-
똑똑한 영상 복원 인공지능 기술 개발
딥러닝 기술은 영상 복원 속도가 기존 알고리즘 대비 수백 배 이상 빠를 뿐만 아니라 복원 정확도 역시 높다. 하지만, 주어진 학습 데이터에만 의존하는 딥러닝 기술은 영상 취득 환경상에 변화가 생기면 성능이 급격히 저하되는 치명적인 약점이 있다. 이는 알파고와 이세돌 九단과의 대국 시 `신의 한 수'에 의해 알파고의 성능이 급격하게 저하되었던 사례를 떠올리면 쉽게 이해할 수 있다. 즉, 인공지능이 학습하지 못했던 변수(학습 데이터상에 존재하지 않는 수)가 발생할 때 신뢰도가 급격히 낮아지는 인공지능 기술의 근본적인 문제이기도 하다.
우리 대학 바이오및뇌공학과 장무석 교수 연구팀과 김재철AI 대학원 예종철 교수 연구팀이 공동 연구를 통해 인공 지능의 신뢰도 문제를 해결할 수 있는 물리적 학습 기반의 영상 복원 딥러닝 기술을 개발했다고 6일 밝혔다.
연구팀은 영상 취득 환경에서 발생할 수 있는 변수 대부분이 물리적 법칙을 통해 수학적으로 기술 가능하다는 점에 착안해 물리적 법칙과 심층 신경망이 통합된 학습 기법을 제시했다.
모든 영상 기술은 물리적인 영상 기기를 통해 영상 정보를 취득한다. 연구팀은 이 정보 취득 과정에 대한 물리적인 통찰력을 인공지능에 학습시키는 방법을 개발했다. 예를 들면, `네가 도출한 복원 결과가 물리적으로 합당할까?' 혹은 `이 영상 기기는 물리적으로 이런 변수가 생길 수 있을 것 같은데?'라는 식의 질문을 통해 물리적 통찰력을 인공지능에 이식하는 방법을 제시한 것이다.
연구팀은 변화하는 영상 취득 환경에서도 신뢰도 높은 홀로그래피 영상* 을 복원하는데 성공했다. 홀로그래피 영상 기술은 의료 영상, 군용 감시, 자율 주행용 영상 등 다양한 정밀 영상 기술에 다양하게 활용될 수 있는데, 이번 연구는 의료 진단 분야의 활용성을 집중적으로 검증하였다.
*홀로그래피 영상: 물체의 그림자 패턴(회절 패턴)으로부터 물체의 형태를 복원하는 영상 기법, 일반적인 영상 기술과 달리 위상 변화에 의한 물체의 미세 구조를 감지할 수 있는 영상 기술
연구팀은 먼저 3차원 공간상에서 매우 빠르게 움직이는 적혈구의 회절 영상(확산된 그림자형상)으로부터 적혈구의 형태를 실시간으로 복원하는데 성공했다. 이러한 동적인 영상 환경에서 예상치 못한 변수로는 여러 개의 적혈구 덩어리가 복잡하게 겹쳐진다거나 적혈구가 예상하지 못했던 위치로 흘러가는 경우를 생각해 볼 수 있다. 여기서, 연구팀은 인공 지능이 생성한 영상이 합당한 결과인지 빛 전파 이론을 통해 검산하는 방식으로 물리적으로 유효한 복원 신뢰도를 구현하는데 성공하였다.
연구팀은 암 진단의 표준기술로 자리잡고 있는 생검 조직(생체에서 조직 일부를 메스나 바늘로 채취하는 것)의 영상 복원에도 성공했다. 주목할 점은 특정한 카메라 위치에서 측정된 회절 영상만을 학습했음에도 인공지능의 인지능력이 부가되어 다양한 카메라 위치에서도 물체를 인식하는데 성공했다는 점이다. 이번에 구현된 기술은 세포 염색 과정이나 수 천 만원에 달하는 현미경이 필요하지 않아 생검 조직 검사의 속도와 비용을 크게 개선할 수 있을 것으로 기대된다.
물리적 통찰력을 인공 지능에 이식하는 영상 복원 기술은 의료 진단 분야 뿐만 아니라 광범위한 영상 기술에 활용될 것으로 기대된다. 최근 영상 기술 산업계 (모바일 기기 카메라, 의료 진단용 MRI, CT, 광 기반 반도체 공정 불량 검출 등) 에선 인공지능 솔루션 탑재가 활발히 이루어지고 있다. 영상 취득에 사용되는 센서, 물체의 밝기, 물체까지의 거리와 같은 영상 취득 환경은 사용자마다 다를 수밖에 없어 적응 능력을 갖춘 인공 지능 솔루션에 대한 수요가 큰 상황이다. 현재 대부분의 인공 지능 기술은 적응 능력 부재로 신뢰도가 낮은 문제 때문에 실제 현장에서 활용성이 제한적인 상황이다.
바이오및뇌공학과 이찬석 연구원은 "데이터와 물리 법칙을 동시에 학습하는 적응형 인공지능 기술은 홀로그래피 영상뿐만 아니라 초고해상도 영상, 3차원 영상, 비시선 영상(장애물 뒷면을 보는 영상) 등 다양한 계산 영상 기술에 적용될 수 있을 것으로 기대된다ˮ고 밝혔다.
연구진은 "이번 연구를 통해 인공지능 학습에 있어서 학습 데이터에 대한 강한 의존성(신뢰도 문제)을 물리적 법칙을 결합해 해소했을 뿐만 아니라, 이미지 복원에 있어 매게 변수화된 전방 모델을 기반으로 했기 때문에 신뢰도와 적응성이 크게 향상됐다ˮ며, 이어 "이번 연구에서는 데이터의 다양한 특성 중에서 수학적 혹은 물리적으로 정확히 다룰 수 있는 측면에 집중했고, 향후 무작위적인 잡음이나 데이터의 형태에 대해서도 제약받지 않는 범용 복원 알고리즘을 개발하는 데 주력할 것이다ˮ라고 밝혔다.
바이오및뇌공학과 이찬석 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 머신 인텔리전스(Nature Machine Intelligence)'에 지난 1월 17일 字 출판됐다. (논문명: Deep learning based on parameterized physical forward model for adaptive holographic imaging with unpaired data)
한편 이번 연구는 삼성미래기술육성사업과 선도연구센터사업의 지원을 받아 수행됐다.
2023.02.06
조회수 5606
-
폐암 전이를 막고 치료 가능한 세포로 되돌리는 원천기술 개발
고령화에 따라 암의 발생이 늘어나면서 암은 인류의 건강수명을 위협하는 가장 치명적인 질환이 됐다. 특히 조기 발견을 놓쳐 여러 장기로 전이될 때 암의 치명률은 높아진다. 이러한 문제를 해결하기 위해 암세포의 전이 능력을 제거하거나 낮추려는 시도가 이어졌으나 오히려 중간상태의 불안정한 암세포 상태가 되면서 더욱 악성을 보이게 되어 암 치료의 난제로 남아 있었다.
우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 시스템생물학 연구를 통해 폐암 세포의 성질을 변환시켜 암세포의 전이를 막고 약물에 대한 저항성을 제거할 수 있는 기술을 개발하는 데 성공했다고 30일 밝혔다.
