-
박영진 교수, 현대자동차그룹과 함께 능동형 노면 소음 저감기술(RANC) 개발
〈 박영진 교수 〉
우리 대학 기계공학과 박영진 교수 연구실(시스템동역학 및 응용제어 연구실)과 현대자동차그룹이 협업해 개발한 ‘능동형 노면 소음 저감기술(이하 RANC)’이 상용화된다.
현대차그룹은 지난 11일 도로에서 발생해 실내로 유입되는 노면 소음을 크게 줄여주는 ‘RANC’를 개발했다고 밝혔다. RANC 핵심 요소기술인 센서 위치 및 신호 선정 방법에 대해 한국과 미국에 특허 출원을 완료했다.
RANC는 주행 시 발생하는 노면 소음을 낮추는 기술이다. 시스템은 가속도 센서, DSP(Digital Signal Processor, 음향신호 분석을 위한 제어 컴퓨터), 마이크, 앰프, 오디오 등으로 구성된다. 시스템을 최대한 단순하게 하도록 오디오는 별도의 오디오 시스템이 아닌 차에 원래 내장된 오디오를 활용한다.
먼저 가속도 센서가 진동의 전달 경로에 위치해 노면 소음을 유발하는 진동을 취득한다. 여기서 진동 전달 경로를 정확히 파악하기 위한 가속도 센서의 위치가 굉장히 중요하다. 연구팀은 수많은 테스트를 통해 최적의 센서 위치를 찾을 수 있었다.
박영진 교수 연구실은 지난 1993년부터 4년간 G7 국가 과제로 현대자동차와 도로 소음을 능동적으로 줄이는 연구를 수년간 수행하고 이 결과를 국제 학술지에 게재했다. 이후 네이처(Nature)에서 2002년 ‘Noise quietens driving’이라는 제목의 기사의 뉴스로 게재해 실제 차량에서 최초로 도로 소음을 줄이는 연구가 성공했음을 알렸다. 하지만 당시 주변 기술들의 부재(차량용 디지털 앰프 및 DSP 등)와 가격 요인 등으로 인해 상용화에는 실패했다.
그 후 2013년부터 박 교수 연구팀은 1건의 기술이전과 8건의 산학과제가 포함된 관련 연구를 수행했으며, 이를 기반으로 현대자동차 NVH 리서치랩 (전문위원 이강덕 박사; 항공공학 박사, 1996년)은 옵토멕 (설립자 김경수 교수; 기계공학 박사, 1999년), ARE (김현석 대표; 기계공학 박사, 1998년), 위아컴, 번영 등과 협업해 순수 국내 기술로 RANC 시스템의 개발에 성공했다.
박영진 교수 연구실은 선행연구 단계에서는 이론 기반 연구 및 연구팀의 구성 등 주도적으로 연구를 이끌었으며, 현대자동차 주도로 진행된 상용화 단계에서는 미래 지향적인 연구와 자문역할을 수행했다.
현대자동차그룹은 세계 최초로 RANC 기술의 상용화를 위해 글로벌 차량 오디오 전문업체인 하만과 협업해 완성도를 높여 RANC를 제네시스 브랜드 첫 번째 스포츠유틸리티차량(SUV) ‘GV80’에 적용한다.
박영진 교수는 “부임 초기에 중점적으로 한 연구가 20년이 더 지나 상용화가 이루어지는 것을 볼 수 있어 엔지니어로서 행복하고 특히 연구실의 졸업생들과 함께 노력해 상용화에 기여할 수 있어서 감개가 무량하다”라고 말했다.
2019.12.02
조회수 14042
-
박효훈 교수, 초소형 3차원 영상 센서의 핵심기술 개발
〈 (왼쪽부터) 나노종합기술원 유종범 연구원, 김성환 박사과정, 박효훈 교수 〉
우리 대학 전기및전자공학부 박효훈 교수 연구팀이 나노종합기술원과의 공동 연구를 통해 3차원 영상 센서의 핵심 기술인 실리콘 기반 광위상배열(optical phased array, OPA) 칩을 개발했다.
김성환 박사과정과 나노종합기술원 유종범 박사가 주도한 이번 연구결과는 국제 학술지 ‘옵틱스 레터스(Optics Letters)’ 1월 15일자 온라인 판에 게재됐다.
3차원 영상 센서는 사진 등의 2차원 이미지에 입체감을 주는 거리정보를 추가해 3차원 이미지로 인식하는 센서이다. 사물의 정확한 거리정보가 필요한 자율주행 자동차, 드론, 로봇, 안면인식이 사용되는 스마트폰 등 다양한 전자기기에서 눈의 역할을 하는 핵심부품이다.
다수의 자동차, 드론 회사들이 레이저 빛을 이용한 3차원 영상 센서인 라이다(light detection and ranging, LiDAR) 개발에 주력하고 있다. 그러나 이 방식은 2차원 영상 센서로 3차원 스캐닝을 하는 기계적 방식을 사용하기 때문에 주먹 정도의 큰 크기를 가지며 고장 가능성도 크다.
광위상배열(Optical Phased Array, OPA)은 전기적으로 빛의 방향을 조절할 수 있어 라이다의 차세대 구조로 주목받고 있다. 실리콘 기반의 광위상배열은 크기가 작고 내구성이 높으며 기존의 반도체 칩을 제작하는 설비를 활용해 만들 수 있어 많은 연구가 활발히 진행되고 있다.
하지만 기존의 광위상배열은 빛 방향을 조절하는 방법에 문제가 있다. 수평 방향 조절은 전기-광학식 위상변조기를 이용해 넓은 범위의 스캐닝이 가능하지만, 수직 방향 조절은 레이저 빛의 파장을 바꿔줘야 하는 기술적 난제가 있다.
즉, 빛의 파장을 바꾸면 실리콘 광소자의 특성이 달라져 신뢰성 있는 방향조절이 어렵고 또한 파장을 조절할 수 있는 레이저를 실리콘 기반의 칩에 집적시키기가 어렵기 때문이다. 따라서 방사되는 빛을 수직 및 수평 방향으로 쉽게 조절할 수 있는 새로운 구조를 만드는 것이 중요하다.
연구팀은 파장 변조 광원을 사용해야 하는 기존의 광위상배열을 발전시켜 단일파장 광원으로 넓은 범위의 2차원 스캐닝이 가능한 초소형, 저전력 광위상배열 칩을 개발했다.
연구팀이 반도체 공정을 통해 광위상배열 구조로 제작한 이번 센서는 잠자리 눈 정도의 크기로 작게 제작할 수 있어 3차원 영상 센서를 소형화시킬 수 있다.
