제공할 것으로 기대한다”라고 전했다.
이번 연구 결과는 국제 학술지 `셀 리포트 (Cell Reports)’에 11월 30일 字 온라인판에 게재됐다 (논문명: Flt3L enhances clonal diversification and selective expansion of intratumoral CD8+ T cells while differentiating into effector-like cells). KAIST 생명과학과 전동민 박사(現 아이엠바이오로직스), 박지연 박사가 공동 제1저자로 연구를 주도하였고, 이슬기 박사과정 학생과 의과학대학원의 박종은 교수와 김효재 박사(現 아산병원)가 함께 참여하였다.
이번 연구는 한국연구재단의 바이오∙의료기술개발사업과 선도연구센터지원사업의 지원을 받아 수행됐다.
2025.01.07
조회수 1689
-
강유전체 활용 차세대 반도체 메모리 혁신
강유전체는 메모리 소자에서 전하를 잘 저장하기 때문에 "전기를 기억하는 소재"와 같다는 특성으로 차세대 반도체 기술 개발에 있어 핵심 소재로 부각되고 있다. 우리 연구진이 이러한 강유전체 소재를 활용해 현재 메모리 반도체 산업의 양대 산맥인 디램(DRAM)과 낸드 플래시(NAND Flash) 메모리의 한계를 극복한 고성능, 고집적 차세대 메모리 소자를 개발하는데 성공했다.
우리 대학 전상훈 교수 연구팀이 하프니아 강유전체 소재*를 활용한 차세대 메모리 및 스토리지 메모리 기술을 개발했다고 6일 밝혔다.
*하프니아 강유전체 소재: 비휘발성 절연막으로, CMOS 공정 호환성, 동작 속도, 내구성 등의 우수한 물리적 특성을 바탕으로 차세대 반도체의 핵심 소재로 활발하게 연구되고 있는 물질
디램 메모리는 우리가 스마트폰, 컴퓨터, USB 등에서 사용하는 데이터를 저장하는 휘발성 메모리다. 휘발성 특성으로 인해, 외부 전력이 끊어지면 저장된 데이터가 손실되지만, 공정 단가가 낮고 집적도가 높아 메인 메모리로 활용돼 왔다. 하지만 디램 메모리 기술은 소자의 크기가 작아질수록 디램 소자가 정보를 저장하는 저장 커패시터의 용량도 작아지게 되고, 더 이상 메모리 동작을 수행하기 어렵다.
연구팀은 저장 커패시터는 정보를 저장하는 디램 기술의 한계를 극복하고자 이러한 저장 커패시터가 물리적으로 작은 면적에서도 높은 저장 용량을 달성할 수 있도록 개선하는 데에 집중했다. 이를 위해 하프니아 강유전체 기반 극박막의 고유전율 물질을 개발했다. 연구 결과 현재까지 보고된 디램 커패시터 중, 가장 낮은 2.4 Å (머리카락 굵기의 약 10만분의 1)의 SiO2(실리콘 산화물) 유효 두께와 같이 얇은 층에 저장하는 것을 달성했다.
또한 연구팀은 디램 메모리 기술을 잠재적으로 대체할 수 있는 후보군으로 주목받고 있는 강유전체 메모리 FRAM 메모리도 개발하였다. 현 DRAM 수준의 1V 이하의 낮은 전압에서도 비 휘발성 정보 저장과 삭제가 확실히 이루어지는 기술은 에너지 효율성을 크게 향상시켜 차세대 메모리에 필수적이다.
디램 메모리 기술에 이어 연구팀은 낸드 플래시 메모리의 한계를 극복할 하프니아 강유전체 기반의 차세대 메모리 기술을 개발했다. 낸드 플래시 메모리는 우리가 스마트폰, 컴퓨터, USB 등에서 사용하는 데이터를 저장하는 비휘발성 메모리이다. 현재, 낸드플래시 메모리의 저장 용량을 늘리기 위해 여러 층을 쌓아 올리는 방식으로 발전해 왔지만, 물리적인 한계로 인해 500층, 1000층 이상으로 쌓기가 어려운 상황이다.
