-
살아있는 미생물 내 바이오 플라스틱 생성 관찰 최초 성공
우리 대학 생명화학공학과 이상엽 특훈교수(연구부총장)와 물리학과 박용근 석좌교수 공동연구팀이 ‘3차원 홀로그래픽 현미경 기술을 통한 미생물의 바이오 플라스틱 과립 생산 특징 규명’에 성공했다고 27일 밝혔다.
이번 연구 결과는 국제 학술지인 ‘미국국립과학원회보(PNAS)'에 7월 27일 字 온라인 게재됐다.
※ 논문명 : Three-dimensional label-free visualization and quantification of polyhydroxyalkanoates in individual bacterial cell in its native state
※ 저자 정보 : 이상엽(KAIST, 교신저자), 박용근(KAIST, 교신저자), 최소영(KAIST, 공동 제1 저자), 오정훈(KAIST, 공동 제1저자), 정재황(KAIST, 공동 제1저자) - 총 5명
전 세계적으로 폐플라스틱으로 인한 환경오염 및 생태계 파괴, 미세 플라스틱의 인류 보건 위협 등의 문제가 심각해짐에 따라 다양한 규제 및 대안 기술들이 연구되고 있다. 그중 미생물로부터 만들어지는 폴리에스테르인 폴리하이드록시알카노에이트 (polyhydroxyalkanoate, 이하 PHA)가 기존 합성 플라스틱을 대체할 친환경 바이오 플라스틱으로 많은 관심을 받고 있다.
PHA는 폴리에틸렌이나 폴리프로필렌과 같은 범용 플라스틱과 유사한 물성을 가지고 있어 용기 포장재, 비닐, 일회용품 등의 다양한 활용이 가능하며, 토양이나 해양 환경에서 생분해가 가능한 고분자라는 가장 중요한 장점을 갖고 있다.
PHA는 몇몇 미생물 내에 불용성의 과립(granule) 형태로 발견되는 고분자 물질로, 미생물이 환경 변화 및 세포 상태에 따라 탄소원, 에너지원으로 세포 내에 축적하게 된다. PHA가 세포 내에 축적되는 원리를 관찰하기 위해 여러 연구가 진행돼왔다.
형광 현미경, 투과전자현미경, 전자 저온 촬영 등의 기술이 이용됐는데, 이는 2차원상의 이미지만을 제시하거나 형광 물질과 같은 별도의 표식이나 세포의 고정/절편 제작 과정이 있어야 하여, 세포 원래 그대로의 상태에서의 관측이 어려웠다. 따라서 기술적 한계로 인해 세포 내에서 PHA 과립 형성에 대한 완전한 이해가 어려웠고, 관측 결과에 기반을 둔 여러 형성 메커니즘 모델만이 제안돼왔다.
이에 이상엽 특훈교수와 박용근 석좌교수 공동연구팀은 최근 떠오르고 있는 *3차원 홀로그래픽 현미경 기술을 통해 PHA 생산 박테리아의 심층 관찰 및 정량/정성 분석 연구를 수행했다.
*3차원 홀로그래픽 현미경 기술은 물질의 굴절률(refractive index)을 활용하는 이미징 방법으로, 염색 등 준비 과정을 필요로 하지 않기 때문에 살아 있는 세포의 3차원 정보를 정량적으로 측정 가능하다.
연구팀은 PHA의 한 종류인 *PHB 생산 미생물로 잘 알려진 쿠프리아비두스 네카토르(Cupriavidus necator)와 이 미생물의 PHB 합성 대사회로 유전자를 가진 재조합 대장균을 이용해 비교·분석을 수행했다.
*PHA는 현재까지 약 150여 가지의 하이드록시산 화합물들이 단량체로 보고되었으며, PHA 중 가장 대표적이며 많은 연구가 이루어진 것이 poly(3-hydroxybutyrate) [PHB]임
연구팀은 재구성된 세포의 3차원 굴절률 분포로 단일세포 수준에서 세포와 세포 내 과립의 3차원 시각화 및 이를 통한 부피, 질량, 밀도, 분포 등의 정량 분석에 성공했다. 수백 개의 단일 세포들과 세포 내의 PHA 과립에 대한 정량 및 이의 통계 분석을 통해 두 미생물에서의 PHA 과립 형성의 차이점을 도출해냈다.
