본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%83%9D%EB%AA%85%EA%B3%BC%ED%95%99%EA%B3%BC
최신순
조회순
단일세포 RNA 시퀀싱을 통한 꽃향기 합성 유전자 발굴
우리 대학 생명과학과 김상규 교수 연구팀이 꽃향기 합성 유전자를 발굴하기 위해 꽃잎 단일세포 RNA 시퀀싱 기술을 개발하고 벤질아세톤(benzylacetone) 꽃향기 합성 경로를 밝혔다. 벤질아세톤은 코요테담배(Nicotiana attenuata) 꽃에서 합성되고 밤에 분비가 되는 향기 물질이다. 이 향기물질은 밤에 활동하는 박각시나방을 유인한다. 그리고 꽃은 꿀을 제공하고 그 대가로 나방은 화분pollen을 멀리 날라준다. 또한 벤질아세톤은 코요테담배 꽃을 먹는 해충을 쫓아내는 기능을 하고 있다. 생태적으로 재미있는 기능을 하고 있는 물질이지만 생합성 경로에 대해서는 완전히 알려진 상태가 아니었다. 일반적으로 식물이 만들어내는 대사물질의 생합성 유전자를 밝히기 위해 사용하는 방법의 단점을 극복하기 위해서 꽃잎 단일세포에서 발현되는 유전자의 연관도를 이용하여 물질대사 경로를 밝힐 수 있다는 것을 이번 연구를 통해서 증명하였다. 특히 유전정보가 제한적으로 알려져 있고 다양한 생태형 ecotype을 가진 식물 집단이 없어도 비모델 식물에서 물질합성 경로에 있는 효소와 그 효소의 발현을 조절하는 전사인자 등도 찾을 수 있는 가능성을 제시하였다. 단일세포 RNA 시퀀싱의 장점을 활용하여 향기합성 유전자가 만들어지는 세포를 구별하고 꽃잎에서 향기가 합성되는 위치도 밝힐 수 있었다. 우리 대학 생명과학과 강문영 석박사통합과정 학생이 제1 저자로 참여한 이번 연구 결과는 'New Phytologist' 학술지에 게재됐다. (관련 논문명: Single-cell RNA-sequencing of Nicotiana attenuata corolla cells reveals the biosynthetic pathway of a floral scent) 한편 이번 연구는 삼성미래기술육성사업과 포스코사이언스펠로십 지원을 받아 수행됐다.
2022.02.14
조회수 7289
계산적 항체 디자인을 통한 범용성 코로나바이러스 중화항체 개발
우리 대학 생명과학과 오병하 교수 연구팀이 계산적 항체 디자인을 개발하고 이를 적용해 오미크론을 포함해 현재 유행 중인 모든 코로나19 변종 바이러스에 뛰어난 효과를 나타내는 중화항체*를 개발했다고 밝혔다. *병원체가 신체에 침투했을 때 생화학적으로 미치는 영향을 중화하여 세포를 방어하는 치료용 항체. 코로나19 감염을 유발하는 바이러스로 알려진 SARS-CoV-2 바이러스*는 스파이크 당단백질 부위에 있는 수용체 결합 부위(이하 항원)를 인간 세포막에 붙어있는 hACE2(human Angiotensin Converting Enzyme2) 수용체에 결합시켜 세포 내로 침입하는 기전을 보인다. 이러한 기전에 착안해 세계 유수의 제약회사들의 연구진은 수용체 결합 부위에 붙는 중화항체 에테세비맙(Etesevimab), 밤라니비맙(Bamlanivimab) 등을 개발했다. *현재 중증급성호흡기 증후군 팬데믹을 일으키고 있는 코로나바이러스. RNA 바이러스이며 바이러스 표면 스파이크 단백질을 통해 인간 ACE2 단백질과 결합하여 세포 내로 침투. 하지만, 이 항체들은 최초에 유행한 코로나바이러스에 효과적인 것과 다르게 알파, 베타, 델타 등과 같은 변이에는 중화능이 없거나 떨어지는 것으로 보고됐다. 변이 바이러스의 등장으로 기존 항체들의 중화능이 떨어지는 이유는 바이러스의 항체 인식부위 서열에 변이가 생겨 항체가 더 이상 제대로 결합하지 못하게 되기 때문이다. 연구진은 계산적 단백질 디자인 방법으로 바이러스 항원에서 변이가 생기지 않는 부분에 강력하게 결합하는 항체를 개발했다. 결과적으로, 이번에 개발한 항체는 오미크론을 포함해 알려진 SARS-CoV-2의 모든 변이 바이러스뿐만 아니라 SARS-CoV-1, 천산갑 코로나 바이러스에도 강력한 결합력*을 보이며 우수한 중화 능력 지표**도 확인했다. * picomolar(리터당 10-12 mole)에서 femtomolar (리터당 10-15 mole)의 결합력을 보임. ** Neutralization constant 50 (NC50) 가 0.10-8.3 nM로써 높은 중화능을 보임. 연구진이 개발한 항체는 미래에 출현할지 모르는 새로운 중증호흡기증후군 유발 코로나바이러스에도 대응할 수 있는 범용 코로나 치료항체 후보로 기대된다. 또한, 이번에 개발된 계산적 항체 디자인 기술은 항원의 특정 부위에 결합하는 항체를 발굴하는 새로운 방법으로서 그 응용성이 넓고 기술적 가치가 높다. 오병하 교수는 "이번에 개발한 항체는 아미노산 서열이 거의 바뀌지 않는 표면에 결합하기 때문에 향후 출현할 수 있는 신·변종 코로나바이러스에 즉각 대응할 수 있는 치료 물질이 될 수 있다는데 큰 의의가 있다ˮ라고 밝혔으며, 아울러, "이번 연구를 통해 개발한 계산적 항체 디자인 방법은 실험적으로는 얻기 어려운 항체를 개발하는데 널리 이용될 것으로 기대한다ˮ라고 밝혔다. 우리 대학 생명과학과 정보성 박사과정이 제1 저자로 참여한 이번 연구 결과는 항체 전문 학술지 ‘mAbs’에 게재됐다. 이번 연구는 연세대학교 조현수 교수 연구팀과 한국화학연구소 김균도 박사 연구팀도 참여했다. (관련 논문명: Computational design of a neutralizing antibody with picomolar binding affinity for all concerning SARS-CoV-2 variants) 참고로, 상기 논문 발표 후 오미크론이 새롭게 출현하였으며, 연구진은 개발한 중화항체가 이 변종에도 효과가 있음을 실험적으로 입증하였다. 한편 이번 연구는 KAIST 코로나대응 과학기술뉴딜사업단과 한국과학재단 기초과학연구실 사업의 지원을 받아 수행됐다.