이에 연구팀은 강유전체라는 새로운 소재를 낸드 플래시에 적용하는 방식을 연구한 결과, 소재 계면에 TiO2 층이라는 얇은 층을 추가함으로써 1000단 이상의 수직 적층 3차원이며 외부 환경의 간섭에도 데이터를 안정적으로 유지하도록 설계했다.
마지막으로 기존의 낸드 플래시 기술에서 산화물 채널 기반의 메모리 소자는 데이터를 완전히 지울 수 없는 한계가 있어 새로운 구조의 고성능 산화물 채널 기반 낸드 플래시 소자를 개발하는 데 성공했다. 이 소자는 더 많은 데이터를 저장할 수 있고 데이터를 10년 이상 안정적으로 보존할 수 있는 특징을 가진다.
전상훈 교수는 “이번 연구 결과들은 스케일링 이슈로 인해 답보상태에 있는 메모리 반도체 기술 개발에 돌파구가 되는 기술이 될 것으로 판단되며, 향후 다양한 인공지능 컴퓨팅 및 엣지 컴퓨팅 기술 상용화에 기여할 수 있을 것”이라고 설명했다.
벤카테스왈루 가담(Venkateswarlu Gaddam) 연구 교수, 김기욱 박사 과정, 조홍래 박사 과정, 황정현 박사 과정, 이상호 박사 과정, 최효준 석사 과정, 강현준 석사 과정이 공동 제1 저자로 참여했고 이러한 연구 성과를 국제적으로 인정받아 반도체 산업계 최고 수준의(Top-tier) 컨퍼런스에 2024년 5편의 논문을 발표했다. (2024 VLSI 2편, 2024 IEDM 3편)
- In-depth analysis of the Hafnia ferroelectrics as a key enabler for low voltage & QLC 3D VNAND beyond 1K layers: Experimental demonstration and modeling VLSI 24 DOI: 10.1109/VLSITechnologyandCir46783.2024
- Low-Damage Processed and High-Pressure Annealed High-k Hafnium Zirconium Oxide Capacitors near Morphotropic Phase Boundary with Record-Low EOT of 2.4 Å & high-k of 70 for DRAM … VLSI 24 DOI: 10.1109/VLSITechnologyandCir46783.2024
- Unveiling the Origin of Disturbance in FeFET and the Potential of Multifunctional TiO2 as a Breakthrough for Disturb-free 3D NAND Cell: Experimental and Modeling https://iedm24.mapyourshow.com/8_0/sessions/session-details.cfm?scheduleid=4
- Oxide Channel Ferroelectric NAND Device with Source- tied Covering Metal Structure: Wide Memory Window (14.3 V), Reliable Retention (> 10 years) and Disturbance Immunity (△Vth ≤ 0.1 V) for QLC Operation
https://iedm24.mapyourshow.com/8_0/sessions/session-details.cfm?scheduleid=47
- Design Methodology for Low-Voltage Operational (≤1 V) FRAM Cell Capacitors and Approaches for Overcoming Disturb Issues in 1T-nC Arrays: Experimental & Modeling:
https://iedm24.mapyourshow.com/8_0/sessions/session-details.cfm?scheduleid=54
참고로, IEEE VLSI와 IEEE IEDM 학회는 삼성전자, SK 하이닉스, 마이크론, 인텔 등 굴지의 반도체 업계와 세계적인 석학들이 최신 기술 개발을 공유하고 미래 기술의 지향점을 논의하는 학회로 반도체 올림픽이라고 불린다.
한편, 이 연구는 삼성전자, 한양대학교와 협업을 통해서 수행되었으며, 한국산업기술평가원 (KEIT) 민관공동투자 반도체 고급인력양성사업, 과학기술정보통신부 혁신연구센터(IRC) 지원 사업, 삼성전자(Samsung Electronics)의 지원을 받아 진행됐다.
2025.01.06
조회수 2790
-
실리콘 한계 넘는 양극성 반도체 소자 개발
차세대 2차원 층상구조 나노소재로 주목받는 인듐 셀레나이드(InSe)는 실리콘 반도체보다 전자 이동도가 뛰어나고 포화 속도가 두 배 이상 빠른 장점을 가지지만, 주로 N형 반도체로만 사용되어 왔다. 우리 연구진이 이를 극복하고 N형 및 P형, 양극에 우수한 성능을 제공하는 인듐 셀레나이드 기반 기술을 개발하여 차세대 전자 소자의 설계 및 상용화 가능성을 크게 앞당길 것으로 기대된다.