특히, 단일세포 내의 PHA 과립의 밀도의 개념을 새롭게 제시했으며, 두 미생물에서의 PHA 과립의 밀도의 차이 및 세포 내 분포 형태 및 위치에 대한 특이적인 차이를 발견했다. 더 나아가서, 두 미생물의 PHA 과립 형성의 차이를 나타내게 하는 핵심 단백질을 규명해, 재조합 대장균의 PHA 과립 형성의 양상을 쿠프리아비두스 네카토르와 유사하게 변화시킬 수 있었다.
또한, 실시간 모니터링을 통해 최대 약 8시간 동안의 세포와 세포 내 PHA 과립의 성장 과정을 보여주는 3차원 영상을 제작할 수 있었다. 이는 미생물이 살아있는 상태에서 별도의 처리 과정이 없는 자연 상태 조건 하에, 세포 내 PHA 과립의 형성과 세포 분열과 연계된 이동을 3차원에서 실시간으로 관측한 세계 최초의 결과라는 데 큰 의의가 있다.
이상엽 특훈교수는 “이번 연구를 통해 미생물의 PHA 생산 원리에 대해 더욱 깊은 이해가 가능해졌고, 이는 생물학과 물리학의 융합 연구로서 이뤄진 성과라는 데에 큰 의의가 있으며, 향후 다양한 바이오 플라스틱 생산 공정 개발에 큰 도움이 될 것”이라고 말했다.
한편 이번 연구는 과기정통부가 지원하는 기후변화대응기술개발사업과 바이오·의료기술개발사업의 지원을 받아 수행됐다.
2021.07.28
조회수 13214
-
RNA 바이러스 초고감도 검출 기술 개발
우리 대학 생명화학공학과 박현규 교수 연구팀이 핵산의 절단 및 중합 연쇄반응 시스템을 활용해 RNA 바이러스의 표적 RNA를 초고감도로 검출하는 새로운 등온 핵산 증폭(NESBA, Nicking and Extension chain reaction System-Based Amplification) 기술을 개발했다고 15일 밝혔다.
생명화학공학과 주용 박사과정, 김효용 박사가 공동 제1 저자로 참여한 이번 연구는 영국 왕립화학회가 발행하는 국제학술지 `나노스케일 (Nanoscale)'에 2021년도 24호 표지(Front cover) 논문으로 지난달 16일 선정됐다. (논문명: Ultrasensitive version of nucleic acid sequence-based amplification (NASBA) utilizing nicking and extension chain reaction system)
현재 전 세계적으로 팬데믹 (Pandemic)을 일으키고 있는 코로나19 바이러스와 같은 RNA 바이러스를 검출하기 위한 표준 진단 방법은 역전사 중합효소 연쇄반응(qRT-PCR)이다. 이러한 표준 분자진단 방법은 면역진단 방법과 비교해 진단의 정확도는 매우 우수하지만 정교한 온도 조절 장치가 필요하고 진단에 드는 시간이 길어 장비의 소형화에 제약이 있으며 전문 진단 설비가 갖추어진 대형 병원 또는 전문 임상검사실에서만 제한적으로 사용된다는 단점이 있다.
연구팀은 이러한 현행 기술의 한계를 극복하기 위해 핵산의 절단 및 중합 연쇄반응 시스템에 의해 구동되는 초고감도의 신개념 등온 핵산 증폭 기술을 개발했으며, 이를 통해 별도의 온도 변환 과정 없이 동일 온도에서 표적 바이러스의 RNA를 초고감도로(검출 한계: 1 아토 몰 (aM)) 매우 신속하게(20분 이내) 검출하는 데 성공했다.