2022.02.04
조회수 8278
유전자 가위로 생체 내 정밀한 유전자 교정에 의한 면역 항암 치료
CRISPR/Cas9 시스템을 이용하여 유전자교정을 일으킴으로써 암의 면역 치료를 유도하는 기술이 우리 대학 연구진에 의해 개발됐다. 우리 대학 생명과학과 정현정 교수, 서울대학교 의과학과 정기훈 교수 공동연구팀이 CRISPR/Cas9 리보핵산단백질을 생체 내에 효과적으로 전달하는 나노복합체를 개발하여 면역 관문 유전자를 교정함으로써 항암 효과를 보이는데 성공했다고 밝혔다. 암은 현대인의 건강을 위협하는 대표적인 요인으로 꼽히고 있다. 암의 치료 방법 중 면역 항암 요법은 부작용이 적고 높은 치료 성적을 보여 다양한 암 유형에 적용할 수 있다. 기존에는 항체 기반 치료법이 주로 임상에서 사용되고 있으며 다양한 고형암의 치료에 승인되었으나, 일시적인 효과로 반복 투여가 필요하다. CRISPR/Cas9 시스템은 유전체의 서열을 직접 정밀하게 교정할 수 있으며, DNA 이중가닥을 절단하는 Cas9 제한효소와 특정 서열을 표적하는 단일 가이드 RNA로 이루어진다. 유전자교정 치료제의 경우 일반적으로 바이러스 기반 치료 방법을 이용했으나 돌연변이 유발, 비특이적 표적 효과 등으로 인해 한계가 있다. 비바이러스 치료제로 Cas9 단백질 및 단일가닥 RNA를 이용하면 바이러스 치료보다 안전성을 높일 수 있으나 낮은 세포내 전달 효과로 치료 효능이 떨어진다. 전달 효율을 높이기 위해 기존에 다양한 방법이 개발되고 연구됐으나, 일반적으로 과량의 전달체물질을 사용함으로써 생체 내 독성 문제가 나타나는 한계점이 있다. 이러한 문제점을 개선하기 위해 연구팀은 Cas9 단백질에 세포내 유입을 촉진하는 고분자를 접합시켜 극미량의 전달체물질로 고효율 전달이 가능한 Cas9 컨쥬게이트를 제작하여 활용했다. 연구팀은 이러한 Cas9 컨쥬게이트, 단일 가이드 RNA 및 변형된 데옥시뉴클레오타이드(DNA)를 추가해 나노조립된 리보핵단백질 복합체(이하 NanoRNP)를 개발했다. 이 복합체는 Cas9 컨쥬게이트, RNA 및 DNA의 상호작용으로 쉽게 제작할 수 있고, 유전자 교정 치료제로써 단일 요법에 의해 항암 치료가 가능하다는 점이 장점이다. 우리 대학 생명과학과 석박사통합과정 이주희 학생이 제1 저자로 참여한 이번 연구 결과는 재료화학 분야 국제학술지 `케미스트리 오브 머티리얼즈(Chemistry of Materials)'에 12월 20일 字 온라인 게재됐다. (논문명 : Nano-assembly of a Chemically Tailored Cas9 Ribonucleoprotein for In Vivo Gene Editing and Cancer Immunotherapy) NanoRNP의 경우 Cas9에 부착된 고분자가 강한 양이온성을 지녀 단일 가이드 RNA와 안정적으로 복합체를 형성시키며, 생체내 분해효소로부터 보호하여 활성을 향상시킨다. 본 연구팀은 NanoRNP를 피부암에서 많이 발현되는 프로그램된 세포사멸 리간드-1 (PD-L1) 유전자를 표적하는데 응용하였다. PD-L1은 면역 세포의 표면 수용체에 존재하는 프로그램된 세포사멸 수용체-1 (PD-1)과 상호작용하여 면역 세포의 반응을 억제해 암세포의 세포사멸 회피를 유도한다. 연구팀은 NanoRNP를 이용하여 PD-L1 유전자의 교정으로 유전자결손을 유도하여, 면역 세포들이 활성화되고 종양미세환경의 변화로 면역 세포에 의한 암세포 사멸이 유도됨을 확인했다. 연구팀은 이번 연구 결과를 응용해 향후 암 뿐만 아니라 유전 질환 등 다양한 질병에 적용함으로써 연구를 확대 및 발전시켜 나갈 수 있을 것으로 기대하고 있다. 한편 이번 연구는 한국연구재단 중견연구자지원사업, 범부처전주기의료기기연구개발사업 및 KAIST End Run 사업의 지원을 통해 이뤄졌다.
2021.12.24
조회수 10691
빛으로 뇌 기능, 행동, 감정을 자유롭게 조절한다
우리 대학 생명과학과 허원도 교수 연구팀은 빛으로 뇌 기능 및 행동을 자유자재로 조절하는 광유전학 기술인 ‘Opto-vTrap(옵토-브이트랩)’을 개발했다. 나아가 동물실험을 통해 뇌 활성 뿐 아니라 활동과 감정까지 조절할 수 있음을 확인했다. 뇌 활성은 신경세포와 신경교세포와 같은 뇌세포들이 서로 신호를 주고받으며 조절된다. 이 같은 상호작용은 뇌 세포 내 ‘소낭’안에 담긴 신경전달물질 분비를 통해 이루어진다. 소낭이 뇌 활성을 조절하는 사령관인 셈이다. 뇌 활성 조절은 뇌 연구를 위한 필수 기술이다. 뇌의 특정 부위나 세포의 활성을 촉진 및 억제해보면 특정 뇌 부위가 담당하는 기능, 여러 뇌 부위 간 상호작용의 역할, 특정 상황에서 다양한 뇌세포의 기능 등 특정 상황에서 뇌 작동이 어떠한 원리로 일어나는지 밝힐 수 있기 때문이다. 그러나 기존 뇌 활성 조절 기술은 원하는 시점에 특정 뇌세포의 활성을 자유롭게 조절하기 어려웠다. 지금까지는 세포 전위차 조절 방식을 사용하였는데, 이는 주변 환경의 산성도를 변화시키거나 원하지 않는 다른 자극을 유발할 뿐만 아니라 전위차에 반응하지 않는 세포에는 사용하지 못하는 한계가 있었다. 이번에 개발한 Opto-vTrap 기술은 세포 소낭을 직접 특이적으로 조절할 수 있어 원하는 시점에 다양한 종류의 뇌세포에서 이용이 가능하다. 연구진은 신경전달물질 분비를 직접 조절하고자 세포에 빛을 쪼이면 순간적으로 내부에 올가미처럼 트랩을 만드는 자체 개발 원천기술을 응용, 소낭에 적용했다. Opto-vTrap을 발현하는 세포나 조직에 빛(청색광)을 가하면 소낭 내 광수용체 단백질들이 엉겨 붙으며 소낭이 트랩 안에 포획되고 신경전달물질 분비가 억제된다. 요컨대 Opto-vTrap으로 소낭의 신호전달물질 분비를 직접 제어하여 뇌 활성을 자유롭게 조절하는 것이다. 연구진은 세포와 조직실험에서 나아가 Opto-vTrap 바이러스를 이용한 동물실험을 통해 뇌세포 신호전달 뿐만 아니라 기억·감정·행동도 조절 가능함을 확인하였다. Opto-vTrap을 이용하면 뇌의 여러 부위간 복합적 상호작용 원리를 밝히고, 뇌세포 형태별 뇌 기능에 미치는 영향을 연구하는 데 유용하게 활용될 것으로 기대된다. 허원도 교수는 “Opto-vTrap은 신경세포와 신경교세포 모두에 잘 작동되기에 향후 다양한 뇌과학 연구 분야에 이용되리라 기대한다” 며 “앞으로 본 기술을 활용하여 특정 뇌세포의 시공간적 기능 연구를 진행하고자 한다.”고 말했다. 이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 중견연구과제 및 KAIST 글로벌 특이점 연구사업의 지원을 받아 수행됐다. 이번 연구 결과는 뇌 과학 학술지 뉴런 (Neuron, IF:17.173) 에 12월 1일(수) 1시(한국시간) 게재됐다.