우리 대학 전기및전자공학부 이가영 교수 연구팀이 나노 반도체 인듐 셀레나이드(InSe)* 기반 혁신적인 양극성 다기능 트랜지스터를 개발했다고 30일 밝혔다.
*인듐 셀레나이드(InSe): 인듐과 셀레늄으로 이루어진 무기 화합물 반도체로 2차원 층간 결합을 이루고 있음
인듐 셀레나이드는 N형 반도체로만 사용되어 왔는데, 이는 P형 반도체 및 상보적 회로 구현에 필요한 양(P) 전하를 띄는 정공*을 유도하기 어렵다는 문제 때문으로 이는 상용화의 큰 걸림돌로 작용해 왔다.
*정공: P형 트랜지스터 구현에 필요한 양 전하를 띠는 입자
이가영 교수 연구팀은 정공 유도를 위해 추가적인 공정이나 다른 물질을 접목하는 다양한 시도에도 해결되지 못했던 문제점을 새로운 소자 구조 설계를 통해 해결했다. 이번에 공개된 양극성 반도체 소자는 N형과 P형 트랜지스터에 모두 적용이 가능하다.
연구팀은 인듐 셀레나이드 하부에 전극을 배치하고 금속-반도체 접합 특성을 개선함으로써, 전자와 정공이 선택적으로 흐를 수 있는 양극성 특성을 구현하는 데 성공했다.
특히, 이번 연구에서는 N형 및 P형 전류 꺼짐/켜짐 비가 모두 109(10억) 이상에 달하는 우수한 성능을 기록했다. 실리콘 반도체 소자의 경우 일반적으로 108 이하 꺼짐/켜짐 비의 단극성 구동을 띄며, N형과 P형 구동이 동시에 가능한 양극성 2차원 반도체*의 경우도 N형과 P형 꺼짐/켜짐 비가 동시에 108 이상인 경우는 없었다.
*2차원 반도체: 2차원 방향으로만 강한 원자 결합을 이루며 수직 방향으로는 층상구조를 가져 층상구조 반도체라고 불리기도 함
이가영 교수는 “다기능 소자들은 일반적으로 복잡한 공정 과정과 구조를 요구해 제작과 집적에 어려움이 있다. 그러나 이번 연구에서는 간단한 부분 게이트 구조를 도입해 하나의 소자에서 다양한 기능을 구현할 수 있는 다기능 소자를 제작하는 데 성공했다”며 “이 기술은 공정 효율성을 높이고 회로 설계 유연성 향상에 기여할 것으로 기대된다”고 설명했다.
또한 “이번 연구는 인듐 셀레나이드를 기반으로 한 P형 응용 가능성을 새롭게 밝혔으며, 궁극적으로는 상보적 다기능 시스템으로서의 활용 가능성을 보여준다”고 덧붙였다.
전기및전자공학부 김민수 석박통합과정, 염동주 석사과정, 석용욱 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 나노 물리 분야 저명 국제 학술지 ‘나노 레터스(Nano Letters)’에 2024년 12월 18일 출판됐으며 동시에 저널 표지 논문으로 채택됐다. (논문명: Superior P-Type Switching in InSe Nanosheets for Complementary Multifunctional Systems, https://doi.org/10.1021/acs.nanolett.4c04624)
한편 이번 연구는 한국기초과학지원연구원 국가연구시설장비진흥센터, 한국연구재단 우수연구사업, KAIST 도약연구(UP) 사업, 그리고 삼성전자의 지원을 받아 수행됐다.
2024.12.30
조회수 2538
-
KAIST 설명가능 인공지능연구센터, 플러그앤플레이 방식의 설명가능 인공지능 프레임워크 공개
KAIST 설명가능 인공지능연구센터(센터장 최재식 교수)는 별도의 복잡한 설정이나 전문 지식 없이도 손쉽게 AI모델에 대한 설명성을 제공할 수 있는 플러그앤플레이(Plug-and-Play) 방식의 설명가능 인공지능 프레임워크를 개발해, 이를 27일 오픈소스로 공개했다.