연구팀은 광위상배열이 3차원 영상 센서의 기능뿐 아니라 획득한 3차원 영상 데이터를 원하는 방향으로 무선전송하는 기능도 수행 가능해 고화질, 대용량의 영상정보를 전자기기 간 자유롭게 통신할 수 있다고 밝혔다.
김성환 박사과정은 “파장 변조를 이용한 2차원 스캐닝은 파장 변조가 가능한 광원의 집적이 매우 어려웠기 때문에 이번 연구를 통해 광위상배열의 상용화에 큰 도움이 될 것으로 기대한다”라고 말했다.
유종범 박사는 “3차원 영상 센서를 스마트폰에 장착해 얼굴인식 및 증강현실 서비스 등에 지원할 예정이다”라며 “공정 플랫폼을 발전시켜 3차원 반도체 영상 센서 핵심 기술의 국산화에 노력하겠다”라고 말했다.
□ 그림 설명
그림1. 제작된 초소형 광위상배열 칩
그림2. 3차원 영상센서 핵심기술인 광위상배열 칩
2019.01.22
조회수 12113
-
허원도 교수, 변화무쌍 스위치 단백질 관찰하는 바이오센서 개발
〈 허 원 도 교수 〉
우리 대학 생명과학과 허원도 교수 연구팀(기초과학연구원 인지 및 사회성 연구단)이 신호전달 스위치단백질의 활성을 모니터링하는 새로운‘바이오센서’를 개발하고 살아있는 생쥐의 신경세포 활성화를 관찰하는데 성공했다.
이번 연구를 통해 암세포의 이동과 신경세포 활성화 등 다양한 세포 기능에 관여하는 신호전달 스위치 단백질의 변화무쌍한 과정을 실시간으로 볼 수 있을 것으로 기대된다.
이번 연구결과는 국제 학술지 ‘네이처 커뮤니케이션즈’(Nature Communications)에 1월 14일자 온라인 판에 게재됐다.
세포의 신호전달 스위치 단백질은 스위치가 켜지면 기계가 작동하듯 활성화 여부로 세포의 기능을 제어한다. 대표적인 신호전달 스위치단백질인 small GTPase은 세포의 이동, 분열, 사멸과 유전자 발현 등에 관여한다. 핵심 단백질인 small GTPase를 제어할 수 있다면 세포의 기능도 조절할 수 있어 많은 연구팀들이 연구주제로 삼고 있다.
허원도 교수 연구팀이 그간 연구 노하우를 바탕으로 개발한 새로운 바이오센서는 small GTPase 활성의 모든 변화 과정을 실시간으로 볼 수 있는 도구다. 광유전학과 결합해 다양한 방식으로 관찰이 가능하고 민감도가 커 생체 내 두꺼운 조직 안에서 벌어지는 수 나노미터(nm) 크기의 변화까지도 정밀하게 볼 수 있다는 게 특징이다. 고감도 성능을 이용하면 살아있는 동물의 암세포 전이 및 뇌 속 신경세포의 구조변화를 관찰할 수 있어 향후 강력한 이미징 기술이 될 것으로 기대된다.
일반적으로 small GTPase의 활성을 관찰하는 데엔 형광 공명 에너지전달(FRET) 방식을 이용했다. 하지만 FRET 방식은 광유전학과 광 파장이 겹쳐 정작 관찰해야 할 세포신호의 변화는 보기가 어려웠다. 또 민감도가 낮아 동물 모델에 적용하는 것도 제한적이었다.
연구팀은 단백질 공학 기술로 5가지 종류의 small GTPase 단백질의 바이오센서를 개발하고 두 가지 파장(488nm, 561nm)에서 관찰이 가능한 바이오센서를 개발, 이를 동시에 분석하는데 성공했다. 연구진이 개발한 바이오센서는 기존 바이오센서가 청색광을 활용하는 광유전학 기법의 파장과 겹치는 문제를 효과적으로 극복해 세포의 이동방향을 살피면서 동시에 공간적 기능도 분석할 수 있는 장점이 있다.
연구팀은 유방암 전이 암세포에 바이오센서를 발현시키고, 광유전학 기술로 암세포 이동 방향을 조절하자 small GTPase 단백질이 활성화됨을 확인했다. 이 과정에서 암세포의 이동 방향이 변할 때, 세포 내 small GTPase가 이리저리 움직이며 활성화하는 모습을 실시간 이미징하는데 성공했다. 연구진은 small GTPase의 활성을 실시간으로 탐지해 추후 암치료물질을 탐색하는 등 다방면의 기술 접목이 가능할 것으로 전망한다.
더 나아가 IBS 연구진은 미국 막스 플랑크 플로리다 연구소(Max Plank Florida Institute)의 권형배 박사 연구팀과 공동연구를 진행했다. 연구진은 공 위를 달리는 실험으로 깨어있는 생쥐인 실험군과 마취된 대조군의 뇌 영역의 운동 피질의 신경세포에서의 small GTPase단백질의 활성을 비교하는데 성공했다. 살아있는 쥐에서 수 나노미터 단위의 신경세포 수상돌기 가시 수상돌기 가시에서 실시간으로 변화하는 small GTPase 단백질의 활성을 관찰한 것은 이번이 처음이다.
이번에 개발된 바이오센서는 시냅스처럼 수 마이크로미터 단위의 미세한 구조에서도 목표한 단백질을 관찰할 수 있을 만큼 민감도가 크다. 실험쥐의 운동행동과 같은 생리학적 현상에 지장을 주지 않는 자연스러운 상태에서 뇌 영역을 바로 실시간으로 관찰할 수 있어 뇌 관련 연구에도 다양하게 적용될 수 있다.
연구를 이끈 허원도 교수는 “이번 연구는 small GTPase 단백질을 생체 내에서 관찰하기 위한 기존의 바이오센서들의 기술적 한계를 극복하는데 성공했다”며 “특히 청색 빛을 활용한 광유전학 기술과 동시에 적용할 수 있어 다양한 세포막 수용체와 관련된 광범위한 세포신호전달연구와 뇌인지과학연구에 접목이 가능할 것으로 기대된다”고 말했다.
□ 그림 설명
그림1. small GTPase 바이오센서 개발
그림2. small GTPase 바이오센서를 이용해 유방암 전이 암세포 관찰
그림3. 운동 행동 중인 생쥐 실시간 관찰
2019.01.15
조회수 11915
-
윤동기 교수, 공기로 대면적의 모자이크만화경 패턴 구현
〈 윤동기 교수 〉
우리 대학 나노과학기술대학원/화학과 윤동기 교수 연구팀이 액정의 결함을 이용해 마이크론 크기의 공기 기둥을 만들고, 이를 이용해 모자이크 만화경(kaleidoscope) 패턴을 구현하는 데 성공했다.