2021.12.03
조회수 8795
거대 단백질 구조체를 레고 블록 쌓듯 조립하는 기술 개발
우리 대학 생명과학과 김학성 교수와 배진호 박사팀이 거대 (초분자) 단백질을 레고 블록 쌓듯 조립할 수 있는 새로운 기술을 개발했다고 19일 밝혔다. 이 방법으로 단백질 구조체의 크기 및 작용기 수를 원하는 대로 조절할 수 있고 메가 달톤(dalton) 크기의 대칭형 거대 단백질 구조체를 조립할 수 있다. 거대 단백질 구조체는 효율적인 약물 전달, 다양한 백신 개발, 그리고 질병 진단에 활용될 것으로 기대된다. 이번 연구 성과는 국제 저명 학술지인 `어드밴스드 사이언스(Advanced Science)' (IF: 16.806)에 2021년 11월 1일 字 온라인 발표됐다. (논문명: Dendrimer-like supramolecular assembly of proteins with a tunable size and valency through stepwise iterative growth) 자연계에는 매우 다양한 특성과 기능을 갖는 단백질이 존재하며 생명현상을 유지하는데 핵심 역할을 한다. 이러한 단백질 중에는 단량체가 큰 구조체 형태로 조립됐을 때만 정상적 기능을 수행하거나, 어떤 경우에는 조립된 경우가 단량체와 완전히 다른 특성을 나타내며, 심지어는 심각한 질병을 유발하는 경우도 많다. 예를 들어 바이러스의 껍질인 켑시드는 단백질 단량체가 조립(assembly)된 것이고, 치매는 아밀로이드 펩타이드나 타우(tau) 단백질이 파이브릴(fibril) 형태로 조립되면서 발생한다. 따라서, 거대(초분자) 단백질 구조체들의 조립 기작 이해는 단백질의 기능과 질병의 원인 규명 및 치료제 개발에 중요하다. 또한, 단백질 구조체는 뛰어난 생체 적합도 때문에 생명공학 및 의학 분야에서도 응용 가능성이 크다. 현재 많은 연구 그룹에서 자연계에 존재하는 단백질 구조체들의 조립 과정을 모방해 새로운 기능의 단백질 구조체 개발에 많은 연구를 진행하고 있다. 그러나 단백질의 구조적 다양성, 상이한 특성 및 큰 분자량 때문에 원하는 구조체를 자유자재로 조립하는 것은 아직도 어려운 과제로 남아 있다. 김학성 교수 연구팀은 두 종류의 빌딩(building) 블록 단백질을 코어(core) 단백질에 순차적으로 교대로 결합시킴으로써 간편하게 3차원 구조의 대칭형 거대 단백질 구조체를 조립하는 방법을 개발했다(그림 1). 즉, 서로 특이적으로 반응하는 두 쌍의 단백질과 리건드(P1/L1 과 P2/L2)를 이용해 코어(core) 단백질에 두 종류의 빌딩(building) 블록을 순차적, 반복적으로 결합함으로써 크기와 작용 기작 수를 조절하면서 메가 달톤 (Mega Dalton) 크기를 갖는 단백질 구조체를 쉽게 조립하였다. 개발된 구조체는 다양한 분야에 응용 가능하며 하나의 예로서, 이번 연구에서는 단백질 구조체에 박테리아 독소를 결합해 암세포 내로 고효율로 전달할 수 있었고, 결과적으로 암세포를 효과적으로 사멸했다(그림 2). 구조체 단백질의 특징인 다가 효과(avidity effect)로 인해 암 표적에 대한 결합력이 약 1,000배 이상 증가돼 암세포 사멸 효과가 획기적으로 증대됐고 이러한 특성은 백신 개발 및 질병 진단에도 응용될 수 있다. 제1 저자인 배진호 박사는 "이번 연구에서 개발된 거대(초분자) 단백질 구조체 조립 기술은 향후, 약물 전달, 백신 개발, 질병 진단 및 바이오센서 등을 포함한 광범위한 분야에서 새로운 플랫폼 기술로 활용될 수 있을 것ˮ이라고 말했다. 이번 연구는 한국 연구 재단의 중견 연구과제 (NRF-2021R1A2C201421811) 지원을 받아 수행됐다.