조광현 교수 연구팀은 폐암 세포의 전이능력이 없는 상피(epithelial, 세포 방향성이 있어 유동성 없이 표면조직을 이루는 상태)세포에서 전이가 가능한 중간엽(mesenchymal, 방향성없이 개별적인 이동성을 가진 상태)세포로 변화되는 천이 과정(epithelial-to-mesenchymal transition, 이하 EMT)에서 나타나는 다양한 암세포 상태들을 나타낼 수 있는 세포의 분자 네트워크 수학모델을 만들었다. 컴퓨터 시뮬레이션 분석과 분자 세포실험을 통해 악성종양으로 증식하여 인접한 조직이나 세포로 침입하거나 약물에 내성을 가진 중간엽세포 상태에서 전이가 되지 않은 상피세포 상태로 다시 바뀔수 있도록 세포의 성질을 변환시켜주는 핵심 조절인자들을 발굴했다.
특히 이 과정에서 그동안 난제로 남아 있었던 중간과정의 불안정한 암세포 상태(EMT 하이브리드 세포 상태)를 피하는 동시에 항암 화학요법(chemotherapy) 치료가 잘 되는 상피세포 상태로 온전히 역전하는 데 성공했다.
우리 대학 김남희 박사과정, 황채영 박사, 김태영 연구원, 김현진 박사과정이 참여한 이번 연구 결과는 미국암학회(AACR)에서 출간하는 국제저널 `캔서 리서치(Cancer Research)' 1월 30일 字 온라인판 논문으로 출판됐다. (논문명: A cell fate reprogramming strategy reverses epithelial-to-mesenchymal transition of lung cancer cells while avoiding hybrid states)
암세포의 EMT 과정에서 불완전한 천이(변화과정)로 인해 발생하는 EMT 하이브리드 상태의 세포들은 상피세포와 중간엽세포의 특성을 모두 갖고 있으며, 높은 줄기세포능*을 획득해 약물저항성 및 전이 잠재성이 큰 것으로 알려져 있다. 불안정한 암세포 상태(EMT)는 매우 복잡하여 높은 전이 능력과 약물저항성을 가지는 EMT 하이브리드 세포 상태를 회피하면서 암세포를 전이 능력과 약물저항성이 제거된 상피세포 상태로 온전히 역전시키는 것은 매우 어려운 일이었다.
*줄기세포능: 줄기세포가 지속적 자가복제를 할 수 있도록 하는 세포내 신호전달체계
조광현 교수 연구팀은 복잡한 EMT를 지배하는 유전자 조절 네트워크의 수학모델을 정립한 후, 대규모 컴퓨터 시뮬레이션 분석 및 복잡계 네트워크 제어기술을 적용해 중간엽세포 상태인 폐암 세포를 EMT 하이브리드 세포 상태를 회피하면서 전이 능력이 상실된 상피세포 상태로 역전시킬 수 있는 세 개의 핵심 분자 타깃인 ‘p53 (암 억제 단백질)’, ‘SMAD4 (EMT를 조절하는 대표적 신호전달을 매개하는 중심물질로 SMAD 그룹에 포함된 단백질)’와 ‘ERK1/2 (세포의 성장 및 분화에 관여하는 조절인자)’를 발굴하고 이를 분자 세포실험을 통해 검증했다. 이러한 발견은 실제 인체 내 암 조직의 환경에서처럼 자극이 주어진 상황에서 중간엽세포 상태가 상피세포 상태로 역전될 수 있음을 증명해 그 의미가 크다.
암세포의 비정상적인 EMT는 암세포의 이동과 침윤, 화학요법 치료에 대한 반응성 변화, 강화된 줄기세포능, 암의 전이 등 다양한 악성 형질로 이어지게 된다. 특히 암세포의 전이 능력 획득은 암 환자의 예후를 결정짓는 매우 중요한 요소다. 이번에 개발된 폐암 세포의 EMT 역전 기술은 암세포를 리프로그래밍해 높은 가소성과 전이 능력을 제거하고 항암 화학치료의 반응성을 높이도록 하는 새로운 항암 치료 전략이다.
조광현 교수는 "높은 전이 능력과 약물저항성을 획득한 폐암 세포를 전이 능력이 제거되고 항암 화학요법치료에 민감한 상피세포 상태로 온전히 역전시키는 데 성공함으로써 암 환자의 예후를 증진할 수 있는 새로운 치료전략을 제시했다ˮ라고 말했다.
조광현 교수 연구팀은 암세포를 정상세포로 되돌리는 가역 치료원리를 최초로 제시한 뒤 2020년 1월에 대장암세포를 정상 대장 세포로 되돌리는 연구 결과를 발표했고, 2022년 1월에는 가장 악성인 유방암세포를 호르몬 치료가 가능한 유방암세포로 리프로그래밍하는 연구에 성공한 바 있다. 이번 연구 결과는 전이 능력을 획득한 폐암 세포 상태를 전이 능력이 제거되고 약물 반응성이 증진된 세포 상태로 되돌리는 가역화 기술 개발의 세 번째 성과다.
한편 이번 연구는 과학기술정보통신부와 한국연구재단의 중견연구자지원사업 등의 지원으로 수행됐다.
2023.01.30
조회수 7365
-
3D 프린터로 차세대 소형원전 안전성 높이는 기술 나왔다
우리 대학 원자력및양자공학과 류호진 교수 연구팀이 금속 3D 프린팅을 활용해 소형모듈원자로(SMR) 안전성을 더욱 높일 수 있는 기술을 개발했다고 26일 밝혔다. SMR은 발전용량이 300메가와트(㎿) 수준인 소형 원자력발전소로 기존 원전보다 훨씬 좁은 땅에서 비슷한 수준의 전기를 생산할 수 있는 차세대 기술이다. 한국원자력연구원은 강석훈 재료안전기술개발부 책임연구원팀과 금속 분말 소재 전문 제조 기업인 하나에이엠티도 개발에 참여했다.
3D 프린팅 기술을 이용하면 원자로와 같이 구조가 복잡하면서 정밀한 가공이 요구되는 부품을 이음새 없이 설계‧제조할 수 있다. 원재료를 별도로 가공처리하지 않아고 되고 재료 손실도 거의 없어 비용을 아낄 수 있다는 장점도 있다. 때문에 최근 원전 부품 제조업에서 3D 프린팅 기술이 각광받는 추세다.
연구팀이 개발한 것은 SMR 압력용기 소재를 만들 수 있는 3D 프린팅 전용 금속 분말이다. 원자로 압력용기는 원자로 격납 건물 내부 정중앙에 위치한 핵심 구조물로 안에는 핵 연료봉이 들어간다. 압력용기가 튼튼하게 만들어져야 그 안에서 핵분열이 안전하게 일어나면서 전기 생산이 가능하다는 것이다.
원자로 압력용기는 탄소 함량이 높은 소재로 돼있어 3D 프린팅용 미세 분말로 만들기가 어려웠다. 탄소 함량이 높은 소재는 분말로 만드는 과정에서 쉽게 산화되고 유동성이 낮아 3D 프린터에서 분말을 분사하는 노즐을 통과하기 어렵기 때문이다.
이에 연구팀은 수십 마이크로미터(㎛) 크기의 3D 프린팅용 미세 분말을 제조했다. 여기에 분말을 방사하는 노즐을 소용돌이 형태로 만들어 분사 중에 분말 크기를 미세하게 제어할 수 있도록 해 유동성도 개선했다. 이후 3D 프린팅 방식의 빔 에너지, 스캔 속도, 열의 양을 조절해 충격 흡수율이 우수한 소재를 만드는 최적의 공정 조건을 만들었다.