이번 연구는 향후 자연계에서 존재하는 다양한 형태의 반복적 모자이크 구조의 형성에 대한 이해를 도울 수 있는 기초연구가 될 수 있을 것으로 기대된다. 이를 기반으로 액정기반의 나노 재료를 활용해 디스플레이, 광학 및 화학 센서 등의 응용기술에 다양하게 기여할 것으로 기대된다.
김대석 박사가 1저자로 참여하고 슬로베니아 루블라냐 대학(University of Ljubljana)의 우로스 트칼렉(Uros Tkalec) 교수와의 국제 공동 연구로 수행된 이번 연구는 국제 학술지 사이언스의 자매지 ‘사이언스 어드밴시스(Science Advances)’ 11월 23일 자 온라인판에 게재됐다. (논문명: (영문)Mosaics of topological defects in micropatterned liquid crystal textures, (국문)마이크로 패턴이 형성된 액정의 위상 결함 모자이크 패터닝)
액정 재료는 손쉬운 배향 제어, 빠른 반응 속도, 이방적(anisotropic)인 광학 특성으로 인해 액정표시장치(LCD), 광학 센서 등에 활용되는 대표적 유기 소재이다.
이때 액정의 결함을 최소화하는 것이 성능 유지를 위해 유리한 것으로 알려졌지만 물질의 특성상 액정의 결함은 불가피하게 발생한다.
그러나 최근 액정의 결함이 오히려 광학적, 구조적 및 탄성적 기능을 가진 것으로 주목받으면서 액정물질은 더 이상 LCD 광학 소재의 전유물이 아닌 전기광학 및 센서 분야를 포함한 다양한 분야에서 용용 가능성이 매우 큰 것으로 평가받고 있다.
하지만 액정물질은 물풀처럼 흐르는 특성과 마치 도미노처럼 한 부분의 영향으로 전 영역이 변하는 장범위 규칙(long range order)을 갖는 탄성 때문에 결함 구조를 대면적에 규칙적, 일관성 있게 패터닝 하는 것은 매우 어렵다.
연구팀은 문제 해결을 위해 대기 상태의 공기층이 액정물질을 만났을 때 수직 배향을 유도한다는 사실에 주목했다.
이를 효과적으로 이용하기 위해 마이크로 크기 패턴의 기판과 유리기판 사이에 액정을 주입해 공기주머니를 자발적으로 형성함으로써 수십 마이크론 내에서 액정분자들을 사방으로 잡아주는(anchoring) 시스템을 개발했다. 이를 통해 효과적으로 액정의 결함 구조를 대면적에서 제어해 모자이크 문양의 패터닝에 성공했다.
이번 연구의 핵심기술은 액정물질이 공기층 패턴 내에서 온도에 따라 변하는 상전이(phase transition) 속도에 있다. 상전이 속도가 빠르면 빠를수록 액정이 급속으로 성장하며 더욱 균일한 패턴을 형성한다. 반면 느린 상전이 속도에서는 액정물질의 탄성과 공기층의 고정 에너지(anchoring anergy)의 균형이 비대칭적으로 전개되며 불균일한 결함 구조를 만든다.
연구팀은 이런 상전이 속도에 따른 비대칭 및 비가역적 결함 구조 형성은 다양한 비 평형적 자연현상에서도 유사한 패턴으로 관찰된다는 점에 착안해 물리적 경제적으로 거의 불가능한 자연현상에 대한 실험 모델로 이번 연구를 접목할 수 있다고 밝혔다.
예를 들어 반도체 물질의 결정 성장에서 형성되는 결함 구조, 블랙홀을 포함한 특이점(singularity)을 형성하는 중력 점 간의 형성 원리, 응집물리(condensed matter)에서 원자들 간 상호작용 등 넓은 범위의 자연현상에 대해 유사성을 표현할 수 있는 실험적 모델을 정립할 수 있을 것으로 기대된다.
윤 교수 연구팀은 위상결함(topological defect)의 밀도 조절을 통해 복잡하고 다양한 2차원 모자이크 패턴을 형성하는 기술도 선보였다.
위상학적 결함 구조는 마치 전기의 음양 전하처럼 위상학적 전하(topological charge)를 갖는 음양 결함으로 정의할 수 있다. 이때 항상 음과 양이 짝을 이루어 위상학적 중립을 가지려는 규칙을 갖는다.
연구팀은 이러한 액정결함의 물리적 현상을 바탕으로 상기 공기층과 기판의 화학처리를 결합해 규칙적인 배열을 유지하는 동시에 위상결함의 밀도를 조절해 기술을 완성했다.
이러한 면적분할(tiling) 기반의 모자이크 패턴은 다양한 산업 및 실용 디자인에 적용할 수 있는 예술적 가치를 가지고 있을 뿐 아니라 세포막의 이중구조, 유기탄화시료 및 다양한 무기 결정구조면 등에 활용 가능할 것으로 보인다.
윤 교수는 “우리나라가 액정 디스플레이 산업의 강국이지만 액정 기초연구는 세계적 수준에 비해 높지 않다”라며 “이번 연구를 계기로 국내 관련 기초연구 관심도가 높아지는 계기가 되길 바란다”라고 말했다.
이번 연구는 미래창조과학부와 더불어 한국연구재단이 추진하는 미래유망융합기술파이오니어 사업과 전략연구과제의 일환으로 수행됐다.
□ 그림 설명
그림1. 공기 층의 사각 및 다이아몬드 패턴에서 형성 된 네마틱 액정의 편광현미경 사진
그림2. 액정패턴이 형성되는 편광현미경 이미지들
2018.11.26
조회수 11617
-
유승협 교수, 초저전력 심박 및 산소포화도 센서 구현
〈 유승협 교수, 이현우 박사과정〉
우리 대학 전기및전자공학부 유승협 교수 연구팀이 유기발광다이오드(OLED)와 유기포토다이오드(OPD)를 이용해 초저전력 심박 및 산소포화도 센서 구현에 성공했다.
전기및전자공학부 유회준 교수 연구팀과의 협력을 통해 이뤄진 것으로 이 기술을 통해 심박 및 산소포화도 센서가 다양한 웨어러블 기기에 적용될 수 있는 계기가 될 것으로 기대된다.