2021.11.19
조회수 9065
뉴런 교체에 의한 기억 저장 규명
우리 대학 생명과학과 한진희 교수 연구팀이 살아있는 생쥐 뇌에서 기억저장 뉴런(신경 세포)을 표지하고 추적, 관찰할 수 있는 기술을 이용해 같은 경험을 다시 할 때 원래 존재하던 오래된 기억 뉴런이 새로운 뉴런으로 교체됨을 규명했다고 3일 밝혔다. 연구팀은 `뉴런 스위칭'을 가능하게 하는 기작으로 기초과학연구원(IBS) 김은준 교수 연구팀과의 공동연구를 통해 이전에 경험했던 학습을 다시 하면 기존 기억 뉴런에서 시냅스 연결이 감소하는 반면, 새로 참여하는 뉴런에서는 시냅스 연결이 증가함을 규명했다. 이번 연구는 같은 기억은 같은 뉴런에 계속 저장됨으로써 경험이 누적될 수 있을 것이라는 기존의 통념과 달리, 같은 경험을 다시 할 때 뇌에서 오히려 뉴런들이 다이내믹하게 새로 교체됨을 처음으로 증명했다는 점에서 기존의 패러다임을 전환하는 중요한 학문적 의미가 있다. 뉴런 교체는 기억 업데이트의 중요한 기작으로 생각되며 노화, 퇴행성 뇌질환에서 기억상실을 해결할 수 있는 기술 개발에 대한 새로운 아이디어를 제시한다. 생명과학과 조혜연 박사가 제1 저자로 참여한 이번 연구는 셀 프레스(Cell Press) 그룹의 오픈 액세스(Open-access) 학술지 `커런트 바이올로지(Current Biology)'에 10월 22일 字 온라인판에 게재됐다. (논문명: Turnover of fear engram cells by repeated experience) 경험은 기억이라는 형태로 뇌에 저장되고 나중에 회상된다. 또 대부분의 기억은 반복적인 경험을 통해 뇌에서 유지되고 업데이트된다. 뇌에서 기억을 표상하는 물리적 단위가 존재하며 특정 신경 세포 집단(기억 엔그램) 이 기억을 인코딩한다는 사실이 많은 연구를 통해 밝혀졌다. 그렇다면 반복된 경험에 노출되었을 경우 기억을 저장하는 뉴런들에서 어떤 변화가 일어날까? 기존 연구를 통해 같은 학습의 반복으로 형성된 기억은 같은 신경 세포 집단을 통해 계속 저장되고 강화될 것으로 추측돼왔다. 하지만 실제로 신경 세포 수준에서 어떤 변화가 일어나는지 명확히 밝혀진 바가 없었다. 연구팀은 이번 연구에서 생쥐 뇌 편도체(amygdala) 영역에서 기억저장 세포를 표지하고 광유전학 기법으로 조절하는 기술을 이용해 기존의 통념과 달리 첫 학습 하루 후에 같은 학습을 반복했을 때 `같은' 기억이 전혀 다른 세포들을 통해 다시 저장되고 회상되는 현상을 발견했다. 반복 학습된 기억이 첫 번째 학습으로 형성된 기억 엔그램을 억제하는 동안에도 정상적으로 발현되는 것을 확인한 것이다. 반복 학습 후에 기존 엔그램에서 *시냅스 가소성이 감소한 것으로 보아, 경험이 반복되면 기존의 기억 엔그램이 기억 회로상에서 연결이 약해지기 때문에 기억 발현에 관여하지 않는다는 것을 알 수 있었다. ☞ 시냅스 가소성(Synaptic plasticity): 시냅스는 신경 세포 간의 정보가 전달되는 구조적인 장소를 말하는데, 시냅스는 그 활성 정도에 따라 구조와 기능이 지속적으로 변화 가능하며 이를 시냅스 가소성이라 부른다. 이처럼 기존 기억 엔그램이 반복 학습된 공포 기억에 필요하지는 않았지만 흥미롭게도 기존 기억 엔그램을 광유전학 기법으로 자극했을 땐 공포 반응이 나타났다. 기존 기억 엔그램의 연결이 약해졌음에도 불구하고 여전히 기억 정보를 간직한 채 `휴면 엔그램 (silent engram)'으로 존재한다는 것을 확인한 결과였다. 또한 연구팀은 반복 학습된 공포 기억이 두 번째 학습 때 활성화된 편도체 뉴런들에 새로 저장된다는 것을 보임으로써 같은 경험의 기억이 처음과 다른 세포 집단에 인코딩된다는 사실을 추가로 입증했다. 한진희 교수는 "이번 연구 결과는 기억은 고정돼 있는 것처럼 보이지만 뇌에서 그 기억을 저장하는 세포들은 다이내믹하게 스위칭 된다는 새로운 패러다임을 제시하는 중요한 발견이다ˮ며, "앞으로 기억 뉴런을 표적으로 해서 원하지 않는 기억 삭제 및 퇴행성 뇌질환에서 기억상실 억제, 복원을 가능하게 하는 미래 기억제어 기술 개발에 도움을 줄 것ˮ이라고 말했다. 한편, 이번 연구는 삼성미래기술육성재단의 지원을 받아 수행됐다.
2021.11.03
조회수 7726
면역관문 신호 극복하는 차세대 CAR-T 세포 치료제 개발
우리 대학 생명과학과 김찬혁 교수 연구팀이 면역관문 신호를 극복하는 차세대 `키메라 항원 수용체 T(chimeric antigen receptor T, 이하 CAR-T) 세포' 치료제를 개발했다고 20일 밝혔다. CAR-T 세포 치료제는 우리 몸에서 항암 및 항바이러스 기능에 중요한 역할을 하는 면역세포인 T 세포에 CAR 유전자를 도입해 항암 기능을 증가시킨 유전자 세포 치료제로서, 기존의 모든 항암 치료에 불응한 말기 백혈병 환자들을 대상으로 한 임상 시험에서 80% 이상의 높은 치료 효과를 보이며 `기적의 항암제'로 불리고 있는 항암 치료제다. 김 교수 연구팀은 CAR-T 세포 치료제 제작에 사용되는 렌티바이러스 벡터를 2종류의 짧은 헤어핀 RNA(short hairpin RNA, 이하 shRNA)가 CAR 유전자와 함께 발현하도록 개량했다. 이들 shRNA를 통해 T 세포의 기능 저하를 유도하는 2종의 면역관문 수용체인 `PD-1'과 `TIGIT'의 발현을 동시에 억제했을 때, 생쥐를 이용한 백혈병과 림프종 모델에서 CAR-T 세포의 향상된 항암 기능을 확인했다. 우리 대학 생명과학과 이영호 박사후연구원이 제1 저자 및 공동교신 저자로 참여한 이번 연구는 미국 유전자 세포 치료제 학회(American Society of Gene & Cell Therapy, ASGCT) 공식 학술지인 `분자 치료(Molecular Therapy)' 10월 온라인 판에 출판됐다. (논문명 : PD-1 and TIGIT downregulation distinctly affect the effector and early memory phenotypes of CD19-targeting CAR T cells). 해당 기술은 김 교수가 공동 창업한 CAR-T 세포 치료제 전문 개발 벤처인 ㈜큐로셀에 기술이전되어 올해 3월부터 삼성서울병원에서 기존 항암 치료 후 재발 및 불응하는 미만성 거대 B 세포 림프종 (diffuse large B cell lymphoma, DLBCL) 환자를 대상으로 1b/2a 단계 임상 시험이 진행중이며, 이는 국내에서 국내기술로 시도된 최초의 CAR-T 임상시험이다. 높은 항암 효과로 미국에서는 2017년 최초 2종의 CAR-T 치료제가 허가를 받았고, 산학계의 활발한 연구를 바탕으로 현재까지 총 5종의 CAR-T 치료제가 허가를 받았다. 최근에는 중국이 대규모 투자와 공격적인 임상 연구를 진행하며 CAR-T 치료제 분야의 새로운 강국으로 급부상해, 현재 전 세계적으로 진행 중인 500여 건의 CAR-T 임상 시험 중 절반 이상이 중국에서 진행되고 있다. 반면 현재 국내에서는 1건의 임상 시험 만이 진행 중이다. 이처럼 높은 치료 효과로 많은 관심을 받는 CAR-T 치료제이지만 지금까지 임상에서 극적인 효과를 보인 암종이 B 세포성 급성 백혈병과 다발 골수종 같은 혈액암에 국한돼 있으며, 혈액암 중에서도 B 세포성 만성 백혈병과 림프종에서는 상대적으로 치료 효과가 낮다는 점, 그리고 무엇보다 고형암에서 높은 효과를 보이는 CAR-T 치료제가 아직 없다는 것이 중요하게 해결해야 할 과제로 대두되고 있다. 연구팀은 CAR-T 세포의 효능을 제한할 수 있는 잠재적인 요소 중, T 세포의 활성을 억제하는 기능을 갖는 면역관문 수용체에 주목했다. T 세포에 발현하는 다양한 면역관문 수용체들은 본래 T 세포가 지속해서 활성화될 때 생기는 부작용을 방지하는 기능을 하고 있으나, 암세포가 이를 악용해 T 세포의 활성을 떨어뜨림으로써 면역계의 작용을 회피하는 메커니즘이 잘 알려져 있다. 연구팀은 2종의 shRNA를 동시에 발현하는 플랫폼을 기반으로 다양한 조합의 면역관문 수용체들의 발현을 억제해 보았고, 흥미롭게도 PD-1과 TIGIT의 조합이 유독 CAR-T 세포의 기능을 높게 향상하는 것을 발견했다. 이후 연구팀은 전사체 분석 및 세포 기능 시험을 통해 흥미롭게도 PD-1의 발현 억제는 CAR-T 세포의 작용 기능(effector function)을 향상하는 데 비해 TIGIT의 발현 억제는 분화를 지연시켜 생체 내에서 CAR-T 세포의 증식 및 지속성을 향상하는 것을 밝혔다. 제1 저자이자 공동교신 저자인 이영호 박사후연구원은 "PD-1과 TIGIT 신호 차단은 CAR-T 세포가 면역억제 현상을 극복할 수 있도록 고안된 새로운 기술 전략으로 기존 치료제의 효과를 기대하기 힘든 림프종 환자분들에게 꼭 필요한 치료제로 여겨질 것으로 기대한다ˮ라며 "CAR-T 치료제 개발 경험은 고형암을 포함하는 새로운 치료제 개발에 큰 자양분이 될 것이다ˮ라고 말했다. 한편 이번 연구는 한국연구재단 중견연구자 지원사업 및 과학기술정보통신부 신약개발지원센터 R&D 지원 사업의 지원을 받아 수행됐다.