연구팀은 영하 196도 저온에서 영상 80도 고온까지 다양한 환경에서 3D 프린터로 만든 압력용기용 소재와 기존 압력용기용 소재의 충격 흡수율을 비교했다. 기존 소재는 영하 75도 부근에서 쪼개지는 걸 발견했으나 3D 프린터로 만든 소재는 영하 145도까지 버틸 수 있었다. 금속이 깨지기 쉬운 극한의 저온 환경에서도 충격을 잘 흡수한 것이라고 연구팀은 설명했다.
연구팀은 앞으로 3D 프린팅 기반 제조 기술 표준화와 규제기관 인허가 획득에 힘쓸 계획이다. 주한규 한국원자력연구원장은 “이번에 개발한 3D 프린팅용 분말 소재는 향후 SMR은 물론 높은 안전성이 요구되는 각종 원자로 부품 제작에도 널리 활용될 것이라 기대한다”고 말했다.
2023.01.27
조회수 4744
-
심현철 교수팀, CES 2023 자율주행차 레이싱에 아시아 유일팀으로 참가
우리 대학 전기및전자공학부 심현철 교수 팀이 1월 5일부터 8일까지 미국 라스베이거스에서 열리는 세계 최대 전자·정보기술 전시회 CES 2023의 공식행사인 '자율주행 레이싱'에 참가한다.
1월 7일 라스베이거스 모터스피드웨이(LVMS)에서 개최 예정인 'CES 2023 자율주행차 레이싱'은 지난해 개최된 대회에서 개발된 기술력을 더욱 발전시켜 보다 진보된 고속 자율주행 차량 기술 개발성과를 대중에게 공유하고자 추진됐다.
이 대회는 2021년 10월 23일 미국 인디애나폴리스에서 최초로 개최된 '인디 자율주행 챌린지(Indy Autonomous Challenge, IAC)'에 이은 4번째 대회다. IAC 대회에 이어 CES 2022에서 개최된 대회에서 심현철 교수 무인시스템 및 제어 연구팀은 총 9개 팀 중 4강전에 진출해 CES 2023 참가권을 획득했다. 그 결과 아시아 유일 팀으로 CES 2023 자율주행차 레이싱에 출전해 미국·유럽 대학들과 최고 속도를 겨룰 예정이다.CES 2022 대회 참가 당시 심현철 교수 연구팀은 경기 진행 신호와 레이싱 규정을 준수하는 동시에 240km/h의 고속 자율주행이 가능한 소프트웨어를 성공적으로 구현했다. CES 2023 자율주행차 레이싱에서는 인디 레이싱용 IL-15차량을 자율주행차로 개조, 지난번 대회보다 성능이 더 업그레이드된 AV-23 차량을 사용하며 최고 300km/h까지 주행이 가능하다.
이번 대회에서는 CES2022에서 처음 시도된 레이싱 차량 2대 간의 1:1 자율주행 경주에서 보다 발전해 주행코스 제한 없이 자유롭게 다른 차를 추월해야 하며 토너먼트 형식으로 진행돼 가장 높은 속도로 계속 주행하는 팀이 우승을 차지하게 된다. 심 교수 연구팀은 CES 2022에서 검증된 SW를 보다 발전시켜 다른 차량 인식성능을 향상하고 고속으로 안정적으로 주행할 수 있도록 정밀 측위 및 주행 제어기술 개발에 주안점을 두고 있다.
심 교수 연구진은 2021년 현대자동차 주최 자율주행대회에서 우승한 바 있는데, 이번 CES 2023대회부터 현대자동차와 파트너십 계약을 체결하고 대회 참가에 필요한 금전적인 지원을 받고, 현대자동차 연구진과 자율주행 레이싱 기술 동향을 공유하게 된다.
CES 2023 기간 중 연구진은 웨스트홀(West Hall)에 위치한 IAC 공식 부스에서 KAIST 레이싱 팀의 기술 소개 등 행사에도 참여할 예정이다.
심현철 교수는 "외국에서 개최되는 대회에 계속 참가하면서 많은 어려움이 있는데 열심히 참여해준 학생들에게 깊이 감사하며, 우리 연구실에서 지난 13년간 개발한 자율주행기술을 검증할 수 있는 고속 자율주행 레이싱 대회에 계속 참여할 수 있어 무척 뜻깊게 생각한다"며, "고속자율주행기술은 우리나라 환경에서 장거리 이동 시 가장 효과적으로 적용할 수 있는 기술이며 고속철도나 도심 항공같이 막대한 인프라 구축 비용이 소요되지 않고 기상 조건의 영향도 크게 받지 않는 등 장점이 매우 크다"고 강조했다.한편, CES 2023 자율주행차 레이싱 대회는 CES 주관사인 미국소비자기술협회(CTA)와 에너지시스템즈네트워크(Energy System Network, ESN)가 공동으로 주최한다. KAIST 외 IAC 대회 우승자인 뮌헨공대, 매사추세츠공대(MIT), 취리히연방공대(ETH), 피츠버그대(PIT), 로체스터공대(RW), 워털루 대학 등이 참가할 예정이다. 인디 자율주행 대회는 2023년 6월 이탈리아 몬짜(Monza) 트랙에서 5회 대회, CES 2024에서 6회 대회를 개최할 예정이다.
2023.01.05
조회수 9089
-
사진에서 3차원 정보를 추론하는 인공지능 반도체 IP(지식재산권) 세계 최초 개발
우리 대학 전기및전자공학부 유회준 교수가 이끄는 PIM 반도체 설계 연구센터(AI-PIM)가 유수 학계에서 인정한 5종의 최첨단 인공지능 반도체 IP(지식재산권)를 개발했다고 29일 밝혔다.
대표적으로 심층신경망 추론 기술 및 센서 퓨전* 기술을 통해 사진으로부터 3차원 공간정보 추출하고 물체를 인식해 처리하는 인공지능(AI) 칩은 KAIST에서 세계 최초로 개발해 SRAM PIM** 시스템에 필요한 기술을 IP(지식재산권)화 한 것이다.
* 센서 퓨전 : 카메라, 거리센서 등의 각종 센서로부터 얻은 데이터를 결합하여보다 정확한 데이터를 얻는 방식
** SRAM PIM : 기존 메모리 SRAM과 DRAM 중 SRAM에 연산기를 결합한 PIM반도체
이 IP는 올해 2월 20일부터 28일까지 개최된 국제고체회로설계학회(ISSCC)에서 현장 시연을 통해 많은 주목을 받았으며, 이를 누구라도 편리하게 활용할 수 있도록 한 것이다. (웹사이트 : www.ai-pim.org)
KAIST PIM 반도체 설계연구센터는 해당 IP를 포함해 ADC*, PLL** 등 총 5가지의 PIM IP를 확보했으며, 지난 28일 웹사이트를 오픈해 연구자들이 공유할 수 있는 환경을 제공하고 있다.
* ADC(Analog to Digital Converter) : 아날로그 데이터를 디지털 데이터로 변환시키는 회로
** PLL(Phase-Locked Loop) : 내부 신호의 위상과 외부 신호의 위상을 동기화할 수 있도록 설계된 회로
기존 물체 인식 인공지능 반도체는 사진과 같은 2차원 정보를 인식하는 `사진인식기술'에 불과하다. 하지만 현실 세계의 물체들은 3차원 구조물이기 때문에 3차원 공간정보를 활용해야만 정확한 `물체인식'이 가능하다.