설명가능 인공지능(Explainable AI, 이하 XAI)이란 AI 시스템의 결과에 영향을 미치는 주요 요소를 사람이 이해할 수 있는 형태로 설명해주는 제반 기술을 말한다. 최근 딥러닝 모델과 같이 내부 의사 결정 프로세스가 불투명한 블랙박스 AI 모델에 대한 의존도가 커지면서 설명가능 인공지능 분야에 대한 관심과 연구가 증가했다. 그러나 지금까지는 연구자와 기업 실무자들이 설명가능 인공지능 기술을 활용하는 것이 몇 가지 이유로 쉽지 않았다. 우선, 딥러닝 모델의 유형별로 적용 가능한 설명 알고리즘들이 서로 달라서 해당 모델에 적용할 수 있는 설명 알고리즘이 무엇인지 알기 위해서는 XAI에 대해 어느 정도 사전지식이 필요하기 때문이다. 두번째로, 대상 모델에 적용할 수 있는 설명 알고리즘을 파악하더라도, 각 알고리즘마다 다른 하이퍼 파라미터를 어떻게 설정해야 최적의 설명 결과를 얻을 수 있을지 이해하는 것은 여전히 어려운 과제이다. 세번째로는 적용된 다수의 설명 알고리즘들 중에 어떤 알고리즘이 가장 정확하고 신뢰할 수 있는 것인지를 정량적으로 평가하기 위해서 또다른 툴을 이용해야 하는 번거로운 과정이 뒤따라야 했다. 이번에 오픈소스로 공개된 플러그앤플레이 설명가능 인공지능 프레임워크(Plug-and-Play XAI Framework, 이하 PnPXAI 프레임워크)는 이러한 어려움을 해결하고자 개발되었으며, AI의 신뢰성이 중요한 다양한 AI시스템 연구개발 현장에서 유용한 도구로 활용될 것으로 기대된다.
PnPXAI 프레임워크는 적용 가능한 설명알고리즘을 자동으로 추천하기 위해 모델 구조를 인식하는 탐지모듈(Detector)과 적용가능한 설명 알고리즘을 선별하는 추천모듈(Recommender), 설명 알고리즘을 최적화하는 최적화모듈(Optimizer) 및 설명 결과 평가모듈(Evaluator)로 구성되어 있다. 사용자는 ‘자동설명(Auto Explanation)’ 모드에서 대상 모델과 데이터만 입력하면 설명 알고리즘의 시각적 결과(히트맵 또는 모델 결과에 영향을 끼친 중요한 속성들)와 설명의 정확도를 한번에 확인할 수 있다. 사용자들은 자동설명 모드를 통해 XAI에 대한 기본지식과 사용법을 숙지한 이후에는 프레임워크에 포함된 설명 알고리즘과 평가지표를 원하는 방식으로 자유롭게 활용할 수 있다.
현재 프레임워크에는 이미지, 텍스트, 시계열, 표 데이터 등 다양한 데이터유형을 지원하는 설명 알고리즘들이 제공되고 있다. 특히, 서울대학교(2세부 연구책임자 한보형교수)와 협력을 통해 뇌MRI 기반 알츠하이머병 진단모델에 대한 반예제 설명 알고리즘을 지원하였고, 서강대학교(3세부 연구책임자 구명완교수)와 공동연구를 통해 마비말장애 진단모델에 PnPXAI 프레임워크의 설명 알고리즘을 적용하여 AI 기반 의사결정지원 시스템에서 설명성을 성공적으로 구현하기도 했다. 또한, 한국전자통신연구원(4세부 연구책임자 배경만박사)에서 개발한 LLM(대규모언어모델) 생성결과의 사실성을 검증하는 알고리즘을 프레임워크에 통합하는 등 지원 범위를 지속적으로 확장하고 있다.
KAIST 설명가능 인공지능연구센터 최재식 센터장은 “기존 설명가능 인공지능 도구들의 한계를 해결하고, 다양한 도메인에서 실질적으로 활용하기 쉬운 도구를 제공하기 위해 국내 최고의 연구진과 수년간 협력한 성과”라며, “이 프레임워크 공개를 통해 AI 기술의 신뢰성을 높여 상용화에 기여하는 것은 물론, 우리 연구센터가 설명가능 인공지능 분야의 글로벌 연구 생태계를 선도하는 중요한 발판을 마련했다는 점에서 의의가 있다”고 밝혔다.