이현우 박사과정이 1저자로 참여한 이번 연구는 ‘사이언스 어드밴스 (Science Advances)’11월 9일자 온라인 판에 게재됐다. (논문명 : Toward all-day wearable health monitoring: An ultralow-power, reflective organic pulse oximetry sensing patch)
심박 및 산소포화도 센서는 신체의 건강 상태를 나타내는 가장 중요한 생체 신호의 하나인 심장 박동과 혈액 내 산소와 결합한 헤모글로빈의 농도로서 신체 내 원활한 산소 공급 여부를 가늠할 수 있는 산소포화도를 측정하는 기기이다.
심박 및 산소포화도 센서에는 일반적으로 LED와 포토다이오드로 구성된 광학적 방법이 이용된다. 이 기술은 간단하고 소형화가 용이한 비 침습적 방법이면서 주요 생체신호의 모니터링이 가능하다는 이점이 있어 병원용 기기뿐 아니라 스마트 워치 등 웨어러블 기기에도 탑재되는 경우가 많다.
이러한 센서는 배터리 용량이 매우 제한적인 웨어러블 기기의 특성상 센서의 전력소모를 줄이는 것이 매우 중요하다.
그러나 현재 상용 심박 및 산소포화도 센서는 이산소자들의 배열로 구성돼 피부에서 산란으로 인해 전방위로 전달되는 빛을 효율적으로 감지하기 어렵다. 이러한 이유로 좀 더 강한 빛을 필요로 하기 때문에 장기간 실시간 모니터링에는 한계가 있다.
연구팀은 문제 해결을 위해 광원의 발광 파장에 따른 피부에서의 빛의 전달 형태를 실험과 피부 모델 시뮬레이션을 통해 검토했다. 유기소자의 경우 자유로운 패턴 구현이 용이한 점을 최대한 이용해 유기포토다이오드가 유기발광다이오드를 동심원 형태로 감싸 피부에서 전방위로 분포되는 빛을 효율적으로 감지하는 최적 구조를 갖는 유연 심박 및 산소포화도 센서를 구현했다.
이를 통해 평균소비전력 약 0.03밀리와트(mW)만으로도 심박 및 산소포화도를 측정할 수 있었다. 이는 LED와 PD가 일렬로 배치된 상용 센서가 갖는 통상 전력소모 양의 약 수십 분의 일에 해당하는 매우 작은 값으로 24시간 동작에도 1밀리와트시(mWh)가 채 되지 않는 양이다.
이 기술은 매우 낮은 전력 소모 외에도 유기소자가 갖는 유연 소자의 형태적 자유도도 그대로 갖는다. 따라서 스마트 워치부터 작게는 무선 이어폰, 스마트 반지, 인체 부착형 패치 등의 웨어러블 기기에서 배터리로 인한 제한을 최소화하면서 일상에 지장 없이 지속적인 생체 신호 모니터링을 가능하게 할 것으로 기대된다.
유승협 교수는 “생체 신호의 지속적인 모니터링은 건강의 이상 신호를 상시 검출 할 수 있게 할 뿐 아니라 향후 빅데이터 등과 연계하면 이들 생체신호의 특정 패턴과 질병 간의 상호 관계를 알아내는 등에도 활용될 수 있다.”고 말했다.
이번 연구는 과학기술정보통신부 한국연구재단-나노·소재원천기술개발사업 및 선도연구센터 사업의 지원을 받아 수행됐다.
□ 사진 설명
사진1. 연구팀이 개발한 센서
2018.11.12
조회수 13476
-
김신현 교수, 달걀 속 살충제 성분, 현장 즉시 검출 기술 개발
〈 김신현 교수, 김동재 박사과정 〉
우리 대학 생명화학공학과 김신현 교수 연구팀과 재료연구소(소장 이정환) 김동호 박사 공동 연구팀이 생체 시료에 들어있는 미량의 분자를 직접 검출할 수 있는 센서를 개발했다.
연구팀은 개발한 센서를 통해 다양한 종류의 살충제 성분을 검출하는데 성공했다. 특히 국내 및 유럽에서 문제가 됐던 달걀 속 살충제 성분인 피프로닐 술폰(Fipronil sulfone)을 시료 전처리 없이 검출할 수 있음을 증명했다.
연구팀의 센서는 전하를 띠는 하이드로젤 미세입자 내부에 금 나노입자 응집체를 캡슐화한 형태로 생체 시료 내에 존재하는 분자를 직접 분석해야 하는 광범위한 분야에 적용 가능할 것으로 기대된다.
김동재 박사과정이 1저자로 참여한 이번 연구는 나노분야의 국제 학술지 ‘스몰(Small)’ 10월 4일자 내부표지 논문으로 게재됐다.(논문명 : SERS-Active Charged Microgels for Size- and Charge-Selective Molecular Analysis of Complex Biological Samples, 생체 시료의 분자 크기 및 전하 선택적 분석을 위한 표면증강라만산란용 마이크로젤)
분자가 레이저에 노출되면 ‘분자 지문’이라고 불리는 고유의 라만(Raman) 신호를 보인다. 하지만 일반적으로 라만 신호의 세기는 매우 낮아 실질적인 분자 감지에 사용이 어렵다.
연구팀은 금속 나노구조의 표면에서 발생하는 표면 플라즈몬 공명 현상이 강한 세기의 기장을 형성하는 점을 이용해 라만신호를 현저히 증가시켰다. 이를 표면증강라만산란 현상이라고 한다.
이 표면증강라만산란 현상에 의해 금속 나노구조 표면에 존재하는 분자의 라만신호는 크게 증가시킬 수 있지만 이를 일반적인 생체 시료에 직접 적용하는 것은 어렵다. 생체 시료에 존재하는 다양한 크기의 단백질들이 금속 표면에 비가역적으로 흡착해 실제 분석이 필요한 분자의 접근을 막기 때문이다.
일반적으로 사용되는 생체 시료 분석법은 대형 장비를 이용한 시료 전처리 과정이 필수이다. 하지만 이로 인해 시료의 신속한 현장 분석이 어려워 시간과 비용을 증가시킨다.
연구팀은 시료의 정제 과정 없이 분자를 직접 검출하기 위해 하이드로젤에 주목했다. 하이드로젤은 친수성(親水性) 나노 그물 구조를 이루고 있어 단백질처럼 크기가 큰 분자는 배제하고 작은 크기의 분자만을 내부로 확산시킨다. 또한 하이드로젤이 전하를 띠는 경우 반대 전하를 띠고 있는 분자를 선택적으로 흡착시켜 농축할 수 있다.