3차원 공간정보는 사진과 같은 2차원 정보에 거리정보를 포함시켜 실제 3차원 공간을 표현한 것으로, 3차원 공간정보에 물체를 식별해 해당 물체의 위치 및 각도를 추적하는 3차원 물체인식 기술이다. 이는 자율주행, 자동화 기술, 개인용 증강현실 (AR)과 가상현실(VR) 등과 같은 3D 어플리케이션에서 사용하는 핵심기술이다.
기존 ToF 센서*를 활용해 센서 뷰 내에 있는 모든 물체에 대한 정밀한 3차원 정보를 추출하는 것은 전력 소모가 매우 크기 때문에 배터리 기반 모바일 장치(스마트폰, 태블릿 등)에서는 사용하기 어렵다.
* ToF 센서 : 3차원 공간정보를 추출하는 Time-of-Flight 센서로, 레이저를 방출하고 반사된 레이저가 검출되는 시간을 측정하여 거리를 계산, 대표적인 센서로 3D 라이다 (LiDAR) 센서가 있음
또한, ToF 센서는 특정 측정 환경에서 3차원 정보가 손실되는 문제와 데이터 전처리 과정에 많은 시간이 소요된다는 문제점이 있다.
3차원 물체인식 기술은 데이터가 복잡해 기존 인공지능 2차원 사진인식 가속 프로세서로 처리하기 어렵다. 이는 3차원 포인트 클라우드 데이터를 어떻게 선택하고 그룹화하느냐에 따라 메모리 접근량이 달라진다.
따라서 3차원 포인트 클라우드 기반 인공지능 추론은 연산 능력이 제한적이고 메모리가 작은 모바일 장치에서는 소프트웨어만으로 구현할 수 없었다.
이에 연구팀은 카메라와 저전력 거리센서 (64픽셀)를 사용하여 3차원 공간정보를 생성했고, 모바일에서도 3차원 어플리케이션 구현이 가능한 반도체 (DSPU: Depth Signal Processing Unit)를 개발함으로써 인공지능 반도체의 활용범위를 넓혔다.
모바일 기기에서 저전력 센서를 활용한 3차원 정보 처리 시스템을 구동하면서, 실시간 심층신경망 추론과 센서 퓨전 기술을 가속하기 위해서는 다양한 핵심기술이 필요하다. 인공지능 핵심기술이 적용된 DSPU는 단순 ToF센서에 의존했던 3차원 물체인식 가속기 반도체 대비 63.4% 낮춘 전력 소모와 53.6% 낮춘 지연시간을 달성했다.
PIM반도체 설계연구센터(AI-PIM)의 소장인 유회준 교수는 “이번 연구는 저가의 거리센서와 카메라를 융합해 3차원 데이터 처리를 가능하게 한 인공지능 반도체를 IP화했다는 점에서 의미가 크며, 모바일 기기에서 인공지능 활용 영역을 크게 넓혀 다양한 분야에 응용 및 기술이전을 기대하고 있다”고 연구의 의의를 설명했다.
한편, 이번 연구는 과학기술정보통신부와 정보통신기획평가원의 PIM인공지능반도체핵심기술개발사업을 통해 개발되었으며, 이와 관련해 PIM 반도체 관련 기업과 연구기관에 개발된 IP들의 기술이전 및 활용을 돕고 있다.
2022.12.29
조회수 6113
-
극미량의 액체를 정밀하게 측정하고 분석할 수 있는 새로운 플랫폼 개발
우리 대학 기계공학과 이정철 교수 연구팀이 마이크로히터와 유동 채널이 내장된 미세전자기계시스템(MEMS) 소자를 이용해 극미량의 유체에 대한 열전달 관련 측정과 공정을 개발할 수 있는 새로운 실험 플랫폼인 열원-미소채널 통합 공진 센서 (heater-integrated fluidic resonator, 이하 HFR)를 개발했다고 21일 밝혔다.
2015년, 벤처 기업 `테라노스'의 피 한 방울로 질병을 진단할 수 있다는 주장은 정밀 분석을 위해 많은 혈액이 필요하던 미국 전역에 큰 충격으로 다가왔다. 결국 허구로 밝혀진 이 사건은 아주 적은 양의 샘플을 이용해 정밀한 측정을 수행하고자 하는 현대 사회의 요구 사항을 단적으로 보여주는 예시다.
마이크로 유체 채널이 통합된 센서는 많은 연구자에 의해 꾸준히 개발되고 있다. 하지만 아직 큰 크기를 갖는 상용화된 센서들(마이크로/나노 공정의 적용이 필요 없는)에 비해 적은 정확도를 갖는다는 한계가 있었다.
이에 연구팀은 밀도/질량 측정에만 주로 사용되지만 오히려 소형화될수록 높은 정확도를 갖는 장점이 있는 기계 공진 센서에 주목했다. 지금까지의 유체 채널 통합 공진 센서는 신뢰할 만한 결과의 확보를 위해 동일한 온도에서의 측정이 필요했다. 반면 이정철 교수팀은 이번 연구에서 온도를 자유자재로 제어하며 고정확도의 공진 측정을 병행함으로써 밀도/질량 측정 이상으로 다양한 현상과 물리량을 분석하는 아이디어를 제시했다.
연구팀은 개발한 플랫폼을 이용해 20pL(피코 리터) 이하 액체의 열전도도, 밀도, 비열을 동시에 측정할 수 있는 방법을 제시하고 1,000개 데이터를 1분 이내에 수집함으로써 고정확도의 계측을 구현했으며, 마이크로채널 내부의 비등 상변화 현상을 다중 공진 주파수로 측정해 기존의 상변화 현상 분석 기법에 비해 이력(hysteresis)과 기포의 초기 발생 시점을 더 명확하게 관측했다.
또한 연구팀은 마이크로채널 자유단에 노즐이 있는 열원-미소채널 통합 공진 센서를 사용해 전열 분무 현상을 유도하고 토출 공정을 공진 주파수로 실시간 관측할 수 있는 방법을 제시함으로써, 이전까지는 불가능했던 고속 카메라와 같은 장비 없이 노즐 자체의 측정만을 이용한 미립화 액적 토출 공정 모니터링을 구현했다. 이는 나노/마이크로 입자 및 세포 측정 분야에만 국한되어 사용되었던 극미량의 질량 측정 기술을 물리 화학적 측정 센서, 나노 패터닝 공정 제어, 상변화/열전달 제어 등 다양한 분야의 연구자들이 응용할 수 있도록 아이디어를 제시하고 그 활용 가능성을 검증한 데에 의의가 있다.
이번 연구는 국제학술지 `나노 레터스(Nano Letters)'에 지난 8월 18일 자에 온라인 게재됐으며 10월 호의 표지 논문(front cover)로 선정됐다.
이번 연구는 유체 채널 내에 가열 및 온도 측정의 기능성을 통합한 이번 연구와 비슷한 접근법으로 자성(magnetic) 혹은 압전(piezoelectric) 기술을 채널 공진 센서 기술과 융합해 자기장(magnetic field) 혹은 음향장(acoustic field)을 정밀하게 분석할 수 있는 플랫폼 등으로의 아이디어 확장이 가능하다. 측정 기법의 새로운 패러다임을 제시하는 이번 연구는 기존의 상용화된 장비들을 대체할 수 있는 고성능 측정 장비의 개발 등을 촉진할 것으로 기대된다.
한편 이번 연구는 한국연구재단의 중견연구자 지원사업과 기초연구실 지원사업, 그리고 산업기술평가관리원의 시장선도를 위한 한국 주도형 K-센서(K-Sensor) 기술개발 사업의 지원을 받아 수행됐다.