2021.10.21
조회수 11395
건강한 장수를 유도하는 돌연변이 유전자 발굴
우리 대학 생명과학과 노화분자유전학 실험실 이승재 교수 연구팀이 가늘고 길게 사는 돌연변이체에 종양 억제 유전자 `PTEN'의 특정 돌연변이를 도입해 건강한 장수를 유도할 수 있다는 연구결과를 발표했다고 6일 밝혔다. 초고령화 사회에 도입한 우리나라의 가장 시급한 문제 중 하나는 단순히 수명을 늘리는 것이 아닌 건강하게 장수하는 방법을 개발하는 것이다. 노화가 건강에 부정적인 영향을 미치기 시작하기 전 시기를 건강 수명이라고 하며, 최근 노화 연구의 주요 목표 중 하나는 건강 수명을 늘리는 것이다. 인슐린 및 인슐린 유사 성장인자는 진화적으로 잘 보존이 된 수명 조절 호르몬인데, 이의 적절한 감소는 수명을 늘리지만 건강 수명(운동성, 성장, 생식능력, 발달 등)은 오히려 악화시킨다. 이승재 교수 연구팀은 노화 연구에서 많이 사용되고 수명이 3주 정도로 짧은 예쁜꼬마선충을 이용해 인슐린과 인슐린 유사 성장인자가 감소된 상황에서 종양 억제 유전자인 PTEN의 유전자 서열 하나만 바꾸면 장수와 건강을 모두 얻을 수 있음을 발견했다. 연구진이 발굴한 변이는 탈인산화 효소인 PTEN 단백질의 기능 중 지질 탈인산화 효소 활성은 감소시키지만, 단백질 탈인산화 효소 활성은 일부를 유지하는 방식으로 장수는 감소시키지 않으면서 건강은 유지하도록 생명체의 기능을 재조정했다. 그 결과, 장수 조절 유도인자인 FOXO의 활성은 유지하지만 과자극 시 건강에 해로운 전사인자인 NRF2의 활성을 적절히 억제해 긴 수명과 노화된 개체에서의 건강을 모두 획득했다. 연구팀은 이번 연구를 통해 장수 유도 신호전달 경로에서 효소 하나의 활성을 세심하게 조정해 장수 유지뿐 아니라 건강 수명을 늘릴 수 있다는 매우 획기적인 가능성을 제시했다. 특히, 인간을 비롯한 포유류에도 보존이 잘 돼 있는 종양 억제 유전자 PTEN이 건강한 장수유도에 중요하다는 것을 보여줬기에, PTEN 활성의 적절한 조절을 통해 인간의 건강 장수를 유도해 초고령화 사회의 문제 해소 가능성을 제시한 것에 의의가 있다. 생명과학과 박혜은 학생, 함석진 박사, 김은아 박사와 POSTECH 황우선 박사가 공동 제1 저자로 참여한 이번 연구는 한국연구재단 리더연구과제의 지원을 받아 수행됐으며 세계적인 과학 국제학술지 `네이처 커뮤니케이션즈 (Nature Communications)'에 2021년 9월 24일 날짜로 게재됐다. (논문명: A PTEN variant uncouples longevity from impaired fitness in Caenorhabditis elegans with reduced insulin/IGF-1 signaling)
2021.10.06
조회수 10109
시각 정보가 행동으로 변환되는 신경회로 규명
우리 대학 생명과학과 이승희 교수 연구팀이 시각 정보를 인식해 목표 지향적 행동을 결정하는 대뇌 전두엽의 신경회로 기전을 새롭게 규명했다고 26일 밝혔다. 이 교수 연구팀은 시각 피질과 상호 작용하는 전측 대상회(전대상) 피질(Anterior cingulate cortex, ACC)의 억제성 신경회로가 동물이 시각 정보를 인식하고 이에 맞는 정확한 행동을 개시하는 데 중요한 역할을 함을 밝혔다. 연구 결과는 포유류 전두엽 전대상 피질의 신경회로가 어떻게 시각 인지 행동 및 충동적 행동을 제어할 수 있는지를 새롭게 규명해, 주의력결핍과잉행동장애(ADHD)와 같은 인지장애 및 충동성을 주 증상으로 하는 뇌질환 치료에 적용될 수 있을 것으로 기대된다. 생명과학과 김재현 박사가 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 뉴로사이언스 (Nature Neuroscience, IF 20.071)' 8월 19일 字 온라인판에 게재됐다. (논문명 : Gated feedforward inhibition in the frontal cortex releases goal-directed action) 우리는 외부 환경에서 유입되는 다양한 감각 정보를 인지해 상황에 맞는 행동을 수행한다. 한 예로, 운전할 때 신호등 앞에서 빨간색 신호를 보면 출발하지 않고 멈춰야 하며, 초록색 신호로 바뀌면 출발하게 된다. 이처럼 시각 정보를 인식하고 이에 맞는 운동 행동을 결정하기 위해 우리 뇌는 받아들인 감각 정보를 적절한 운동 정보로 변환해야 하는데, 이 교수 연구팀은 이것이 전대상 피질의 억제성 회로에 의해 이루어짐을 밝혔다. 연구팀은 뇌가 받아들인 시각 정보를 어떻게 운동 정보로 전달하는지 규명하기 위해, 시각 자극을 보면 물을 핥고 그렇지 않으면 물 핥기를 멈추는 목표 지향적 행동을 학습시킨 생쥐의 전대상 피질에 고밀도 실리콘 전극을 삽입해 생체 내 신경 신호를 측정 및 분석했다. 그 결과, 전두엽 전대상 피질 내에서 시각 피질로부터 정보를 받는 시각 반응성 신경세포들이 주변의 세포들을 억제할 경우 생쥐가 운동을 개시할 수 있음을 밝혔다. 또한, 약물적 방법을 이용해 전대상 피질의 활성 정도를 낮추게 되면 생쥐는 시각 자극이 주어지지 않았음에도 불구하고 충동적으로 목표 지향적 행위를 지속하는 비정상적인 행동 양상을 보였다. 이를 통해 전대상 피질은 정상적인 감각-운동 변환 과정에서도 핵심적인 기능을 수행할 뿐 아니라, 시각 정보가 없을 때 운동 개시를 멈추고 기다려야 하는 충동 조절에도 중요한 역할을 하고 있음을 밝혔다. 