-
홍원희교수팀, 다양한 나노구조유도 기술개발
생명화학공학과 홍원희교수팀, 이온성액체를 이용한 다양한 나노구조 유도 기술 개발
-무기산화물, 탄소나노튜브, 그래펜, 유무기 하이브리드 등 다양한 재료의 나노구조를 유도--상용 산화철보다 10배 이상의 흡착 및 광촉매 효율 높여-
공과대학 생명화학공학과 홍원희 교수팀(62)은 이온성액체를 이용한 자기조립기술을 이용해 탄소나노튜브, 그래펜, 무기산화물, 유무기 복합체에 이르기까지 다양한 재료의 나노구조를 유도할 수 있는 기술을 최근 개발했다.
이 연구결과는 ‘광촉매 응용을 위한 이온성액체를 이용한 무기산화물 하이브리드의 에너지 전달(Energy Transfer in Ionic-Liquid-Functionalized Inorganic Nanorods for Highly Efficient Photocatalytic Applications)’이라는 제목으로 나노분야의 저명 학술지인 스몰(Small)지에 지난 11월 게재됐다.
이 기술은 이온성 액체의 구조 유도와 용매 기능을 이용한 무기산화물 하이브리드 나노재료를 제조할 수 있는 ‘청정 한 반응기 이온열 합성법(Green One-Pot Ionothermal Synthesis)’이다. 대기압하의 열린반응기내에서 제조된 무기산화물 나노재료는 쉽게 물이나 다양한 유기 용매에서 분산된다.
홍교수팀은 이 합성법을 산화철 계열의 무기산화물 나노재료에까지 적용해 0차원에서 1차원에 이르기까지 구조를 제어했고, 계면에서의 에너지 전이현상을 통해 상용 산화철보다 10배 이상의 흡착 및 광촉매 효율을 높였다.
이 기술을 바탕으로 제조된 나노재료는 유기물 산화 및 분해기능이 뛰어나 태양광만으로 폐수처리가 가능하다. 이로써 페수처리 과정에서 에너지 소비와 이산화탄소의 배출량을 줄일 수 있고, 광촉매가 가지는 우수한 항균 및 탈취기능은 건축재료 분야에 응용될 것으로 기대된다. 또한, 태양광을 이용한 물의 광분해로 수소 에너지원 생산도 가능하다.
홍교수는 “이번 연구는 이온성 액체의 청정용매로써의 기능을 이용해 나노기술이 가지는 인간과 환경에 대한 악영향을 감소시키고, 동시에 디자인된 나노재료에 새로운 기능을 부여해 기존 기술의 한계를 극복할 수 있는 새로운 대안을 마련했다”는데 의미가 있다고 말했다.
현재 홍교수팀은 친환경 합성법으로 제조된 무기산화물, 탄소나노튜브, 그래펜, 유.무기 하이브리등의 나노재료를 환경 및 에너지 분야에 적용하는 연구를 진행하고 있다.
※ 보충자료나노 스케일에서의 재료나 현상을 연구하고 구조나 구성 요소를 제어해서 새로운 소재‧소자‧시스템을 개발하는 나노 기술 역시, 환경 유해성이나 인체 독성에 대한 연구 결과가 발표되면서 친환경 기술에 대한 관심이 급증하고 있다.
이온성 액체는 소금과 같이 양이온과 음이온의 이온결합으로 이루어진 이온성 염 화합물로써 상온에서부터 넓은 온도에 걸쳐 액체로 존재할 수 있는 ‘청정용매(Green Solvent)’라고 불리면서 각광을 받고 있다. 특히, 이론적으로 1018가지 정도의 조합에 의해서 비휘발성, 비가연성, 열적 안정성, 높은 이온전도도, 전기화학적 안정성, 높은 끓는점 등의 물리화학적 특성을 쉽게 변화시킬 수 있어서 다기능성(multifunctional) ‘디자이너용매(Designer Solvent)’로 사용가능하다.
세계적으로 아직 초기단계이긴 하지만, 미국 국방관련 연구소 (US Air Force, US Naval Research Laboratory) 및 국가 연구소 (Argonne 연구소, Oak Ridge 연구소, Brookhaven 연구소), 독일의 Max Planck 연구소, 스위스 EPFL의 Gratzel 그룹, 일본의 도쿄대, G24i & BASF 등이 최근 이온성 액체를 이용한 나노기술 응용 분야에 주목하면서 집중 투자와 연구를 진행하고 있는 반면, 국내에서는 아직 시작 단계에 불과할 정도로 뒤쳐져 있다.
홍 교수 팀의 연구결과는 기존 산업뿐만 아니라, 전 세계적으로 주목 받고 있는 ‘녹색 성장기술’과 21세기를 선도할 ‘첨단 나노기술’을 융합한 ‘청정 나노기술(Green Nanotechnolgy)’의 원천기술로써 활용될 수 있으며 이 분야의 국제경쟁에서 우위를 확보할 수 있을 것으로 전망된다.
현재까지 이온성액체는 유기합성, 전기화학, 화학공학, 생물공학 및 분리공정 등을 포함하는 여러 분야에서 유기 용매를 대체하기 위한 ‘지속가능기술(sustainable technology)’로써 향후 산업 전 분야에 걸쳐서 엄청난 파급효과가 있을 것으로 기대되고 있다.