2022.11.21
조회수 7192
-
리튬이차전지 실리콘 기반 음극의 수명과 관련된 전자전도도 퇴화를 나노스케일에서 영상화 성공
고에너지 밀도를 갖는 리튬이차전지 개발에 대한 수요가 폭발적으로 증가하면서, 실리콘 기반 음극 개발에 관한 연구가 활발히 이뤄지고 있다. 실리콘 활물질은 기존 음극 활물질인 흑연 대비 높은 용량 값(4200 mAh/g)을 가지고 있어, 고에너지 밀도를 가지는 리튬이차전지용 음극의 유력한 후보로 자리 잡고 있다.
하지만 충전 및 방전 간 400%에 달하는 높은 부피 팽창/수축률이 실리콘 활물질의 상업화를 방해하고 있다. 실리콘 기반 음극의 급격한 부피 변화는 특히 전극 내 전자 전달 시스템에 큰 악영향을 미치고 있으며, 이를 보완하기 위해 다양한 도전재 시스템을 적용하는 연구가 활발히 진행 중이다. 전극 내 전자 전도 채널의 확보는, 활물질 내 균등한 전기화학 반응을 유발하기 위해 필수적이지만, 이를 나노스케일 공간 분해능을 갖고 영상화하는 방법론에 관해서는 많은 연구가 진행되지 않은 실정이다.
우리 대학 신소재공학과 홍승범 교수 연구팀이 LG에너지솔루션과 협업해, 나노스케일 분해능으로 전극 내 전자 전도 채널을 왜곡 신호 없이 정량적으로 추출하는 방법론을 개발하는 데 성공했다고 8일 밝혔다. 연구팀은 전극 소재와 같이 표면 거칠기가 큰 시료에서 전도성 원자간력현미경(Conductive Atomic Force Microscopy, C-AFM) 운용 시 발생하는 왜곡 정보인 용량성 전류(capacitive current)의 원인을 규명하고, 피어슨 상관 분석 방법을 기반으로 해당 왜곡 정보를 제거했다. 이 방법론을 실리콘/흑연 기반 복합 음극에 적용해 도전재 성분에 따른 전자 전도 채널 영상화를 실시했으며, 이를 통해 단일벽 탄소나노튜브(Signle-Walled Carbon Nano Tube, 이하 SWNCT)가 적용된 전극의 전기적, 전기화학적 우수성을 입증하는 데 성공했다.
연구팀은 이번 연구를 통해 실리콘 기반 전극과 같이 활물질의 부피 변화가 큰 시스템에서는 기존의 점형 도전재 대비 선형의 구조적 장점을 갖고 있는 SWCNT가 안정적인 전자 전도 채널을 확보하는 데 유리함을 보였다. 또한 SWCNT가 포함된 복합 전극의 경우, 130 사이클 이후에도 활물질의 분쇄가 보다 억제됐음을 보여주며, 전자 전도 채널의 불균일성이 활물질의 구조적 안정성에도 영향을 미칠 수 있음을 가설을 들어 설명했다.
제1 저자인 신소재공학과 박건 박사과정은 "전자 전도 채널 불균일이 유발한 전극의 전기화학 특성 퇴화라는 주제로 후속 연구를 진행 중이다ˮ라며 "나노스케일 영상화를 기반으로 지금껏 관찰하지 못했던 현상을 탐구할 수 있어 즐겁다ˮ라고 말했다. 교신 저자인 홍승범 교수는 "왜곡 신호의 원인을 규명하고, 이를 정량적으로 제거하는 연구는 영상화 분야에서 매우 중요하다ˮ라며 "이번에 개발한 방법론이 전극 내 전자 전도 채널을 강화하는데 적용돼, 실리콘 기반 복합 음극의 고도화를 앞당기는 데 도움이 되면 좋겠다ˮ라고 말했다.
이번 연구는 국제 학술지 `에이씨에스 어플라이드 머티리얼즈 앤드 인터페이시스(ACS Applied Materials & Interfaces)'에 게재됐다. (논문명: Nanoscale Visualization of the Electron Conduction Channel in the SiO/Graphite Composite Anode)
한편 이번 연구는 LG에너지솔루션-KAIST 프론티어 리서치 랩(Frontier Research Lab)과 KAIST 글로벌 특이점 사업의 지원을 받아 수행됐다.
2022.11.08
조회수 7619
-
코어-쉘 나노입자의 원자 구조와 물성 규명 성공
우리 대학 물리학과 양용수 교수, 화학과 한상우 교수, 기계공학과 유승화 교수 공동연구팀이 한국기초과학지원연구원, 한국화학연구원과의 공동연구 및 미국 로런스 버클리 국립연구소(Lawrence Berkeley National Laboratory), 영국 버밍엄 대학교(University of Birmingham)와의 국제 협력 연구를 통해 팔라듐-백금 코어-쉘 구조 나노입자의 3차원 계면구조와 그 특성을 규명했다고 3일 밝혔다.
코어-쉘(core-shell) 구조 나노입자는 서로 다른 물질로 이루어진 코어(알맹이)와 쉘(껍데기)이 맞붙은 형태로 합성된 나노물질이다. 코어와 쉘 간의 경계면에서 코어를 이루는 물질과 쉘을 이루는 물질 간의 원자 간격 차이로 인해 원자 구조의 변형이 일어나며, 이 변형을 제어함으로써 나노입자의 광학적, 자기적, 촉매적 성질들을 변화시킬 수 있다.
특히 수소연료전지 제작에 필수적으로 사용되는 촉매에 값비싼 백금이 주로 사용되는데, 코어-쉘 구조를 최적화할 수 있다면 훨씬 적은 양의 백금을 이용해 더욱 높은 성능의 촉매를 제작 가능하다는 점 때문에 많은 연구자의 관심을 끌고 있다. 하지만 지금까지의 코어-쉘 나노입자의 계면 연구들은 대부분 2차원 분석이나 앙상블-평균(ensemble-averaged) 분석을 통해 이루어져 쉘 내부에 묻힌 3차원적인 코어-쉘 경계면의 구조와 그에 따른 특성을 정확히 파악하기 어려웠다는 한계가 있다.
연구팀은 자체 개발한 원자 분해능 전자토모그래피 기술을 이용해 팔라듐과 백금으로 이루어진 코어-쉘 구조 나노입자의 3차원 계면 원자 구조를 최초로 규명했다. 병원에서 인체 내부의 3차원적인 구조를 엑스레이 CT를 이용해 측정하는 것과 마찬가지로, 전자토모그래피는 투과전자현미경을 이용해 물질에 대한 초고분해능 CT를 촬영하는 기술이라고 볼 수 있다. 이는 다양한 각도에서 물질의 2차원적인 투과전자현미경 이미지들을 얻고, 이로부터 3차원적인 구조 정보를 재구성해내는 방식으로 작동한다. 연구팀은 전자토모그래피의 3차원 분해능을 끌어올려 물질 내부의 원자들을 하나하나 관찰 가능한 수준으로 재구성하고, 코어-쉘의 3차원 원자 구조를 약 24pm(피코미터)의 정밀도로 규명했다. 1pm(피코미터)는 1미터의 1조 분의 일에 해당하는 단위로, 24pm는 수소 원자 반지름의 약 1/2 정도에 해당하는 매우 높은 정밀도다.