이 교수 연구팀은 바이러스 추적자, 광유전학, 다채널 전극 레코딩과 같은 신경과학 최첨단 실험 기법을 활용해 전대상 피질 내의 신경세포 타입과 회로가 어떠한 방식으로 시각 정보를 목표 지향적 운동 행위로 변환하는지에 대한 신경 메커니즘 원리를 최초로 규명했다. 전대상 피질에는 시각 정보에 반응하는 시각 반응성 신경세포, 운동 개시를 억제하는 운동 억제성 신경세포, 그리고 시각 정보와 운동 개시에 반응하지 않는 나머지 신경세포들이 존재함을 확인했다. 그리고 이와 같은 세 종류의 뉴런들의 신경 활성도는 생쥐가 시각 정보를 인지하여 행동을 개시하는 반응 속도와 유의미한 상관관계가 있음을 규명했다. 특히, 광유전학적(optognetics) 방법을 이용한 실험에서, 전대상 피질의 시각 반응성 뉴런들은 시각 피질로부터 신경 정보를 직접 전달받음을 확인했고, 광 자극으로 해당 신경 회로를 활성화할 때 시각 자극이 없어도 생쥐의 목표 지향적 행동을 유발할 수 있음을 증명했다. 이승희 교수는 "이번 연구 결과는 주의력결핍과잉행동장애 및 조현병과 같은 질병에서 전대상 피질이 정상적으로 작동하지 못할 때 나타나는 행동 장애를 치료하기 위한 정밀한 신경회로 타겟을 제시했다ˮ라고 말했다. 한편, 이번 연구는 한국 연구재단 및 KAIST 글로벌 특이점 프로그램의 지원을 통해 수행됐다.
2021.08.26
조회수 11838
3개 학과 공동연구팀, 다학제적 접근 통해 뇌전증 발병 기전 규명
우리 대학 의과학대학원 이정호 교수, 바이오및뇌공학과 백세범 교수, 생명과학과 손종우 교수 공동 연구팀이 MTOR 유전자 돌연변이에 의해 약물 저항성이 높은 뇌전증이 발병하는 메커니즘을 규명했다고 25일 밝혔다. 이번 연구 결과는 극소수의 신경세포에 발생한 돌연변이가 신경망의 과다 활동(hyperactivity) 상태로 이어지는 구체적인 메커니즘을 밝혀, 뇌전증의 발병 원인 및 치료법 개발에 대한 새로운 시각을 제공한다. 특히 3개 학과간 공동 연구팀의 다학제적인 접근을 통해 세포 내 유전학적인 관점에서부터 단일 신경세포의 전기생리학, 이로부터 근접한 거리에 있는 뇌조직의 네트워크, 그리고 뇌 전체 수준에서의 신경망 수준으로 이어지는 다양한 실험 및 시뮬레이션 연구가 이루어져, 뇌전증의 복잡한 발병 메커니즘을 전반적으로 설명하는 성과를 얻었다. 국소피질 이형성증은 대뇌발달 과정에서 일부 신경줄기세포의 mTOR 경로상의 체성유전변이(MTOR, TSC, DEPDC5) 로 발생하는 질환으로, 흔한 뇌전증의 원인 중 하나이며 항뇌전증제 약물 치료에 잘 반응하지 않아 치료가 어렵다. 이에 연구팀은 국소피질 이형성증 환자의 실제 조직과 같은 질환을 가진 동물 모델을 이용한 실험을 통해, 개별 신경세포의 체성유전변이가 신경망 수준의 발작도로 이어지는 구체적인 원리를 규명했다. 먼저 연구팀은 이러한 체성유전변이는 뇌 조직의 5% 이하인 적은 수의 신경세포에서 발생하며, 해당 신경세포들의 전기적 성질이 정상 세포와는 다르게 변화하는 것을 발견했다. 하지만 대다수 정상 세포를 포함한 전반적인 신경망 활동의 시뮬레이션 결과, 이러한 돌연변이는 매우 적은 비율의 신경세포에만 국한돼 있어, 이 세포들 자체의 전기적 성질 변화만으로는 전체 신경망의 비정상적인 활동으로 이어지지 않았고, 이로 인해 뇌전증에서 보이는 신경망 수준의 발작 활성도가 발생하는 이유를 설명할 수 없었다. 이에 연구팀은 후속 실험을 통해, 뇌전증 발작을 유도할 수 있는 활성도가 MTOR 체성 유전변이를 가진 신경세포가 아니라 그 세포들 주변의 변이가 없는 신경세포에 의해 발생하는 것을 발견했다. 이는 유전자 변이를 가진 신경세포의 활성도가 뇌전증의 직접적인 원인이 되는 것이 아니라, 이들 세포가 주변 대다수 비변이 신경세포에 특정 변화를 유도하고 이로 인해 전체 신경망 수준의 발작 활성도가 발생한다는 뜻으로, 뇌 체성유전변이로 인한 비세포 자율성 활성도(non-cell autonomous hyperexcitability)를 보여주는 한 예가 된다. 이에 착안해 추가적인 동물실험과 수술 후 환자 뇌 조직을 이용한 연구를 통해 MTOR 체성유전변이를 가진 세포에서는 ADK(adenosine kinase, 아데노신 키나제) 유전자가 과발현되는 것을 발견했다. 또한, 이로부터 주변 대다수 비변이 신경세포의 네트워크 체계가 교란돼 과활성도가 유도되고, 더 나아가 전체 신경망 수준의 과다 활동으로까지 이어지는 것을 확인했다. 의과학대학원 고현용 박사, 바이오및뇌공학과 장재선 박사, 생명과학과 주상현 학생이 공동 제1 저자로 참여한 이번 연구는 신경학 분야의 국제 학술지 `애널스 오브 뉴롤로지 (Annals of Neurology)' 7월 29일 字에 게재됐다. (논문명: Non-cell autonomous epileptogenesis in focal cortical dysplasia) 이정호, 백세범, 손종우 교수는 "약물 저항성이 높아 기존에 효과적으로 대처할 수 없었던 뇌전증의 발병 원인에 대해 한층 더 깊은 통찰을 제공하는 연구ˮ라며 "한 분야의 실험이나 연구 기법만으로는 해결하기 어려운 문제에 대해, 유전체학, 신경생물학, 계산뇌과학에 걸친 다학제적 접근으로 해결책을 제시한 효과적인 공동연구의 좋은 예시였다ˮ라고 언급했다. 한편 이번 연구는 한국연구재단 이공분야기초연구사업의 리더연구자지원사업 및 중견연구자지원사업, 보건복지부의 질환극복기술개발사업, 서경배 과학재단, 그리고 소바젠의 지원을 받아 수행됐다.