연구팀은 기존 나스바(NASBA, Nucleic Acid Sequence-Based Amplification) 등온 증폭 기술에 절단효소 인식 염기서열이 수식된 프라이머를 도입함으로써, 절단효소 및 DNA 중합효소 활성을 기반으로 T7 프로모터를 포함하는 이중가닥 DNA를 지수함수적으로 증폭할 수 있었고, 최종적으로 표적 RNA를 기존의 NASBA 기술에 비해 100배 이상 향상된 민감도로 검출할 수 있었다.
연구팀은 이 기술을 통해서, 호흡기 세포 융합 바이러스(RSV)의 유전 RNA(genomic RNA)를 별도의 전처리 없이 매우 신속하고 고감도로 검출함으로써, 기술의 실용성을 증명함과 동시에 현장 검사(POCT) 기술로서의 높은 활용 가능성을 입증했다.
박현규 교수는 "이번 신개념 등온 핵산 증폭 기술은 현재 대유행하고 있는 코로나19 바이러스와 같은 RNA 바이러스들을 신속하게 조기 진단 할 수 있는 분자진단 시스템에 활용될 가능성이 매우 큰 기술ˮ이라고 이번 연구의 의의를 설명했으며, 현재 코로나19의 임상 샘플 테스트에서도 매우 좋은 결과를 얻었다고 언급했다.
한편 이번 연구는 한국연구재단의 글로벌 프런티어사업과 경남제약(주)의 연구비 지원으로 수행됐다.
2021.07.15
조회수 11238
-
기억을 형성하는 원리 최초로 규명
우리 대학 생명과학과 한진희 교수 연구팀이 무수히 많은 뉴런과 이들 사이의 시냅스 연결로 구성된 복잡한 신경 네트워크에서 기억을 인코딩하는 뉴런이 선택되는 근본 원리를 규명했다고 13일 밝혔다.
우리 대학 생명과학과 정이레 박사가 제1 저자로 참여한 이번 연구는 네이처 출판 그룹의 오픈 액세스(Open-access) 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’에 6월 24일 字로 게재됐다. (논문명: Synaptic plasticity-dependent competition rule influences memory formation)
과거의 경험은 기억이라는 형태로 뇌에 저장되고 나중에 불러오게 된다. 이러한 기억은 뇌 전체에 걸쳐 극히 적은 수의 뉴런들에 인코딩되고 저장된다고 알려져 있다. 하지만 이 뉴런들이 미리 정해져 있는 것인지, 아니면 어떤 원리에 의해 선택되는 것인지는 불확실하다. 이 질문을 해결하는 것은 신경과학의 미해결 난제 중 하나인 기억이 뇌에서 어떻게 형성되는지를 규명하는 것으로서 학문적으로 매우 중요할 뿐만 아니라, 치매를 치료할 수 있는 단서를 제공하기 때문에 막대한 사회, 경제적 파급 효과가 있다.
반세기 훨씬 이전에 캐나다의 신경심리학자 도널드 올딩 헤브(Donald O. Hebb)는 그의 유명한 저서인 ‘행동의 조직화(The Organization of Behavior)’ (1949) 에서 두 뉴런이 시간상으로 동시에 활성화되면 이 두 뉴런 사이의 시냅스 연결이 강화될 것이라는 시냅스 가소성(synaptic plasticity) 아이디어를 제시했고, 이후 실험을 통해 학습으로 특정 시냅스에서 실제로 장기 강화(long-term potentiation, 이하 LTP)가 일어난다는 것이 증명됐다.
이 발견 이후, LTP가 기억의 핵심 메커니즘으로 생각돼 왔다. 하지만, LTP가 기억을 인코딩하는 뉴런을 어떻게 결정하는지 지금까지 규명된 적이 없었다.
이번 연구에서는 이를 규명하기 위해 생쥐 뇌 편도체(amygdala) 부위에서 자연적인 학습 조건에서 LTP가 발생하지 않는 시냅스를 광유전학 기술을 이용해서 특정 패턴으로 자극함으로써 인위적으로 그 시냅스 연결을 강하게 만들거나 혹은 약하게 조작하고 이때 기억을 인코딩하는 뉴런이 달라지는지 연구팀은 조사했다.