연구팀은 이러한 원리를 센서 구현에 적용시키기 위해 미세유체기술을 이용했다. 이를 통해 금 나노입자 응집체를 형성하는 동시에 전하를 띠는 하이드로젤 미세입자 안에 캡슐화 하는데 성공했다.
하이드로젤 미세 입자는 생체 시료에 도입돼 단백질로부터 금 나노입자 응집체를 보호하고, 동시에 반대 전하를 띠는 표적 분자를 응집체 표면에 선택적으로 농축시킨다. 이를 통해 표적 분자의 라만 신호는 단백질의 방해 없이 증대되며 시료의 전처리 과정 없이 빠르고 정확한 분자 검출이 가능해진다.
김신현 교수는 “새롭게 개발한 라만 센서는 식품 내 살충제 성분 검출 뿐 아니라 혈액과 소변, 땀 등 인체 속 시료에 들어있는 약물, 마약 성분 등 다양한 바이오마커의 직접 검출에도 사용 가능하다”고 말했다.
재료연구소 김동호 박사는 “시료 전처리가 필요없기 때문에 현장에서 시료의 직접 분석이 가능해 시간과 비용의 혁신적 절감이 가능해질 것이다”고 말했다.
이번 연구결과는 재료연구소의 기관 주요사업과 한국연구재단의 중견연구자지원사업 및 글로벌연구실사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. small 저널 내부표지
그림2. 시료 전처리 없이 분자 선택적 라만 분석이 가능한 하이드로젤 기반 라만 센서의 원리
그림3. 분자 전하 선택적 농축 및 배제를 보여주는 현미경 사진
2018.10.18
조회수 13627
-
이건재 교수, 유창동 교수, 유연 압전 화자인식 음성센서 개발
〈 이 건 재 교수 〉
우리 대학 신소재공학과 이건재 교수와 전기및전자공학부 유창동 교수 공동 연구팀이 인공지능 기반의 화자(話者) 인식용 유연 압전 음성센서를 개발했다.
이번 연구를 통해 개인별 음성 서비스를 스마트 홈 가전이나 인공지능 비서, 생체 인증 분야 등 차세대 기술에 활용 가능할 것으로 기대된다.
이번 연구 결과는 국제 학술지 ‘나노 에너지(Nano Energy)’ 9월호에 ‘민감도’와 ‘화자인식’ 논문 두 편으로 동시 게재됐고 현재 관련 기술은 실용화 단계에 있다. (민감도 논문 : Basilar Membrane-Inspired Self-Powered Acoustic Sensor Enabled by Highly Sensitive Multi Tunable Frequency Band, 화자인식 논문 : Machine Learning-based Self-powered Acoustic Sensor for Speaker Recognition)
음성 센서는 인간과 기계 사이의 자유로운 소통을 가능하게 만드는 가장 직관적인 수단으로 4차 산업혁명의 핵심 기술로 주목받고 있다. 음성센서 시장은 2021년 대략 160억 달러 규모로 커질 것으로 예상된다.
그러나 현재 산업계에서는 음성 신호 수신 시 정전용량을 측정하는 콘덴서 형식을 사용하기 때문에 민감도가 낮고 인식 거리가 짧아 화자 인식률에 한계가 있다.
이번 연구에서 이 교수 연구팀은 인간의 달팽이관을 모사해 주파수에 따라 다른 영역이 진동하는 사다리꼴의 얇은 막을 제작했다. 음성신호에 따른 공진형 진동을 유연 압전 물질을 통해 감지하는 자가발전 고민감 음성 센서를 개발했다.
연구팀의 음성 센서는 기존 기술 대비 2배 이상 높은 민감도를 가져 미세한 음성 신호를 원거리에서도 감지할 수 있다. 또한 다채널로 신호를 받아들여 하나의 언어에 대해 복수 개의 데이터를 얻을 수 있다.
이 기술을 기반으로 누가 이야기하는지 찾아내는 화자인식 시스템에 적용해 97.5%의 화자인식 성공률을 무향실에서 달성했고 기존 기술 대비 오류를 75% 이상 줄였다.
화자인식 서비스는 음성 분야에 세상을 바꿀 next big thing으로 기대를 받고 있다. 기존 기술은 소프트웨어 업그레이드를 통한 접근으로 인식률에 한계가 있었지만 연구팀의 기술은 하드웨어 센서를 개발함으로써 능력을 크게 향상시켰다. 추후 첨단 소프트웨어를 접목한다면 다양한 환경에서도 화자 및 음성 인식률을 높일 수 있을 것으로 예상된다.
이건재 교수는 “이번에 개발한 머신 러닝 기반 고민감 유연 압전 음성센서는 화자를 정확하게 구별할 수 있기 때문에 개인별 음성 서비스를 스마트 가전이나 인공지능 비서에 접목할 수 있을 것이며 생체 인증 및 핀테크와 같은 보안 분야에서도 큰 역할을 할 수 있을 것이다”고 말했다.
이번 연구는 스마트 IT 융합시스템 연구단의 지원을 받아 수행됐다.
<관련 영상>
https://www.youtube.com/watch?v=QGEVJxCFVpc&feature=youtu.be
□ 그림 설명
그림1. 인간의 달팽이관을 모사한 유연 압전 음성 센서 구조
그림2. 인공지능을 통한 화자 인식 개략도
2018.10.04
조회수 13001
-
유재영, 서민호 연구원, 상용화 가능한 포스터치 센서 개발
〈 유재영 박사과정, 서민호 박사, 윤준보 교수 〉
우리 대학 전기및전자공학부 유재영 박사과정과 서민호 박사(지도교수: 윤준보 교수) 연구팀이 플렉서블 기기에 적용할 수 있는 상용화 수준의 고민감도 투명 유연 포스터치(Force touch) 센서를 개발했다.
이 센서는 스마트폰 뿐 아니라 다양한 곡률에서 사용되는 플렉서블 기기, 헬스케어 웨어러블 기기 등 다양한 터치 인터페이스에 적용 가능할 것으로 기대된다.
유재영 박사과정, 서민호 박사가 공동 1저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 9월 6일자 온라인 판에 게재됐으며, 연구의 우수성을 인정받아 오프라인 저널 후면 표지논문으로 선정됐다.
포스 터치 센서는 인식되는 터치의 위치 정보와 더불어 누르는 압력도 인식 가능한 기술로 실제 스마트폰에 집적돼 한 번의 터치만으로 다양한 기능을 제공할 수 있어 많은 관심을 받고 있다.