PnPXAI 프레임워크는 현재 국내 및 국제특허 출원을 완료했으며, Apache 2.0 라이선스를 준수하는 경우 누구나 깃허브 페이지[링크]를 통해 사용할 수 있다. 한편, 이 연구는 2022년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구이다. (No. RS-2022-II220984, 플러그앤플레이 방식으로 설명가능성을 제공하는 인공지능 기술 개발 및 인공지능 시스템에 대한 설명 제공 검증)
2024.12.27
조회수 2699
-
‘호버바이크’, 미래 하늘을 누비다
호버바이크는 기존 교통 체계를 보완할 수 있는 차세대 모빌리티로서 고중량 탑재 및 장거리 비행을 통해 교통 혼잡이 없는 공중 교통 수단으로 활용될 수 있다. 국내 연구진이 고성능 호버바이크의 개발을 통해 해외 기술 의존을 탈피한 국내 자체 개발의 유/무인 복합 하이브리드 기체를 개발하여 국내 PAV* 및 UAM 시장 발전에 이바지할 것으로 기대된다.
*PAV: Personal Aerial Vehicle, 개인용 비행체. 미래 도시형 항공 교통(UAM, Urban Air Mobility)의 핵심 요소로, 차세대 교통 체계의 중요한 부분을 구성함.
우리 대학 항공우주공학과 방효충 교수 연구팀이 유/무인 운용 가능한 고신뢰성의 다목적 수직 이착륙 호버바이크 핵심 기술을 성공적으로 개발했다고 27일 밝혔다.
이번 연구는 항공우주공학과 한재흥 교수, 이지윤 교수, 안재명 교수, 최한림 교수, 이창훈 교수, 한서대학교 무인항공기학과 이동진 교수, 동아대학교 전자공학과 박종오 교수 연구팀이 참여하였다.
연구팀은 고성능 호버바이크의 개발을 위해 다목적 비행체 최적설계, 하이브리드 추진 시스템, 고신뢰성 정밀항법 및 비행제어 시스템, 자율비행 및 고장 감지 관련 주요 기술을 확보하였다.
호버바이크 플랫폼은 배터리 기반 드론의 단점을 극복하고자 가솔린 엔진 기반의 하이브리드 시스템을 도입하여, 해외 기술 수준 대비 약 60% 우수한 성능 및 최대 탑재 중량을 달성하였다. 이를 통해 민수용으로 긴급 물자 배송, 물류, 구조 활동과 군수용으로 군수품 수송 및 임무 지원 등의 다양한 분야에서 활용이 가능할 것으로 기대된다.
고신뢰성 정밀 항법 기술을 이용하여 GPS가 없거나 신호가 약한 환경에서도 안정적인 비행이 가능하도록 DGPS/INS* 기반의 다중 센서 융합 기술을 구현하여 항법 시스템을 적용하였다.
*DGPS/INS: Differential GPS(DGPS)의 높은 정확도와 관성항법장치(Inertial Navigation System, INS)을 결합한 항법 솔루션
또한, 고신뢰성 비행제어 기술을 개발하여 탑재체 및 바람 등의 외란 요소, 모델의 불확실성 하에서도 신뢰도 높은 기동이 가능하며 고장 검출 기술도 개발하였다.
고신뢰성 자율비행 시스템을 구성하여 자동착륙 안전지역을 선정한 후 헬리패드에 자동 착륙하는 유도 기법을 높은 정확도로 구현하였다. 장애물 회피 및 자동 착륙 자율비행 기술을 통해 복잡한 환경에서도 안정적인 운용이 가능하다.
연구 책임자인 방효충 교수는 "고신뢰성 비행 제어와 정밀 항법 기술을 통해 다양한 환경에서 호버바이크의 높은 실용성을 입증했다”라며“호버바이크는 PAV 및 미래 비행체로 이어지는 주요 길목을 제공할 수 있을 뿐만 아니라 기존 드론 기술을 몇 단계 뛰어넘을 수 있는 유망한 연구 성과이다. 이번 성과는 과제 실무자인 장광우/안형주 박사과정을 비롯한 8개의 공동 연구팀이 5년 동안 함께한 노력이 모여 이룬 결과라 더욱 뜻깊다”라고 강조했다.