2021.08.26
조회수 11584
기억을 형성하는 원리 최초로 규명
우리 대학 생명과학과 한진희 교수 연구팀이 무수히 많은 뉴런과 이들 사이의 시냅스 연결로 구성된 복잡한 신경 네트워크에서 기억을 인코딩하는 뉴런이 선택되는 근본 원리를 규명했다고 13일 밝혔다. 우리 대학 생명과학과 정이레 박사가 제1 저자로 참여한 이번 연구는 네이처 출판 그룹의 오픈 액세스(Open-access) 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’에 6월 24일 字로 게재됐다. (논문명: Synaptic plasticity-dependent competition rule influences memory formation) 과거의 경험은 기억이라는 형태로 뇌에 저장되고 나중에 불러오게 된다. 이러한 기억은 뇌 전체에 걸쳐 극히 적은 수의 뉴런들에 인코딩되고 저장된다고 알려져 있다. 하지만 이 뉴런들이 미리 정해져 있는 것인지, 아니면 어떤 원리에 의해 선택되는 것인지는 불확실하다. 이 질문을 해결하는 것은 신경과학의 미해결 난제 중 하나인 기억이 뇌에서 어떻게 형성되는지를 규명하는 것으로서 학문적으로 매우 중요할 뿐만 아니라, 치매를 치료할 수 있는 단서를 제공하기 때문에 막대한 사회, 경제적 파급 효과가 있다. 반세기 훨씬 이전에 캐나다의 신경심리학자 도널드 올딩 헤브(Donald O. Hebb)는 그의 유명한 저서인 ‘행동의 조직화(The Organization of Behavior)’ (1949) 에서 두 뉴런이 시간상으로 동시에 활성화되면 이 두 뉴런 사이의 시냅스 연결이 강화될 것이라는 시냅스 가소성(synaptic plasticity) 아이디어를 제시했고, 이후 실험을 통해 학습으로 특정 시냅스에서 실제로 장기 강화(long-term potentiation, 이하 LTP)가 일어난다는 것이 증명됐다. 이 발견 이후, LTP가 기억의 핵심 메커니즘으로 생각돼 왔다. 하지만, LTP가 기억을 인코딩하는 뉴런을 어떻게 결정하는지 지금까지 규명된 적이 없었다. 이번 연구에서는 이를 규명하기 위해 생쥐 뇌 편도체(amygdala) 부위에서 자연적인 학습 조건에서 LTP가 발생하지 않는 시냅스를 광유전학 기술을 이용해서 특정 패턴으로 자극함으로써 인위적으로 그 시냅스 연결을 강하게 만들거나 혹은 약하게 조작하고 이때 기억을 인코딩하는 뉴런이 달라지는지 연구팀은 조사했다. 먼저, 생쥐가 공포스러운 경험을 하기 전에 이 시냅스를 미리 자극해서 LTP가 일어나게 했을 때, 원래는 기억과 상관없었던 이 시냅스에 기억이 인코딩되고 LTP가 일어난 뉴런이 주변 다른 뉴런에 비해 매우 높은 확률로 선택적으로 기억 인코딩에 참여함을 발견했다. 하지만, 학습하고 난 바로 직후에 이 시냅스를 다시 광유전학 기술로 인위적으로 자극해서 이 시냅스 연결을 약하게 했을 때 더는 이 시냅스와 뉴런에 기억이 인코딩되지 않는 결과를 얻었다. 반대로, 정상적으로 생쥐가 공포스러운 경험을 하고 난 바로 직후에 LTP 자극을 통해 이 시냅스 연결을 인위적으로 강하게 했을 때 놀랍게도 LTP를 조작해준 이 시냅스에 공포 기억이 인코딩되고 주변 다른 뉴런들에 비해 LTP를 발생시킨 이 뉴런에 선택적으로 인코딩됨을 확인했다. 이러한 결과는 시냅스 강도를 인위적으로 조작했을 때 기억 자체는 변하지 않지만, 그 기억을 인코딩하는 뉴런이 변경됨을 증명한 것이다. 한진희 교수는 “LTP에 의해 뉴런들 사이에서 새로운 연결패턴이 만들어지고 이를 통해 경험과 연관된 특이적인 세포 집합체(cell assembly)가 뇌에서 새롭게 만들어진다”며 “이렇게 강하게 서로 연결된 뉴런들의 형성이 뇌에서 기억이 형성되는 원리임을 규명한 것”이라고 이번 연구 결과중요성을 설명했다. 한편, 이번 연구는 한국연구재단의 중견연구 사업 지원을 받아 수행되었으며 정이레 박사는 한국연구재단의 박사 후 국내 연수 사업의 지원을 받았다.