최근 포스 터치 센서를 스마트폰 뿐 아니라 플렉서블 기기를 포함한 다양한 응용 제품에 적용하기 위해 마이크로-나노 크기의 미세 구조를 이용한 민감도 및 유연성 향상 연구가 활발히 진행되고 있다.
그러나 기존의 고성능 센서들은 특정 성능만을 향상시킴으로써 실제로 필요한 민감도, 유연성, 투명도, 재현성, 다양한 사용 환경에서의 동작 신뢰성 등의 총체적인 성능을 동시에 만족시키지 못해 상용화에 한계가 있었다.
연구팀은 문제 해결을 위해 포스 터치 센서는 공기를 포함한 간격을 갖는다는 기존 상식에서 벗어나 속이 가득 찬 센서를 개발하는 데 집중했다.
연구팀은 센서 내부에 압력에 따른 유전율 변화를 극대화할 수 있는 금속 나노 입자가 포함된 투명 나노 복합 절연층과, 가해진 압력을 집중시켜 민감도를 높일 수 있는 나노그레이팅 구조를 개발해 고민감도의 투명 유연 포스 터치 센서를 제작하는 데 성공했다.
연구팀은 감지 전극을 감지층의 상하부에 형성한다는 기존 방식에서 벗어나 동일 평면(기계적 중립면)에 배치함으로써 볼펜심 정도의 극대화된 굽힘 정도에서도 성능의 변화 없이 동작하는 것을 확인했다.
또한 대량 양산 시 주요 고려 사항인 대면적 균일성, 제작 재현성, 온도 및 장기 사용에 따른 신뢰성 등 역시 상용화 수준임을 증명했다.
연구팀은 개발한 센서를 맥박 모니터링이 가능한 헬스케어 웨어러블 기기에 적용해 실시간 맥박을 감지해냈다. 또한 국내 포스 터치 센서 기업인 ㈜하이딥과 함께 7인치 대면적 센서를 스마트폰에 실제 장착해 실시간 압력 분포를 확인해 상용화 가능한 수준임을 확인했다.
연구를 주도한 유재영 박사과정은 “간단한 구조, 공정을 이용해 상용화 수준의 포스 터치 센서를 개발했으며, 다양한 실제 사용 환경에서도 높은 신뢰성 수준에서 동작함으로써 사용자 터치 인터페이스와 웨어러블 기기에 널리 활용될 수 있을 것으로 기대한다”며 “연구를 전폭적으로 지원해준 나노종합기술원 이재영 원장님과 임성규 책임님, 그리고 연구재단 관계자분들께 큰 감사를 드린다”고 말했다.
이번 연구는 나노종합기술원 오픈이노베이션 사업과 한국연구재단의 중견연구자 지원사업을 통해 수행됐다.
또한 원천 특허화 활용 특허로 국내 출원 6건, 해외 출원 2건과 함께 ‘어드밴스드 사이언스 뉴스(Advanced Science News)’에 영상 초록과 함께 소개될 예정이다.
□ 그림 설명
그림1. 연구팀이 제작한 대면적 7인치 투명 유연 포스터치 센서
그림2. 연구팀의 후면 표지 논문 이미지
그림3. 스마트 폰 집적 후 압력 감지 확인을 위한 붓글씨 어플리케이션 동작 결과
2018.09.19
조회수 12578
-
스티브 박 교수, 유기반도체 결정크기 10배 성장 기술 개발
〈 이정찬 석사과정, 스티브 박 교수, 김진오 박사과정 〉
우리 대학 신소재공학과 스티브 박 교수 연구팀이 유기반도체 결정의 크기를 성장시키고 제어할 수 있는 기술을 개발했다.
이는 무기고분자 재료를 이용해 마이크로미터 크기 수준의 구조물을 제작한 뒤 용액전단법이라는 공정과 결합하는 기술로, 용액 기반의 프린팅 공정에서 유기반도체 결정의 성장 과정을 미세하게 제어함으로써 정밀하고 균일한 대면적 크기의 유기반도체 박막 제조의 기반 기술이 될 것으로 기대된다.
김진오 박사과정, 이정찬 석사과정이 공동 1저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 7월 16일자 표지논문에 선정됐다. (논문명 : Inorganic Polymer Micropillar-Based Solution Shearing of Large-Area Organic Semiconductor Thin Films with Pillar-Size-Dependent Crystal Size, 필러 크기에 따른 유기반도체 결정 크기 성장 가능한 무기고분자 마이크로 필러 기반 용액전단법)
유기반도체는 용액을 이용한 프린팅 공정이 가능하다는 점에서 큰 주목을 받고 있다. 저가 및 대면적 제작이 가능하고 유연한 전자 소자 제작이 가능하기 때문에 다양한 연구가 지속되고 있다.
유기반도체 성능의 지표인 이동도(Mobility)는 유기반도체의 결정성, 결정의 성장방향, 결정의 크기 등의 영향을 받는다. 유기반도체의 결정성이나 결정방향을 제어하기 위한 연구는 많이 발전됐지만 결정 크기를 성장시킬 수 있는 기술은 부족한 상황이다.
최근에는 유기반도체의 균일한 박막을 만들기 위한 기술이 발전되고 있는데 잉크젯 프린팅, 딥 코팅, 그리고 용액전단법이 대표적인 기술이다.
그러나 기존의 프린팅 공정은 용액의 흐름을 적절히 통제하지 못한 상태에서 용매의 증발이 무작위로 발생하기 때문에 결정 크기가 큰 유기반도체를 제작하는 데 어려움이 있다.
연구팀은 문제 해결을 위해 유기용매에 내성을 갖는 무기 고분자 재료를 이용해 다양한 형태의 전단판을 제작한 후 이를 용액전단 기술에 결합했다.(용액전단법: 기판과 전단판 사이에 용액을 주입하고 일정 속도로 전단판을 이동시켜 한 방향으로 정렬된 균일한 유기반도체 박막 제작이 가능한 프린팅 기술)
무기 고분자 재료는 유연하고 유기용매에 대한 내성을 갖고 있기 때문에 유기반도체를 이용한 프린팅 공정에 적합하다. 또한 기존의 실리콘 재료 기반의 전단판 제조 공정을 간단한 소프트리소그래피 공정으로 대체할 수 있다.
연구팀은 일렬 형태로 배열된 사각형 모양의 마이크로미터 크기 구조물을 이용해 용액이 균일한 굴곡을 가지며 기판에 맺히도록 조절했다. 이를 통해 용매의 증발 속도를 조절해 핵 생성이 일어나는 지점을 정밀하게 통제했다.