얻어진 구조를 통해 연구팀은 나노입자 내부의 코어-쉘 경계면의 구조를 단일 원자 단위로 파악할 수 있었고, 계면구조로부터 파생되는 원자들의 변위와 구조 변형에 대한 단일 원자 수준의 3차원적인 지도를 작성해 정량적으로 해석했다. 이를 통해 팔라듐-백금의 코어-쉘 나노입자 표면에 분포하는 각각의 원자들의 촉매 활성도를 규명했으며, 적절한 변형이 가해질 경우 촉매 활성도를 크게 높일 수 있음을 밝혔다.
물리학과 조혜성 석박사통합과정 학생이 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)'에 10월 10일 字 게재됐다. (논문명 : Direct strain correlations at the single-atom level in three-dimensional core-shell interface structures)
연구팀은 얻어진 3차원적 원자 변위와 구조 변형 지도에서 푸아송 효과(Poisson effect)로 알려진 탄성체 성질이 코어-쉘 나노입자 전체뿐만 아니라 단일 원자 수준에서도 일어난다는 것을 발견했다. 연구팀은 또한 이론적으로만 예측돼왔던 계면과 표면에서의 구조 변형도에 대한 상관성을 실험적으로 확인하고 이를 정량적으로 해석했다. 이러한 구조의 변형이 나노입자 전체에서 비슷하게 분포하는 것이 아니라 나노입자의 모양에 따라 위치별로 다르게 나타날 수 있음을 밝혔으며, 이러한 실험적인 발견은 분자 정역학(molecular statics) 시뮬레이션을 통해 이론적으로도 재확인됐다.
특히, 실험적으로 얻어진 3차원적인 원자 구조 정보는 양자역학적 계산을 통해 실제 물질의 물성과 직접적으로 연관될 수 있다는 점에서 그 의의가 크다. 이번 연구에서는 표면에서의 구조 변형도를 밀도범함수이론(density functional theory)의 양자역학적 계산 결과와 대응시킴으로써 표면에서의 촉매 활성도를 나타내는 표면의 산소 환원 반응(oxygen reduction reaction)을 각각의 표면 원자에 대해 계산했고, 이는 코어-쉘 구조와 촉매 특성 간의 관계를 단일 원자 수준에서 규명한 최초의 사례다.
연구를 주도한 양용수 교수는 "이번 연구는 그동안 2차원적인 분석, 또는 낮은 분해능에 국한되어 온 코어-쉘 구조 연구에서 벗어나 원자 하나하나까지 3차원적으로 들여다본다는 완전히 새로운 시각을 제시한다ˮ며 "이는 결과적으로 각각의 원자를 제어하는 사전적 설계를 통해 물질의 촉매 특성뿐만 아니라 구조와 연관된 모든 물성을 원하는 대로 최적화할 가능성을 보여준다ˮ라고 연구의 의의를 설명했다.
한편 이번 연구는 삼성미래기술육성재단 사업의 지원을 받아 수행됐다.
2022.11.03
조회수 9313
-
이성주, 신진우 교수팀, 스스로 새로운 환경 적응하는 인공지능 기술 개발
우리 대학 전기및전자공학부 이성주 교수와 AI대학원 신진우 교수 연구팀이 공동연구를 통해 스스로 환경변화에 적응하는 테스트타임 적응 인공지능 기술을 개발했다고 밝혔다.
해당 연구는 “NOTE: Robust Continual Test-time Adaptation Against Temporal Correlation”라는 제목으로 인공지능 분야 최고권위 국제학술대회 ‘신경정보처리시스템학회(NeurIPS) 2022'에서12월 발표될 예정이다.
이성주 교수와 신진우 교수 공동 연구팀이 스스로 새로운 환경에 적응하는 “테스트타임 적응 (Test-Time Adaptation)” 인공지능 기술을 개발하였다. 연구팀이 제안한 알고리즘은 기존의 최고 성능 알고리즘보다 평균 11% 향상된 정확도를 보였다.
기계학습 모델들의 한계점은 학습했던 데이터와 다른 분포의 데이터에 적용되면 성능이 급격히 하락한다는 것이다. 이를 푸는 여러 방법 중에서 데이터를 미리 수집할 필요없이 모델이 스스로 테스트 데이터를 분석하여 변하는 환경에 적응하고 성능을 향상시키는 기술인 테스트타임 도메인 적응 (Test-Time Adaptation) 방법이 최근 산학계에서 크게 각광을 받고 있었다.
연구팀은 기존의 테스트타임 도메인 적응 기술들이 모두 데이터가 이상적인 균일분포를 따른다는 가정을 한다는 문제점에 착안했다. 실제 데이터는 환경 변화나 시간 변화에 따라 데이터 분포가 변하거나 비균일분포의 데이터에 대해서는 기존 기술을 동작하지 않는다. 하지만 연구팀이 제시한 “NOTE” 기술은 비균일분포의 데이터에서도 기존 최대 성능 알고리즘 보다 평균 11%만큼 향상된 정확도를 보였다.
이성주 교수 연구팀과 신진우 교수 연구팀의 공동연구로, 공태식 박사과정이 제1저자로 연구를 이끌었고, 정종헌 박사과정, 김태원 학사과정, 김예원 석사과정이 공동 저자로 기여하였다.
이성주 교수와 신진우 교수는 ”테스트타임 도메인 적응은 인공지능이 스스로 환경 변화에 적응하여 성능을 향상시키는 기술로, 활용도가 무궁무진하다. 이번에 발표될 NOTE 기술은 실제 데이터 분포에서 성능향상을 보인 최초의 기술이고 자율주행, 인공지능 의료, 모바일 헬스케어 등 다양한 분야에 적용이 가능할 것으로 기대된다.” 라고 밝혔다.
이 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원 (No. NRF-2020R1A2C1004062)과 방위사업청과 국방과학연구소의 지원(UD190031RD)으로 한국과학기술원 미래 국방 인공지능 특화연구센터에서 수행된 연구이다.
2022.10.21
조회수 7400
-
공간 상에 떠있는 2차원의 부유 전자층 구현
우리 대학 물리학과 김용관 교수, 김성헌 박사 연구팀은 성균관대학교 에너지과학과 김성웅 교수 연구팀과의 공동연구를 통해 공간 상에 자유롭게 떠있는 2차원의 부유 전자층을 구현하는데 성공했다.
자연계에서 전자는 원자를 구성하는 요소로 원자핵과 결합한 상태로 존재한다. 따라서 오직 전자만으로 이루어진 전자층을 이루는 것은 불가능할 것으로 여겨져 왔다. 김 교수 연구팀의 이번 연구 결과는 이러한 한계에서 벗어나 전자만으로 이루어진 순수 전자계를 구현한 것으로 다방면으로 전자를 자유롭게 활용한 기초 및 응용 연구를 가능하게 할 것으로 기대된다.
김 교수 연구팀은 재료 내부의 공간에 음이온 형태로 전자가 존재하는 전자화물이라는 신소재에 주목하였다. 2차원 전자화물인 가돌리늄탄소 화합물(Gd2C)의 표면 원자층 제거를 통해 내부의 전자를 드러내 전자화물 원자층으로부터 떨어진 곳에 자유롭게 흐를 수 있는 일종의 액체와 같은 상태로 떠있는 2차원 부유 전자층을 구현해냈다. 특히 연구팀은 부유 전자층의 전자 밀도를 제어해 전자 액체 상태에서 전자가 고정되어 흐르기 어려운 전자 액정 상태로 변화시키는데 성공했다. 액정 상태란 액체와 고체 중간의 특성을 보이는 상태를 일컫는다.