먼저, 생쥐가 공포스러운 경험을 하기 전에 이 시냅스를 미리 자극해서 LTP가 일어나게 했을 때, 원래는 기억과 상관없었던 이 시냅스에 기억이 인코딩되고 LTP가 일어난 뉴런이 주변 다른 뉴런에 비해 매우 높은 확률로 선택적으로 기억 인코딩에 참여함을 발견했다.
하지만, 학습하고 난 바로 직후에 이 시냅스를 다시 광유전학 기술로 인위적으로 자극해서 이 시냅스 연결을 약하게 했을 때 더는 이 시냅스와 뉴런에 기억이 인코딩되지 않는 결과를 얻었다.
반대로, 정상적으로 생쥐가 공포스러운 경험을 하고 난 바로 직후에 LTP 자극을 통해 이 시냅스 연결을 인위적으로 강하게 했을 때 놀랍게도 LTP를 조작해준 이 시냅스에 공포 기억이 인코딩되고 주변 다른 뉴런들에 비해 LTP를 발생시킨 이 뉴런에 선택적으로 인코딩됨을 확인했다. 이러한 결과는 시냅스 강도를 인위적으로 조작했을 때 기억 자체는 변하지 않지만, 그 기억을 인코딩하는 뉴런이 변경됨을 증명한 것이다.
한진희 교수는 “LTP에 의해 뉴런들 사이에서 새로운 연결패턴이 만들어지고 이를 통해 경험과 연관된 특이적인 세포 집합체(cell assembly)가 뇌에서 새롭게 만들어진다”며 “이렇게 강하게 서로 연결된 뉴런들의 형성이 뇌에서 기억이 형성되는 원리임을 규명한 것”이라고 이번 연구 결과중요성을 설명했다.
한편, 이번 연구는 한국연구재단의 중견연구 사업 지원을 받아 수행되었으며 정이레 박사는 한국연구재단의 박사 후 국내 연수 사업의 지원을 받았다.
2021.07.13
조회수 13806
-
신경신호 모사를 통한 인공 감각 시스템 개발
우리 대학 바이오및뇌공학과 박성준 교수 연구팀이 고려대학교 천성우 교수, 한양대학교 김종석 박사 공동 연구팀과 함께 인간 피부-신경 모사형 인공 감각 인터페이스 시스템을 개발했다고 12일 밝혔다.
이번 연구 결과는 국제 학술지 `네이처 일렉트로닉스(Nature Electronics)'에 2021년 6월 3일 字로 출판됐다. (논문명: Artificial Neural Tactile Sensing System)
가상/증강 현실, 메타버스, 화상 환자를 위한 인공피부, 로봇형 의수/의족 등에 사용될 수 있는 인공 감각 시스템은, 구현해야 할 원리와 그 시스템의 복잡성 때문에 실제 감각기관처럼 만들기 어려운 상황이었다. 특히 사람은 다양한 유형의 촉각 수용기를 통해 (압력, 진동 등) 정보를 조합하여 촉각을 감지하므로, 완벽한 인공 감각 시스템의 구현은 더욱 어려울 수 밖에 없다.
연구팀은 문제 해결을 위해 나노입자 기반의 복합 촉각 센서를 제작하고, 이를 실제 신경 패턴에 기반한 신호 변환 시스템과 연결하는 방법을 사용하였다. 이 두 가지 기술의 조합을 통해 연구팀은 인간의 촉각 인식 프로세스를 최대로 모방하는 인공 감각 인터페이스 시스템을 구현하는데 성공했다.
연구팀은 우선 압전재료 및 압전 저항성 재료의 조합으로 이루어진 전자 피부를 제작했다. 이 센서는 나노입자의 적절한 조합을 통해 피부 내의 압력을 감지하는 늦은 순응 기계적 수용기(SA mechanoreceptor)와 진동을 감지하는 빠른 순응 기계적 수용기(FA mechanoreceptor)를 동시에 모사할 수 있다는 특징을 가지고 있다. 해당 센서를 통해 생성된 전위는, 연구팀이 제작한 회로 시스템을 통해 실제 감각 신호와 같은 형태의 패턴으로 변환된다. 이때 생체 내 상황을 최대한 모사하기 위해, 실제 감각신경을 추출, 다양한 감각에 의한 신호를 측정하여 함수화하는 방법이 사용됐다.