여기서 마이크로 구조물의 크기를 변화시키며 유기반도체 결정의 크기를 성장시키는 데 성공했고, 그 결과로 반도체 소자의 성능이 함께 향상됨을 확인했다.
스티브 박 교수는 “무기고분자 재료를 결합한 용액전단법은 프린팅 공정에서 정밀한 제어가 가능하다”며 “유기반도체 뿐 아니라 다른 재료를 이용한 균일 박막 제조가 가능한 원천 기술을 확보했다는 의미를 갖는다”고 말했다.
이번 연구는 한국산업기술평가관리원이 추진하는 센서산업고도화 전문기술개발사업 등의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 무기고분자를 이용한 마이크로 필러 구조의 용액전단법(어드밴스드 머티리얼즈 7월호 표지)
2018.08.03
조회수 12874
-
박정영, 정유성 교수, 합금 나노촉매 성능 향상 원리 밝혀
〈 박 정 영 교수, 정 유 성 교수〉
우리 대학 EEWS 대학원 및 화학과 박정영 교수 연구팀이 정유성 교수 연구팀과의 공동 연구를 통해 합금 나노 촉매 표면에 형성된 금속-산화물 계면이 촉매 성능을 향상시키는 중요한 요소임을 밝혔다.
이번 연구결과는 종합 과학 분야 국제 학술지 ‘네이처 커뮤니케이션즈’(Nature Communications) 6월 8일자 온라인 판에 게재됐다.
합금 나노입자는 높은 효율의 촉매 활성도를 가져 석유화학 공정뿐만 아니라 수소 연료 전지, 물 분해 등 친환경 촉매로 주목받고 있다. 합금 나노입자는 화학적 조성에 따라 촉매 표면의 전자 구조 및 결합 에너지를 제어할 수 있어 활용성이 크다.
이런 우수한 특성에도 불구하고 실제 촉매 환경에서는 반응물과 조건에 따라 나노 입자 표면 구조가 쉽게 달라져 합금 나노 촉매의 반응 원리 규명에 어려움이 있었다.
촉매 반응의 원리를 결정하는 핵심 요소는 핫전자이다. 화학반응이 일어날 때 촉매 표면에 순간적으로(펨토초, 1천조분의 1초) 발생하고 사라지지만 촉매 반응의 활성도를 파악할 수 있는 척도와 같다. 촉매 활성도가 증가하면 핫전자 양도 늘어나기 때문이다. 실시간으로 핫전자를 직접 검출할 수 있는 방법이 마땅히 없던 중 2015년 박정영 부연구단장 연구진이 핫전자를 관찰할 수 있는 핫전자 촉매센서를 개발했다. 이후 박 부연구단장은 핫전자 촉매센서를 중심으로 활발한 연구를 통해 다양한 결과를 내고 있다.
이번 연구에서는 백금과 코발트가 합금된 나노입자를 핫전자 촉매센서에 접목하는 방식으로 연구를 설계했다. 백금-코발트 합금 나노입자는 화학산업 및 에너지·환경 분야에 중요한 촉매 구성요소다. 백금-코발트 합금 나노입자처럼 복잡한 구조를 가진 나노 촉매 구조에 핫전자 촉매센서를 적용해 실시간으로 핫전자를 관찰하는 것이 이번 실험의 큰 관건이었다.
먼저 연구진은 여러 비율로 백금과 코발트를 합성해 합금 나노 촉매들을 제작하고 핫전자 촉매센서를 적용했다. 그 결과 75% 백금과 25% 코발트 비율로 합금 나노입자를 합성할 경우, 가장 많은 핫전자가 발생하고 촉매 성능이 높다는 것을 확인했다. 이후 핫전자 발생량과 촉매 성능의 상관관계를 보다 명확히 밝히고자 실시간 투과전자현미경(TEM, Transmission Electron Microscopy)으로 실험 과정을 관찰했다.
수소산화 반응에 합금 나노촉매를 적용하자 한 층의 코발트 산화물이 백금-코발트 합금 나노 입자 표면 위에 형성되면서 금속-산화물(백금-코발트 산화물)계면이 만들어졌다. 금속-산화물 계면에서 전하 이동이 늘어나면서 핫전자 검출 효율이 증가한 것이다. 다시 말해 금속-산화물 계면이 합금 나노 촉매의 활성을 높이는 데 결정적임을 실제로 입증한 것이다.
이번 연구는 실험 뿐 아니라 이론적으로도 계면과 촉매 성능 간 상관관계를 입증했다. 정유성 교수 연구진은 밀도범함수이론(Density Functional Theory) 기반의 양자계산을 통해 백금-코발트 산화물 계면에서 낮은 활성화 에너지로 일어나는 반응 원리를 이론적으로 뒷받침해 핫전자 발생 및 촉매 성능에 대한 근원적인 해석을 제안했다.
정 교수는 “이번 결과는 촉매 연구자들이 금속-산화물 계면의 중요성을 다시 주목하게 되는 계기가 될 것이다”고 말했다.
박 교수는 “이번 연구로 합금 나노촉매의 반응 중 자연스럽게 형성되는 두 물질 사이의 계면이 촉매 반응성과 핫전자의 생성을 증폭시킨다는 점을 규명했다”며 “실제 촉매반응이 일어나는 상압과 고온 환경에서 얻어진 결과를 토대로 향후 고효율의 차세대 촉매물질을 개발하는데 연구 결과를 응용할 수 있다”고 전망했다.
□ 그림 설명
그림1. 나노 촉매계면에서의 핫전자 움직임 실시간 관찰
그림2. 핫전자 촉매센서를 이용한 합금 나노입자에서의 핫전자 움직임 관찰
2018.07.06
조회수 12648
-
박인규, 정연식 교수, 모바일 기기 탑재 가능한 고성능 수소센서 개발
〈 가오민 연구원, 박인규 교수, 조민규 연구원 〉
우리 대학 기계공학과 박인규 교수, 신소재공학과 정연식 교수 공동 연구팀이 폴리스티렌(Polystyrene) 구슬의 자기 조립(self-assembly) 현상을 이용해 고성능의 실리콘 기반 수소센서를 개발했다.
연구팀이 개발한 수소 센서는 제작 과정이 단순하고 비용이 저렴해 모바일 기기에 탑재할 수 있어 전력 소모에 어려움을 겪는 모바일 분야에 기여할 수 있을 것으로 기대된다.
가오 민(Gao Min) 연구원, 조민규 박사후 연구원, 한혁진 박사과정이 참여한 이번 연구는 나노 분야 국제 학술지 ‘스몰(Small)’ 3월 8일자 표지논문에 선정됐다.