이번 연구는 국방 및 민간 분야에서 새로운 개념의 비행체로 활용될 수 있는 유/무인 다목적 호버바이크의 핵심 기술을 확보하기 위한 것으로, 2019년 방위사업청 미래도전국방기술 연구개발사업으로 시작되어 국방과학연구소의 관리하에 2024년 마무리되었다. 향후 2025년 2월 26~28일 부산 벡스코에서 개최되는 2025 드론쇼코리아(DSK2025)에서 최초로 전시될 예정이다.
2024.12.27
조회수 2303
-
기존보다 5배 정밀하게 생체 임피던스 측정 가능
‘인바디(InBody)’란 기기로 체성분을 분석하는 것은 이제 우리의 일상이 되었다. 이렇듯 몸에 교류 전류를 흘릴 때 전류 흐름을 방해하는 인체의 저항 특성인 생체 임피던스* 측정 기술은 웨어러블 기기에 매우 중요하다. 국제 공동 연구진이 단 두 개의 전극만을 사용하면서도 기존보다 5배 정밀하게 생체 임피던스를 측정할 수 있는 기술을 개발해 화제다.
*생체 임피던스 측정 기술 : 생체 조직의 전기적 특성을 기반으로 체내의 다양한 생리적 상태를 모니터링할 수 있는 핵심 기술
우리 대학 전기및전자공학부 제민규 교수 연구팀이 뉴욕대학교 아부다비(New York University Abu Dhabi, NYUAD) 하소명 교수 연구팀과 공동연구를 통해 웨어러블 기기에 최적화된 고해상도 생체 임피던스 측정 기술을 개발했다고 26일 밝혔다.
생체 임피던스 측정 기술로 잘 알려진 기존 4개 전극 시스템*에 비해 2개 전극 기반 측정 시스템**은 소형화가 쉽다는 장점으로 웨어러블 기기에 적합하다고 평가받고 있다.
*4개 전극 시스템: 생체 임피던스를 측정하기 위해 네 개의 전극을 사용하는 시스템으로 웨어러블 기기의 소형화에 불리함
**2개 전극 시스템: 단 두 개의 전극만을 사용하여 생체 임피던스를 측정할 수 있는 시스템으로 웨어러블 기기의 소형화에 적합함
하지만, 2개 전극 시스템은 전극 자체의 임피던스 값이 포함된 신호를 측정하기 때문에 넓은 입력 범위가 필요하며, 측정하는 임피던스 값에 비례해 정확한 측정을 방해하는 잡음이 증가하는 한계로 활용이 어려웠다.
연구팀은 기존 2개 전극 시스템의 기술적 한계를 극복하기 위해 전극 자체의 임피던스 값인 베이스라인과 그에 의해 발생하는 측정 잡음을 기존보다 훨씬 효과적으로 제거할 수 있는 반도체 회로 설계 기술을 새롭게 개발했다. 이번에 제안된 기술을 적용한 시스템은 기존 기술 적용 시 필요로 하던 별도의 전류 생성 회로를 없앨 수 있어 전력 소모 역시 줄일 수 있다.
이런 기술을 통해 생체 임피던스 측정 과정에서 발생하는 임피던스의 위상 및 크기 변화에 따른 잡음 문제를 효과적으로 해결해, 높은 정밀도와 효율성을 동시에 확보했다.
제민규 교수(교신저자)는 “이번 연구로 개발된 생체 임피던스 측정 기술은 다양한 임피던스 모델에 대해 기존의 방식 대비 최대 약 5배 가량 우수한 잡음 성능을 달성하였음을 입증했다”면서 “향후 생체 임피던스 측정을 활용한 개인 맞춤형 건강 관리와 질환 예측 기술 발전에 크게 기여할 것”이라고 말했다.
우리 대학 전기및전자공학부 최해담, 천송이 박사과정이 공동 제1 저자, 제민규 교수와 NYUAD 하소명 교수가 공동 교신 저자로 참여했으며 해당 논문은 세계 최고 권위의 반도체 집적회로 및 시스템 학회인 ‘ISSCC (International Solid-State Circuits Conference)’에 발표됐으며, 동 분야 세계 최고 학술지인 ‘IEEE JSSC (Journal of Solid-State Circuits)’의 초청을 받아 지난 11월 게재됐다.