이는 형성된 2차원 부유 전자층의 상태 변화를 이끌어낼 수 있음을 보여주는 것으로, 1930년대에 이론적으로 제안된 이후 아직까지 물리학계의 난제로 남아있는 위그너 격자 구현과 그에 대한 연구가 앞으로 가능함을 보여주는 결과이다. 위그너 격자란, 원자가 정렬되어 고체 물질을 이루는 것과 같이 순수 전자가 원자핵 없이 규칙적으로 배열된 일종의 전자의 고체 상태를 일컫는다.
공동 제1 저자로 연구에 참여한 임찬영 연구원은 “지금까지 전자 특성에 대한 연구는 대부분 고체 물질 내부에서 이루어져 와서 전자만의 특성을 정확히 이해하는데 한계가 있었다. 이번 연구는 2차원 부유 전자층을 구현함으로써, 순수한 전자계에서 전자 특성을 정확히 이해할 수 있는 기틀을 마련하였다” 라며 “위그너 격자에 대한 연구까지 확장 가능할 것이다”라고 말했다.
이번 연구 결과는 권위 있는 국제 학술지 ‘네이쳐 머티리얼스 (Nature Materials)’ 에 09월 28일 온라인 출판됐다.
이번 연구는 삼성미래기술육성사업의 지원을 받아 수행됐다.
2022.10.04
조회수 4930
-
스마트폰으로 전시물을 투시한다, 매직렌즈 증강현실 '원더스코프' 개발
우리 대학 산업디자인학과 이우훈 교수 연구팀과 전산학부 이기혁 교수 연구팀이 사물 표면에서 그 내부를 투시하게 하는 새로운 증강현실 장치 원더스코프(WonderScope)를 개발했다고 13일 밝혔다. 스마트폰에 원더스코프를 장착하고 블루투스로 연결한 다음 앱을 켜면 매직 렌즈처럼 전시물 내부를 투시할 수 있다.
요즘 과학관을 방문하면 스마트폰이나 태블릿으로 증강현실 앱을 종종 체험할 수 있다. 앱은 실제 전시물에 디지털 정보를 추가함으로써 색다른 관람 경험을 제공한다. 이때 관람객들은 전시물과 어느 정도 거리를 두고 모바일 화면을 바라보아야 한다. 따라서 전시물 자체보다는 화면 속 디지털 콘텐츠에 집중하는 현상이 벌어지곤 한다. 전시물과 모바일 기기 사이의 거리, 그리고 그사이에서의 주의 분산 때문에 증강현실 앱은 전시물로부터 오히려 관람객을 멀어지게 하는 원인이 되기도 한다. 이 문제를 해결하기 위해 전시물 표면에서 내부를 투시하는 매직 렌즈 증강현실이 필요한 것이다.
이를 위해 스마트폰은 전시물 표면 어디에 위치하는지 파악해야 한다. 통상 스마트폰 위치 파악을 위해 전시물 내부나 외부에 인식 장치를 추가로 설치하거나, 전시물 표면에 특수 패턴을 인쇄해야 한다. 이 경우 전시물 외관이 복잡해지고 공간 구성에 많은 제약이 있어 현실적으로 전시물 표면에서의 매직 렌즈 증강현실 구현은 쉽지 않다.
원더스코프는 전시물 표면에서 스마트폰의 위치를 휠씬 실용적인 방법으로 파악한다. 우선 전시물 표면에 부착된 작은 RFID 태그를 읽어 그 위치를 파악하고, 두 가지 광학적 변위 센서와 가속도 센서를 기반으로 상대적 이동량을 더함으로써 움직이는 스마트폰의 위치를 계산한다. 연구팀은 스마트폰의 높이와 전시물 표면 특성도 감안해 최대한 정확하게 위치를 계산하도록 연구했다. 과학관 전시물에 RFID 태그를 부착하거나 내장시키면 관람객들이 스마트폰으로 매직 렌즈와 같은 증강현실 효과를 쉽게 체험할 수 있도록 한 것이다.
원더스코프의 폭넓은 활용을 위해 다양한 전시물 표면에서 위치 파악이 가능해야 한다. 이를 위하여 원더스코프는 두 가지 상호보완적인 특성의 광학 변위 센서 출력과 가속도 센서 출력을 같이 이용함으로써 종이, 돌, 나무, 플라스틱, 아크릴, 유리 등 다양한 재질은 물론 요철이나 물리적 패턴이 있는 표면에서도 안정적인 위치 파악이 가능하다. 이러한 특성과 함께 원더스코프는 표면에서 4cm 정도 떨어진 범위에서도 위치 파악이 가능해 전시물 표면 근처에서의 간단한 3차원 상호작용 구현도 가능하다.
연구팀은 범용 가상현실(VR) 및 게임 엔진인 유니티(Unity)를 활용해 스마트폰 앱을 쉽게 제작할 수 있도록 다양한 사례 프로젝트 탬플릿과 원더스코프 활용지원도구를 개발했다. 원더스코프는 안드로이드 운영체제를 갖는 스마트워치, 스마트폰, 태블릿과 연동해 사용할 수 있어 전시물에 다양한 형태로 적용 가능하다.
연구팀은 과학기술정보통신부 과학문화전시서비스 역량강화지원사업의 지원을 받아 원더스코프를 개발했다. 원더스코프는 2020년 10월 27일부터 2021년 2월 28일까지 지질박물관에서 개최된 `그곳에 화산이 있었다' 특별전에 지하 화산활동과 화산암 내부를 관찰하는 도구로 활용됐다. 2021년 9월 28일부터 10월 3일까지 국립중앙과학관에서 열린 `청동거울, 과학을 비추다' 특별전에서는 정문경 표면 관찰 도구로 활용됐고, 2022년 8월 2일부터 10월 3일까지 `달 탐사 특별전' 에서는 달착륙선 체험 콘텐츠를 전시했다. 연구팀은 다년간 현장 실증을 통해 원더스코프의 성능과 사용성을 향상했다.
연구팀은 올해 8월 8일부터 11일까지 캐나다 밴쿠버에서 열린 컴퓨터 그래픽 및 상호작용기술 학회인 ACM 시그래프(SIGGRAPH)의 신기술전시회(Emerging Technologies)에서 원더스코프를 데모 전시했다. 전 세계 최신 상호작용기술이 소개되는 이 학회에서 연구팀은 우수전시상(Best in show honorable mention)을 수상했다. 심사위원들은 "원더스코프가 박물관과 같은 전시공간에서 관람객들에게 참여의 즐거움을 제공하는 새로운 기술이 될 것ˮ이라고 평가했다.
원더스코프는 직경 5cm, 높이 4.5cm의 원통형 앱세서리 모듈로서 그 크기가 충분히 작아 스마트폰에 쉽게 부착할 수 있고, 대부분 전시물 안에 문제없이 내장시킬 수 있다. 연구책임자인 산업디자인학과 이우훈 교수는 "원더스코프가 교육은 물론, 상업 전시에서도 다양한 응용이 가능할 것이다ˮ며, "더 나아가 어린이들의 호기심을 자극하는 인터랙티브 교구로도 활용 가능할 것으로 기대한다ˮ라고 설명했다.