청정에너지인 수소 가스는 차세대 에너지원으로 각광받고 있다. 현재도 냉각 시스템이나 석유 정제시설 등 다양한 산업분야에서 활용되고 있지만 무색, 무취의 가연성 물질이기 때문에 조기 발견이 어려워 고성능 수소 센서를 개발하는 것이 중요하다.
그러나 기존 수소 센서들은 부피가 크고 소모 전력이 높으며 제작비용이 상대적으로 높은 단점이 있다.
공동 연구팀은 수백 나노미터 (nm) 직경의 폴리스틸렌 구슬들을 자기조립 현상을 이용해 규칙적으로 실리콘 기판 위에 배열시켰다. 이를 이용해 수십 나노미터 수준의 그물 모양 패턴을 구현해 초소형 고성능 수소 센서를 개발했다.
이 기술은 수소가스가 센서에 노출되면 팔라듐 나노입자와 반응해 팔라듐의 일함수(work function)가 변화하고 그에 따라 실리콘 나노 그물 내 전자의 공핍 영역(depletion region)의 크기가 변화하면서 전기 저항이 바뀌는 원리이다.
이번에 개발한 수소 센서는 최소 선폭 50 나노미터 (nm) 이하의 실리콘 나노 그물 구조 센서를 저비용으로 구현할 수 있다.
일반적으로 수소 센서의 성능은 민감도, 반응속도, 선택성 등에 따라 구분된다. 연구팀의 센서는 0.1%의 수소 농도에서 10%의 민감도와 5초의 반응속도를 기록해 기존 실리콘 기반 수소 센서보다 50% 이상 빠르고 10배 이상 높은 민감도를 보였다.
박인규 교수는 “기존의 값비싸고 복잡한 공정을 거치지 않고도, 단순한 방법으로 초미세 나노패턴 구현이 가능하며, 수소센서 뿐만 아니라 다양한 화학, 바이오센서에도 응용이 가능할 것이다”고 말했다.
과학기술정보통신부의 나노소재기술개발사업, 한국연구재단의 국민위해인자에 대응한 기체분자식별․분석기술개발사업, 해양수산부의 해양수산환경기술개발사업, KUSTAR-KAIST 사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 스몰(Small) 2018년 3월 8일자 Issue 표지논문
그림2. 완성된 수소센서의 일반 사진 (왼쪽), 전자현미경 사진 (중간, 오른쪽)
그림3. 수소 농도 변화에 따른 수소센서의 감지 그래프
2018.04.04
조회수 24056
-
김일두 교수, 7초 안에 수소가스 탐지 가능한 센서 개발
〈 김일두 교수, 구원태 학생, 페너 교수 〉
우리 대학 신소재공학과 김일두 교수 연구팀이 美 캘리포니아 대학 어바인 캠퍼스 화학과 페너(Reginald M. Penner) 교수와의 공동 연구를 통해 대기 중 1% 수준 농도의 수소가스를 상온에서 7초 이내에 검출할 수 있는 초고속 센서를 개발했다.
이 기술은 금속유기구조체(metal-organic framework)가 코팅된 팔라듐(Pd) 나노와이어 어레이(array) 기반의 초고속 수소가스 감지소재로 향후 수소 자동차 등 다양한 분야에서 활용 가능할 것으로 기대된다.
구원태 박사과정이 1저자로 참여한 이번 연구는 재료분야의 권위 학술지 ‘에이씨에스 나노(ACS Nano)’ 9월호 표지 논문에 선정됐다.
수소가스는 친환경 차세대 에너지원으로 주목받지만 작은 스파크(spark)에도 폭발을 일으킬 수 있는 위험한 가연성 물질이다. 수소가스의 폭발 하한계는 대기 중 4%로 무색, 무취의 수소가스를 빠르게 검출할 수 있는 센서의 중요성이 커지고 있다.
미국 에너지부는 2009년 국가 과제 공고에서 대기 중 1% 수소가스를 60초 이내에 감지할 수 있고 60초 이내에 회복하는 수준이 안전한 수소가스의 검출 기준이라고 제시했다.
1960년대 팔라듐과 수소가스 간 반응시 저항변화가 생기는 현상이 발견된 이후, 팔라듐 기반의 초고감도, 초고속 수소가스 센서 개발을 위한 노력이 계속됐다. 그러나 공기 중 산소를 포함한 방해 가스의 영향으로 상용화 수준의 성능을 갖추지 못했다.
김 교수 및 페너 교수 연구팀은 상온에서 수백 ppm(part per million, 백만분의 1) 수준의 극미량 수소가스를 정밀하고 신속하게 감지할 수 있는 초고감도 감지 소재를 개발했다.
연구팀은 기존 팔라듐 센서의 한계를 극복하기 위해 수소의 선택적 투과가 가능한 금속유기구조체를 팔라듐 나노와이어 어레이 위에 결합했다.
이 금속유기구조체는 각각 0.34 나노미터와 1.16 나노미터의 아주 작은 구멍들로 구성된 표면적이 매우 높은 다공성 물질이다.
수소는 상온에서 0.289 나노미터의 운동지름(kinetic diameter, 다른 분자와 충돌을 일으킬 수 있는 동역학적 지름)을 갖기 때문에 0.34 나노미터의 구멍보다 작아 금속유기구조체 내부를 쉽게 통과할 수 있다. 하지만 0.34 나노미터보다 큰 가스들은 금속유기구조체 내부를 투과하기 어렵다.
이 원리를 통해 수소가스만을 선택적으로 투과하는 데 성공했고, 더불어 팔라듐 나노와이어와 수소가스의 반응을 촉진시켜 초고속으로 수소가스를 감지할 수 있음을 확인했다.
김 교수는 “개발된 초고속 수소가스 센서는 친환경 에너지원인 수소가스의 누출로 인한 사고 예방에 큰 도움을 줄 것이다”며 “금속유기구조체 기반 분자 필터링 기술을 활용해 대기 중 수많은 유해 가스를 초고성능으로 정확히 감지할 수 있는 고속 센서 소재 개발이 가능해 졌다”고 말했다.
□ 그림 설명
그림1. 2017. ACS Nano, 커버 이미지
그림2. Pd 나노와이어 어레이 이미지 및 금속유기구조체가 코팅된 Pd 나노와이어의 주사전자현미경 이미지, 그리고 개발된 소재의 수소 가스 감지 특성
그림3. 수소가스 탐지 센서 모식도(ACS Nano에 게재된 논문의 대표 이미지)
2017.09.26
조회수 14799