※ 용어설명 ○ 열린반응기 : 고압,저압의 용기가 아닌 대기압하의 일반용기 즉, 비이커 등.
<그림1> 대표적인 이미다졸륨계 이온성액체의 분자 구조
<그림2> Green One-Pot Ionothermal Synthesis에 의한 물에 분산되는 산화철 나노 막대기의 합성 과정 모식도.
2009.12.14
조회수 25487
-
유룡 교수, 나노판상 제올라이트 촉매 물질 합성 성공
화학과 유룡(54)교수가 특수한 계면활성제 분자와 실리카를 조립하는 새로운 방법으로 세계 최초로 2나노미터(nm) 극미세 두께의 나노판상형 제올라이트 촉매 물질을 합성하는데 성공했다.
이 연구결과는 세계 최고 권위의 과학저널인 ‘네이처(Nature)지’ 10일자에 게재됐으며, 이 논문은 세계 과학계에서 저자의 위상과 연구결과의 과학적 중요성을 인정받아 네이처 인터뷰 기사로 소개되는 영예를 얻었다.
이번에 합성된 제올라이트는 2nm두께의 판상으로, 제올라이트 물질에 대해 이론적으로 예상할 수 있는 최소 두께다. 또한 이렇게 얇은 두께임에도 불구하고, 이 물질은 섭씨 700도의 고온에서도 높은 안정성을 나타냈다.
연구를 주도한 유교수는 “이처럼 극미세 두께의 제올라이트 물질은 분자가 얇은 층을 뚫고 쉽게 확산할 수 있기 때문에 석유화학공정에서 중질유 성분처럼 부피가 큰 분자를 반응시키는 촉매로 사용될 수 있다. 특히 이 제올라이트 촉매는 메탄올을 가솔린으로 전환시키는 화학공정에서 기존의 제올라이트 촉매에 비해 수명이 5배 이상 길어, 촉매 교체 주기를 연장시킬 수 있기 때문에 경제효과가 매우 높다.”라고 연구의의를 설명했다.
이번 연구결과는 앞으로 대체에너지 자원개발과 녹색성장에 적합한 친환경 고성능 촉매 개발연구에 직접적으로 활용될 수 있을 것으로 기대된다.
유교수팀이 독창적으로 설계한 계면활성제 분자는 머리 부분에 제올라이트 마이크로 기공(micropore)유도체를 포함하여 제올라이트 골격의 형성을 유도하고, 꼬리 부분에 긴 알킬(alkyl) 그룹이 연결되어 제올라이트의 마이크로 기공보다 더 큰 메조 기공(mesopore)을 규칙적으로 배열할 수 있도록 했다.
이러한 독창적인 물질 설계는 제올라이트 합성 메커니즘에 대한 과학적 지식을 넓히는 획기적인 연구 결과로서, 향후 다양한 구조의 다른 물질을 합성하는 새로운 분야를 개척한 선구적인 성과라고 평가할 수 있다.
유교수는 2000, 2001년에 국내 최초로 2년 연속 ‘Nature’지에 메조다공성 실리카와 메조다공성 탄소에 대한 논문을 게재했고, 2003년과 2006년에 ‘Nature Materials"지에 고분자-탄소 복합물질과 메조다공성 제올라이트에 관한 논문을 게재한 후, 이번에 세 번째로 ’Nature"지에 책임저자(교신저자)로 논문을 게재하는 쾌거를 올렸다. 이것은 국내 과학자도 세계 과학을 선도하는 그룹의 반열에 올랐다는 것을 의미하며, 우리나라 과학의 우수성을 전 세계에 알리는 기회가 됐다.
이 연구는 교육과학기술부(장관 안병만)와 한국연구재단(이사장 박찬모)이 추진하는 ‘국가과학자지원사업’의 지원을 받아 이뤄졌다. 또한 교육과학기술부와 한국연구재단이 추진하는 ‘세계수준의 연구중심대학(WCU, World Class University)육성사업’과 나노기술육성사업(나노팹사업)에 따른 결실이다. 이번 연구에서 유 교수팀은 KAIST 부설 나노팹센터와 테라사키교수 연구팀의 협조로, 전자현미경을 통해 물질의 세부구조를 분석하였다. 특히 나노팹의 높은 기술력은 연구시간을 최대로 단축시켜 단시간에 훌륭한 연구 성과를 도출할 수 있도록 했다.
2007년 국가과학자로 임명된 유교수의 주도 하에, KAIST 최민기 박사, 나경수연구원(화학과 박사과정), 김정남연구원(화학과 박사과정)이 연구를 수행하고, 분해능이 높은 현미경 사진으로 구조를 확인하기 위해 스웨덴 스톡홀름대학교의 오사무 테라사키 교수와 야수히로 사카모토 박사가 추가로 참여했다. 테라사키 교수는 현재 스웨덴 스톡홀름대학교 석좌교수로, WCU사업의 지원을 받아 올해부터 KAIST EEWS(Energy, Environment, Water and Sustainability)학과에 겸임교수로 재직하고 있다.
이번 연구결과는 세계 수준의 연구중심대학과 세계적인 나노과학기술 육성을 위한 정부의 지원으로, 우리나라 과학기술의 수준을 한 단계 발전시킨 결과로서, 국내 기술력과 해외 우수 연구자들의 연구능력과 기술력을 통합한 국제공동연구의 모범사례로 평가된다.
2009.09.10
조회수 23805