원더스코프(WonderScope) 대표 영상 : https://www.youtube.com/watch?v=X2MyAXRt7h4&t=7s
SIGGRAPH E-Tech에서 원더스코프 데모 전시 영상 : https://www.youtube.com/watch?v=c5pRMTIpGf8
국립중앙과학관 달탐사 특별전 (2022.08.02 ~ 2022.10.03) 영상 : https://www.youtube.com/watch?v=cZxwj84TnLM
국립중앙과학관 "청동거울, 과학을 비추다" 특별전 (2021.09.28~2021.10.03) 영상 : https://www.youtube.com/watch?v=T6W19lTt2J8
SIGGRAPH 2022 E-Tech 우수전시상 작품평 : https://s2022.siggraph.org/program/emerging-technologies/
‘디지털 크리에이티비티(Digital Creativity)’ 저널 논문 게재 (2022년, 표지논문) : https://www.tandfonline.com/doi/full/10.1080/14626268.2022.2039208
2022.09.13
조회수 8103
-
심각한 염증 부작용 없앤 새로운 알츠하이머병 치료제 개발
우리 대학 생명과학과 김찬혁, 정원석 교수 공동연구팀이 알츠하이머병에 대한 새로운 형태의 단백질 치료제를 개발했다고 22일 밝혔다.
연구팀은 세포 포식작용에 관여하는 단백질을 응용한 `Gas6 융합단백질'을 제작하고 이를 통해 알츠하이머병을 유발하는 베타 아밀로이드 플라크(단백질 응집체)를 제거할 수 있는 새로운 형태의 치료제를 개발했다. 기존의 베타 아밀로이드를 표적으로 하는 항체 기반 치료제가 불확실한 치료 효과와 더불어 심각한 부작용을 일으키는 것이 보고되고 있는 가운데, 이를 근본적으로 극복할 수 있는 새로운 방식의 치료제를 연구팀은 제작한 것이다. 또한 해당 접근법은 향후 다양한 퇴행성 뇌 질환 및 자가면역질환 치료에 폭넓게 응용될 수 있을 것으로 기대된다.
생명과학과 박사과정 정현철, 이세영 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 메디슨 (Nature Medicine)' 8월 4일 字 온라인 출판됐다. (논문명 : Anti-inflammatory clearance of amyloid beta by a chimeric Gas6 fusion protein).
알츠하이머병은 기억상실과 인지장애를 동반하는 노인성 치매의 대표적 원인이다. 최근 국내 언론에 잘못 알려진 바와는 달리, 알츠하이머병은 뇌에 쌓이는 베타 아밀로이드 응집체 (비정상적으로 39~43개의 아미노산으로 잘려진 아밀로이드 조각들의 응집체)에 의한 시냅스 손상과 세포 독성으로 발병한다는 것이 학계 및 의료계의 정설이다. 이러한 정설에 의구심이 일었던 것은 아직까지 수많은 노력에도 불구하고 베타 아밀로이드를 제거하는 알츠하이머병 치료제가 성공적으로 개발되지 못했기 때문이었다. 최근 베타 아밀로이드를 표적으로 하는 항체 기반 치료제인 아두헬름이 사상 처음으로 알츠하이머병의 근원 치료제로써 2021년 6월 미국에서 FDA 승인이 이뤄졌으나, 치료 효과 및 부작용에 관한 논란이 여전히 지속되고 있다.
아두헬름과 같은 항체 기반의 치료제를 처방받은 알츠하이머병 환자들에게서 나타나는 가장 큰 부작용은 뇌 부종 (ARIA-E) 및 뇌 미세혈관출혈 (ARIA-H)이다. 이러한 부작용은 뇌 염증과 밀접하게 관련돼 있는데, 이는 항체 기반 치료제들이 면역세포에서 발현되는 Fc 수용체를 통해 필연적으로 염증반응을 일으키기 때문으로 알려져 있다. 이 Fc 수용체는 다른 한편으로는 면역세포가 항체에 의한 포식작용을 통해 베타 아밀로이드 응집체를 제거하는데 필수적인 기능을 한다. 따라서 심각한 염증 부작용을 근본적으로 예방하면서 베타 아밀로이드 응집체를 효과적으로 제거하는 치료제를 개발하는 것은 알츠하이머병 치료의 오랜 딜레마였다.
연구팀은 이러한 문제를 기존 항체의 틀에서 벗어나 새로운 기전의 단백질 치료제를 디자인함으로써 해결했다. 우리 몸에는 끊임없이 죽어 나가는 세포들을 제거하기 위한 특수한 포식작용 경로가 존재하는데, 연구팀은 이에 관여하는 Gas6라는 단백질을 인위적으로 조작해 베타 아밀로이드를 표적으로 하는 융합단백질을 제작했다. 연구팀은 실험을 통해 이 융합단백질(anti-Abeta-Gas6)이 뇌 안에서 선택적으로 베타 아밀로이드를 제거함과 동시에 염증반응을 오히려 억제한다는 것을 증명했다.
또한 알츠하이머 질병 쥐 모델을 통해 연구팀이 개발한 융합단백질이 미세아교세포와 별아교세포를 동시에 활용해 뇌 속에 축적된 베타 아밀로이드의 양을 현저하게 줄이는 것을 발견했다. 이는 기존의 항체 치료제가 미세아교세포를 통해서만 베타 아밀로이드를 줄일 수 있는 것에 비해 뚜렷한 이점으로 보인다. 동시에 연구팀은 Gas6 융합단백질이 항체 치료제에 의해서 더 악화되는 미세아교세포에 의한 과도한 시냅스 제거 현상을 획기적으로 억제할 수 있음을 밝혔다. 더 나아가, Gas6 융합단백질을 주입한 알츠하이머 질병 쥐 모델에서는 손상된 인지능력 및 기억력이 항체 치료제보다도 높은 수준으로 회복되는 결과도 확인했다.
추가로 기존의 항체 기반 치료제를 처방받은 알츠하이머 환자에게서 나타났던 부작용인 뇌 미세혈관 출혈도, Gas6 융합단백질을 주입한 알츠하이머 질병 쥐 모델에서는 현저하게 감소하는 것을 연구팀은 증명했다.
따라서 연구팀이 개발한 융합단백질은 새로운 형태의 작용기전을 적용한 최초의 알츠하이머 질병 치료제이며, 이러한 형태의 치료제는 다양한 퇴행성 뇌 질환 및 자가 면역질환에 적용될 수 있을 것으로 기대된다.
연구팀은 "지금까지 많은 항체 기반 치료제가 성공하지 못했던 이유는 뇌 조직 및 혈관에 쌓이는 베타 아밀로이드가 올바른 방식으로 청소되지 않았기 때문ˮ이라며 "Gas6 융합단백질을 통해서는 베타 아밀로이드가 염증반응 없이 청소되기 때문에 부작용이 낮을 뿐만 아니라 높은 인지기능의 향상도 기대할 수 있을 것ˮ이라고 말했다.
연구팀은 이번 Gas6 융합단백질 치료기술을 기반으로 2021년 8월에 일리미스테라퓨틱스(Illimis Therapeutics, 대표이사: 박상훈)를 설립했고, 향후 이를 통해 베타 아밀로이드를 표적으로 하는 알츠하이머 치료제(GAIA-Abeta, ILM01) 개발뿐 아니라, 표적을 타우 등으로 치환하는 치료제도 개발하여 다양한 확장 및 임상 개발을 계획하고 있다.
한편 이번 연구는 KAIST 글로벌 특이점 사업(프렙과제) 및 치매극복연구개발사업단 (KDRC, 단장: 묵인희)의 지원을 받아 수행됐다.
2022.08.22
조회수 7505