IEEE Journal of Solid-State Circuits (2024), DOI:10.1109/JSSC.2024.3439865
(논문명: A Bio-Impedance Readout IC With Complex-Domain Noise-Correlated Baseline Cancellation)
한편 이번 연구는 NYUAD (New York University Abu Dhabi)와의 협업으로 진행됐으며, 과학기술정보통신부가 지원한 ‘상시 근골격 모니터링 및 재활을 위한 무자각 온스킨 센서 디바이스 기술’과제와 ‘인간 기능 확장을 위한 생체 신호 센서 기반의 내골격 장치 및 통합 시스템 개발’ 과제를 통해 수행됐다.
2024.12.26
조회수 2426
-
기계공학과 구승범 교수팀, NeurIPS 2024 MyoChallenge 대회 보행 부문 우승
우리 대학 기계공학과 구승범 교수 연구팀(박건우 박사과정, 신범수 박사과정, 박종현 박사과정)은 2024년 12월 캐나다 밴쿠버에서 열린 NeurIPS 학회의 경쟁 대회 중 하나인 MyoChallenge 대회에 참가하여, 15개국에서 54팀이 참여한 가운데, 보행 운동 부문 1위를 차지하였다. 이 대회는 Google Deepmind, Google Cloud와 Össur가 후원하였다.
이 대회에서는 인체의 신경근육제어 원리를 연구하기 위한 다물체 동역학 기반의 인체 근골격 시뮬레이션 환경이 제시되었다. 자체 알고리즘으로 작동하는 의족/의수 (Prosthetic limb)가 결합된 인체 모델이 일상 생활 동작(상지 운동, 보행 운동)을 할 수 있도록 인체 근육 제어기를 학습하고, 그 성능을 경쟁하였다. 보행 운동 부문에서는 의족을 장착한 인체 모델이 주어진 트랙(평지, 거친길, 언덕, 계단)에 맞춰 보행할 수 있도록 인체 제어기를 학습하고, 그 안정성과 속도를 평가하였다.
하지에 54개 근육과 오른 다리 의족이 장착된 인체 모델의 근육 활성도를 제어하여, 지면이 고르지 않은 5m x 120m 경기장에서 넘어지지 않고 앞으로 나아가는 경기가 진행되었다. 구승범 교수 연구팀은 심층강화학습 기술과 인체 운동 데이터 기반 동작 생성 기술을 적용하여, 실제 사람이 근육을 제어하여 운동하는 모습을 모방할 수 있는 고성능 인체 운동 제어기를 학습하였다. 특히, 올해는 연구실에서 자체 구축한 120명의 평지, 계단 및 경사로 보행 동작 데이터셋을 사용해서, 인체 모델이 계단 및 경사로 지형에서도 안정적으로 보행할 수 있도록 학습하였다.
이 기술은 인체의 신경운동제어를 모방하여 다양한 상황에서의 보행 동작을 생성할 수 있다. 또한 이번 대회와 같이 인체에 착용하는 보조 장비와 상호 작용 시뮬레이션이 가능하여, 장비/기구의 개발 및 성능 개선에 사용 가능하다.
이번 대회에는 과학기술정보통신부(IITP ETRI 연구개발지원사업, 연구재단 미래유망융합기술파이오니어사업, 연구재단 중견연구자지원사업)의 지원을 받아 참여하였다.
2024.12.24
조회수 2352
-
뇌 신경활동의 시간적 스케일 규명
두뇌가 수행해야 하는 여러 가지 기능 중에는 감각 정보 처리와 같이 순간적인 것에서부터 기억과 같이 상대적으로 긴 시간 동안 그 내용이 보존되어야 하는 것도 있다. 한미 공동 연구진은 이런 뇌 신경 활동이 이루어지는 다양한 시간적 스케일에 대한 보편적 패턴을 파악하여 뇌의 다양한 기능을 가능하게 하는 신경망 회로 구조를 이해하는 길을 열었다.