해당 시스템을 동물 모델에 적용한 결과, 연구팀은 인공 감각 시스템에서 발생한 신호가 생체 내에서 왜곡 없이 전달되며, 근육 반사 작용 등 생체 감각 관련 현상들을 구현할 수 있음을 확인했다. 또한 연구팀은 지문 구조로 만든 감각 시스템을 20여 종의 직물과 접촉함으로써, 딥 러닝 기법을 통해 직물의 질감을 99% 이상 분류할 수 있을 뿐만 아니라 학습된 신호를 기반으로 인간과 동일하게 예측할 수 있음을 보여줬다.
박성준 교수는 "이번 연구는 실제 신경 신호의 패턴 학습을 바탕으로 한 인간 모사형 감각 시스템을 세계 최초로 구현했다는 데 의의가 있다. 해당 연구를 통해 향후 더욱 현실적인 감각 구현이 가능할 뿐만 아니라, 연구에 사용된 생체신호 모사 기법이 인체 내 다양한 종류의 타 감각 시스템과 결합될 경우 더욱 큰 시너지를 낼 수 있으리라 기대한다ˮ 라고 말했다.
한편 이번 연구는 한국연구재단 신진연구사업, 범부처의료기기개발 사업, 나노소재원천기술개발사업, 차세대 지능형 반도체 개발사업, KK-JRC 스마트 프로젝트, KAIST 글로벌 이니셔티브 프로그램, Post-AI 프로젝트 사업의 지원을 받아 수행됐다.
2021.07.12
조회수 11515
-
정송 교수 연구팀, 아시아대학 최초 ACM MobiSys 2021 Best Paper Award 수상
우리 대학 AI대학원과 전기및전자공학부 소속 정송 교수 연구실의 김세연 박사과정생과 이경한 박사졸업생 (현 서울대 전기정보공학부 부교수)이 지난 주 COVID-19으로 인해 온라인으로 개최된 2021년도 ACM MobiSys 학회(https://www.sigmobile.org/mobisys/2021/)에서 Best Paper Award를 수상했다.
ACM MobiSys는 모바일시스템 분야의 최고 학회로서 올해 총 266편의 논문이 제출되어 36개의 논문이 억셉트되었으며 (논문게재율: 21.6%) 이번 정송 교수 연구팀의 Best Paper Award 수상은 19년의 MobiSys 역사상 첫 아시아권 대학의 수상이다. (제1저자 소속 대학 기준)
- 논문명: zTT: Learning-based DVFS with Zero Thermal Throttling for Mobile Devices
(모바일 기기의 열쓰로틀링 방지를 위한 강화 학습 기반의 동적 주파수 할당 기술)
- 논문 저자: 김세연 (KAIST), 빈경민 (서울대), 하상태 (U. of Colorado at Boulder), 이경한 (서울대), 정송 (KAIST)
- 논문 내용:
동적 전압/주파수 할당 기술(Dynamic Voltage and Frequency Scaling, DVFS)은 운영 체제(OS) 단에서 프로세서 성능을 보장하는 동시에 에너지 소모를 줄이기 위해 동적으로 프로세서의 전압과 주파수를 조절하는 기술이다. 하지만 모바일 기기의 동적 주파수 할당 기술은 두 가지 한계점을 가지고 있다. 첫째, OS 레벨에서 수행되기 때문에 어플리케이션의 성능을 보장하지 못한다. 둘째, 모바일 기기의 특성상 빈번하게 변하는 환경을 반영하지 못하여 과열을 일으켜 열쓰로틀링(Thermal Throttling)을 야기시켜 사용자 경험(QoE)를 크게 감소시킬 수 있다. 특히, 모바일 기기에서 발열 문제는 최신 스마트폰과 같은 고성능 기기의 성능을 크게 떨어뜨리는 고질적인 문제로 알려져 있다. 해당 연구에서는 이러한 기존 기술의 한계를 해결하기 위해 모바일 기기의 과열을 예방하고, 사용자 경험을 보장하는 동시에 에너지 소모를 최소화하기 위해 심층 강화 학습(Deep-Reinforcement Learning) 기반의 동적 주파수 할당 기술을 개발했다. 이는 실시간으로 수집되는 상태 정보를 바탕으로 어플리케이션과 모바일 기기의 동작 환경에 적응하여 안정된 성능을 보장하고, 전력 소모를 크게 줄일 수 있는 기술이다. 연구팀은 해당 연구 기술이 운영 체제나 어플리케이션이 보다 최적화된 성능으로 동작하기 위한 하나의 설정 옵션으로 패키징될 수 있을 것이라고 전망하고 있다.