2021.07.13
조회수 15660
동물의 과식을 억제하는 원리 규명
장면 하나, 영국의 전설적인 코미디 그룹인 몬티 파이선(Monthy Phython) 의 '삶의 의미(The meaning of life) (1983)'라는 영화에서는 영화사에 손꼽히는 충격적 장면이 등장한다. 배가 잔뜩 불러 레스토랑에 들어온 크레오소트 씨는 웨이터가 권하는 음식을 끊임없이 먹다가 결국 배가 터져버린다. 이로 인해 배 속에 있던 음식물이 레스토랑 전체로 흩뿌려지는 장면은 관객들에게 하여금 매우 불쾌한 감정을 느끼게 한다. 장면 둘, 오스트레일리아 빅토리아주 멜버른 대학교에서 모기를 연구하는 페란 로즈 박사가 공개한 영상이 화제가 되고 있다. 이 영상에서는 인간의 피를 탐욕스럽게 빨다가 결국 배가 터져버리는 모기의 충격적인 모습을 보여주고 있다. 본격적으로 시작되는 초여름 더위와 함께 찾아온 모기들 때문에 밤잠을 설친 사람이라면 약간의 통쾌함을 느낄 수도 있는 장면일 수도 있겠다. 앞서 제시한 두 가지의 충격적이고 약간은 괴기스러운 장면들은 실제 자연 상태에서는 발생하지 않는다는 공통점을 가지고 있다. 실제 자연 상태의 (인간을 포함한) 동물들에서는 특정 수준 이상으로 음식을 섭취하면 섭식 행동을 억제하는 신경전달체계가 작동해 과식으로 인한 내장 파열은 발생하지 않는다. 인간은 자연적인 상황에서 내장기관이 손상될 정도로 음식을 과도하게 먹지 않으며, 모기의 경우 과도한 섭식 행동을 억제하는 복부 신경중추가 물리적으로 파손됐기 때문에 배가 터지도록 피를 빨았던 것이다. 이렇듯 동물들은 과도한 섭식 행동을 억제하는 다양하고 체계적인 시스템을 가지고 있다. 이러한 과식 억제 신호에 대한 구체적 이해는 인간의 식이장애 및 비만 발생 과정을 이해하는 데 필수적이지만, 이에 관한 연구는 아직 충분히 이루어지지 않은 상태다. 이런 가운데 최근 국내외 연구진의 과식 방지를 위한 새로운 억제 신경망에 대한 연구결과가 밝혀져 화제가 되고 있다. 우리 대학 생명과학과 서성배 교수 연구팀이 뉴욕대학교 (NYU) 오양균 박사 연구팀과 공동연구를 통해 충분한 음식을 섭취한 초파리에서 특이적으로 발견되는 두 개의 독립적인 과식 억제 시스템을 최초로 발견했다고 15일 밝혔다. 뉴욕대학교 (NYU) 오양균 박사가 제1 저자로, KAIST 생명과학과 서성배 교수가 교신저자로 참여한 이번 연구 결과는 국제 신경과학 전문 최고 권위 학술지 `뉴런 (Neuron)'의 5월 19일 字 온라인판에 게재됐다. (논문명: Periphery signals generated by Piezo-mediated stomach stretch and Neuromedin-mediated glucose load regulate the Drosophila brain nutrient sensor) 동물의 뇌 속에는 미각 신경이 생기기 이전부터 있어온 영양분 감지 신경세포들이 존재한다. 서성배 교수가 뉴욕대(NYU) 재직 당시 박사후 연구원 모니카 더스(Monica Dus) 박사와 함께 발표한 2015년 논문에서 초파리가 영양분을 필요로 하는 상황에서 다우레틱 호르몬(Diuretic Hormone 44, DH44) 펩타이드를 특이적으로 분비하는 신경세포(DH44+ 신경세포)가 체내 당분의 농도를 감지함으로써 영양가 있는 음식을 선택하도록 행동 변화를 일으키는 현상을 발견했다. 이전까지 포유동물의 뇌 속에서 영양분을 감지해 자신의 활성을 조절하는 신경세포들은 보고된 적이 있으나, 이들 영양분 감지 신경세포의 생물학적 기능은 위 연구를 통해서 최초로 보고됐다. DH44 신경세포의 생물학적 기능에 대한 발표를 한 연구팀은 후속 연구를 통해 초파리 체내에 영양분이 많은 상황에서는 DH44 신경세포를 특이적으로 억제하는 상위 조절 신호를 발견했으며 오양균 박사를 중심으로 이들 억제 신호에 관한 본격적인 연구가 시작됐다. 먼저 연구팀은 DH44 신경세포의 생물학적 기능이 단지 초파리의 음식 선택 행동을 조절하는 데 그치지 않고 영양분이 필요한 상황에서 적극적으로 영양적 가치가 있는 탄수화물류에 대한 섭식 행동을 증가시킴을 자동화된 초파리 섭식 행동 측정 장치를 이용해 증명했다. 즉 DH44 신경세포의 활성화는 초파리가 식사량을 증가시키며, 배가 부른 상태에서 특이적으로 활성화되는 억제 신호를 통해 DH44 활성화에 의한 과잉 섭식 행동이 방지되는 것이다. 이어서 연구팀은 DH44 신경세포에 대한 억제 신호가 초파리 뇌 밖의 주변 장기들로부터 전해져 오는 것을 실험으로 확인했다. 연구팀은 구체적으로 어떠한 말단 장기에서 DH44 억제 신호를 보내는지 확인하기 위해 초파리의 뇌와 연결된 다양한 말단 장기들을 하나씩 제거해 나가는 방식으로 억제 신호의 유래를 추적했으며, 그 결과 초파리의 위에 해당하는 내장 부위와(Crop), 척수에 해당하는 복부 신경중추(ventral nerve cord, VNC) 에서 DH44 억제 신호가 발생함을 확인했다. 계속해서 연구팀은 DH44 신경세포가 초파리의 위에 해당하는 내장기관에 신경 가지를 뻗어서 음식물 섭취에 의한 해당 기관의 물리적 팽창 신호를 `피에조(Piezo)' 채널을 통해 인지할 수 있음을 확인했다. 피에조 채널은 특정 세포나 조직에 가해지는 물리적 팽창을 감지할 수 있는 센서로 포유동물의 호흡, 혈압 조절 등에 중요한 역할을 하고 있으며 초파리에게서는 소화기관의 물리적 팽창 감지를 통한 식욕 억제를 유발한다. 이번 연구에서는 피에조 채널이 음식물 섭취에 의한 초파리 위의 물리적 팽창을 감지한 후 DH44 신경세포의 기능을 특이적으로 억제해 추가적인 탄수화물 섭취 행위를 방지함으로써 과도한 물리적 팽창으로부터 내장기관을 보호하는 기능을 가짐을 밝혔다. 또한, 초파리의 척수에 해당하는 복부 신경중추에 있는 `후긴(Hugin)' 신경세포는 채 내에 순환되고 있는 영양분의 농도가 높을 때 이를 감지해 후긴 수용체를 발현하고 있는 DH44 세포들의 신경 활성을 억제한다. 이러한 작용을 통해 이미 체내 에너지가 높은 상태일 때 소화기관에 부담을 줄 수 있는 추가적 섭식 행동을 효과적으로 차단할 수 있음을 실험적으로 확인했다. 위 실험들을 통해 연구팀은 초파리 내장기관에 가해지는 물리적 압력을 인지해 활성화되는 피에조 채널과 체내에 순환되는 영양분이 많을 때 활성화되는 후긴 신경세포들이 각기 다른 물리적, 화학적 신호를 인지해 서로 독립적이면서도 상호보완적으로 DH44 세포 활성화를 통해 야기될 수 있는 과식을 억제함을 확인했다. 서성배 교수는 "이번 연구 결과는 동물의 뇌 속에 존재하는 영양분 감지 신경세포의 섭식 유도기능이 상위 신호전달 체계에 의해서 특이적으로 억제될 수 있음을 보여주는 첫 번째 사례ˮ라며 "과식에 대한 억제는 독립적으로 인지되는 물리, 화학적 척도를 다각적으로 종합해 체계적으로 이뤄져야 할 만큼 동물 생존에 매우 중요함을 다시 한번 보여주는 결과이며 인간의 식이장애 및 비만 예방에 도움이 되기 위한 밑거름이 될 연구 결과ˮ라고 말했다. 즉, 처음에 제시한 두 가지 끔찍한 장면들은 동물에 존재하는 유기적인 과식 억제 시스템으로 인해 자연 상태에서는 일어날 가능성이 희박함을 이번 연구 결과를 통해 다시금 확인할 수 있다.
2021.06.15
조회수 50268
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 11