우리 대학 뇌인지과학과 백세범 교수와 생명과학과 정민환 교수, 존스홉킨스대학교 이대열 교수 연구팀이 다양한 포유류 종의 뇌에서 공통적으로 나타나는 영역별 신경 활동의 시간적 스케일 패턴을 확인함으로써 뇌가 정보를 표상하는 원리를 이해하는 데에 한 걸음 더 나아갔다고 24일 밝혔다.
인간의 뇌에서 가장 두드러지는 영역인 대뇌피질은 시각피질과 같이 감각 정보를 담당하는 영역부터 전전두엽 피질과 같이 고등 인지를 담당하는 영역까지 순차적인 위계 구조로 되어있다.
연구팀은 신경 활동의 시간적 스케일이 위계가 낮은 영역에서부터 위계가 높은 영역에 이르기까지 점점 증가하는 것을 관측했다. 즉, 뇌의 상위 영역으로 갈수록 정보처리를 위해 상대적으로 긴 시간적 스케일을 사용하는 신경 활동이 나타난다는 것이다.
또한 연구팀은 이와 같은 경향성이 영장류와 설치류에서 공통적으로 존재함을 확인함으로써, 포유류의 뇌 진화에서 다양한 과제 처리를 위한 시간적 스케일이 중요한 공통의 변수였음을 밝혀냈다.
한편 시상(thalamus)*과 같은 영역은 대뇌피질과 강하게 연결돼 있음에도 시간적 스케일의 위계적 변화가 나타나지 않는다는 점도 알아냈다.
*시상: 대뇌 깊은 곳에 위치한 타원형의 핵 집합체로서, 감각 정보를 대뇌피질로 전달하는 ‘중계국’ 역할을 함. 시상을 통해 들어온 정보는 대뇌피질의 각 부분으로 전달되어, 인식·판단·조절과 같은 더 높은 수준의 처리 과정을 거치게 됨.
이전의 연구들은 인간, 원숭이, 설치류 뇌의 대뇌피질 영역에서 자발적 신경 활동의 시간 스케일이 해부학적 계층이 높을수록 길어지는 상관관계를 보였다. 그러나 실제로 정보를 표상하는 활동을 할 때 시간 스케일이 어떻게 달라지는지는 알려진 바가 없었다.
연구팀은 의사 결정 행동을 수행하고 있는 원숭이, 쥐(rat), 생쥐(mouse)의 뇌에서 측정한 신경 활동을 자발적 요소와 행동 관련 요소로 나눠 두 유형의 시간 스케일의 변화가 여러 대뇌피질 영역에서 계층이 높아질수록 길어지는 양상을 나타내는지 분석했다. 나아가 대뇌피질과 직접적인 연결이 존재하는 영역인 시상까지 분석의 범위를 확장하여 신경 활동의 시간적 스케일을 비교했다.
연구 결과, 연구팀은 뉴런의 자발적 활동뿐 아니라 의사 결정 행동 관련 활동의 시간 스케일 역시 세 종의 대뇌피질에서 상위 정보 처리 영역으로 올라갈수록, 즉 해부학적 계층이 높아질수록 길어지는 반면, 뇌의 다른 영역인 시상에서의 신경 활동 시간 스케일은 대뇌피질의 신경 활동의 시간보다 전반적으로 짧고, 계층적 변화의 양상이 없는 것을 확인했다.
백세범 교수는 “포유류의 뇌가 정보를 처리하는 원리를 이해하는데 중요한 단서인 신경 활동의 시간적 스케일이 해부학적 계층에 따라 변하는 보편적인 구조적 패턴을 밝힘으로써, 뇌의 다양한 기능을 구현하기 위해 필요한 신경망 구조에 대한 구체적인 설명이 가능해질 것으로 기대된다”고 말하며 “이번 성과는 연구진들의 밀접한 국제적 협력을 통한 결과이기에 더 뜻깊다”고 덧붙였다.
이번 연구는 미국국립과학원회보 (Proceedings of the National Academy of Sciences, PNAS)에 지난 13일 게재됐다. (논문명: Hierarchical gradients of multiple timescales in the mammalian forebrain, DOI: 10.1073/pnas.2415695121)
한편 이번 연구는 한국연구재단의 이공분야기초연구사업, KAIST 특이점교수 사업 및 기초과학연구원의 지원을 받아 수행됐다.
2024.12.24
조회수 2235