위 상을 수상한 김세연 박사과정생은 논문에 대해 “5G 스마트폰과 같은 모바일 단말에서 과도한 발열로 인해 발생하는 열쓰로틀링에 따른 급격한 성능 저하 문제를 강화학습 기반의 동적 전압/주파수 스케일링을 통해 획기적으로 해결한 연구”라고 설명했다.
정송 교수는 “사용자 체감 성능을 높이면서 열쓰로틀링으로 인한 급격한 성능 저하를 방지하기 위해서는, 적정한 온도를 유지하기 위한 총전력 소모 범위 내에서 프로세서 컴포넌트 (CPU, GPU 등) 간 최적의 전력 분배를 수행하는 것이 관건이지만, 주변 환경 (주변 온도, 쿨링 상황 등)과 사용자 애플리케이션 특성에 따라 허용 가능한 총 전력 소모 범위와 최적의 전력 분배가 실시간으로 변화하기 때문에 전통적인 제어기법으로는 해결하기 매우 어려운 문제였다”고 부연 설명했다.
연구팀의 이러한 결과는 전력소모 문제로 인공지능 기법의 도입이 어려울 것으로 예상되었던 모바일 플랫폼에서 조차 강화학습 기반의 시스템 제어가 성능 개선에 크게 이바지 할 수 있음을 보임으로써, 차세대 운영체제에 AI/ML 기반 제어 기법들을 적극적으로 도입하기 위한 계기를 마련한 것으로 평가받았다.
2021.07.09
조회수 10646
-
약물 가상 스크리닝 기술로 코로나19 치료제 후보 발굴
우리 대학 생명화학공학과 이상엽 특훈교수(연구부총장)와 한국파스퇴르연구소 김승택 박사 공동연구팀이 ‘약물 가상 스크리닝 기술을 이용한 코로나19 치료제 개발’에 성공했다고 8일 밝혔다.
이번 연구 결과는 국제 학술지인 ‘미국국립과학원회보(PNAS)'에 7월 7일 字 온라인 게재됐다.
※ 논문명 : Drugs repurposed for COVID-19 by virtual screening of 6,218 drugs and cell-based assay
※ 저자 정보 : 이상엽(한국과학기술원, 교신저자), 김승택(한국파스퇴르연구소, 교신저자), 장우대(한국과학기술원, 제1저자), 전상은(한국파스퇴르연구소, 제2저자), 포함 총 4명
코로나바이러스감염증-19(이하 코로나19)는 글로벌 팬데믹으로 전개되고 있으며 현재 인류 보건을 심각하게 위협하는 상황이다. 코로나19 치료 목적으로 미국식품의약국(FDA)에서 정식 승인을 받은 렘데시비르(상품명 베클러리)가 현재 임상에서 사용 중이지만, 사망률은 감소시키지 못하고 회복 기간을 5일 정도 단축함으로써 치료 효과가 기대에 미치지 못하는 것으로 알려졌다. 또한 렘데시비르는 정맥 주사제여서 의료기관에서 입원을 통해 수일 동안 투여받아야 하므로 팬데믹 상황에 적합하지 않은 약물이다. 따라서 코로나19로 인한 사망률을 획기적으로 감소시키고, 치료 기간을 단축시키는 경구용 치료제 개발이 시급한 상황이었다.
이에 이상엽 특훈교수와 한국파스퇴르연구소 김승택 박사 공동연구팀은 약물 가상 스크리닝 기술을 이용한 약물 재창출 전략으로 코로나19 치료제 개발 연구를 수행했다.
연구팀은 팬데믹 상황에 대응한 신속한 치료제 개발을 위해 가상 스크리닝 기술을 이용한 약물 재창출 전략을 수립했다. 약물 재창출은 이미 안전성이 검증된 FDA 승인 약물 또는 임상 진행 중인 약물을 대상으로 새로운 적응증을 찾는 방식이다. 이 전략은 신약 개발 과정에 소요되는 시간을 단축시킬 수 있어 코로나19와 같은 팬데믹 상황에 적합한 신약 개발 전략이다.
우리 대학 생명화학공학과 장우대 박사는 우선 FDA 승인 약물 또는 임상 진행 중인 약물을 데이터베이스에서 수집해 6,218종의 약물 가상 라이브러리를 구축했다. 실험으로 이 약물들을 모두 검증하기에는 시간과 비용이 많이 소요되기 때문에 바이러스 치료제로 가능성이 있는 약물만 신속하게 선별할 수 있는 컴퓨터 기반 가상 스크리닝 기술을 도입했다.
기존의 도킹 시뮬레이션 기반의 가상 스크리닝 기술은 높은 위양성률(false positive rate)로 인해 유효물질 도출 비율(hit rate)이 매우 낮은 것이 문제점인 상황이었다. 연구팀은 구조 유사도 분석 모듈과 상호작용 유사도 분석 모듈을 도킹 전후에 도입하여 가상 스크리닝의 정확도를 높이는 데 성공했다. 이번 연구를 통해 개발된 가상 스크리닝 기술은 단백질-약물 복합체 구조 정보를 이용하여 다양한 후보 약물을 빠르고 정확하게 스크리닝할 수 있는 것이 특징이다.
연구팀은 또한 바이러스 치료제로 주로 사용되는 핵산 유사체(nucleotide analogues) 기반 전구약물(prodrug)의 활성형 구조를 자동으로 생성하는 알고리즘을 개발했다. 전구약물은 그 자체로는 약효가 없고 체내 대사를 통해 활성형 구조로 변환되어야만 약효를 나타낸다. 따라서 전구약물은 활성형으로 구조변환 후, 도킹 시뮬레이션을 수행하는 것이 중요하다. 연구팀은 렘데시비르를 포함한 여러 핵산유사체 기반 전구약물들의 활성형 구조를 자동으로 생성하는 데 성공하였고, 도킹 시뮬레이션의 정확도를 향상시킬 수 있었다.
연구팀은 가상 스크리닝 플랫폼으로 사스-코로나바이러스-2(SARS-CoV-2)의 복제와 증식에 필수적인 역할을 하는 단백질 가수분해 효소(3CL hydrolase, Mpro)와 RNA 중합효소(RNA-dependent RNA polymerase, RdRp)를 저해할 수 있는 후보 화합물을 15종과 23종으로 각각 선별했다.
그 후, 가상 스크리닝으로 선별된 38종의 약물에 대해 한국파스퇴르연구소의 생물안전 3등급(BSL-3) 실험실에서 세포 이미지 기반 항바이러스 활성 분석 플랫폼을 활용해 약효를 검증했다.
먼저 사스-코로나바이러스-2를 감염시킨 원숭이 신장세포(Vero cell)를 이용한 시험관 내(in vitro) 실험을 수행한 결과, 38종의 약물 중 7종의 약물에서 항바이러스 활성이 확인됐다.
또한, 검증된 7종의 약물에 대해 인간 폐 세포(Calu-3 cell)에서 추가적인 검증 실험을 수행했고, 3종의 약물에서 항바이러스 활성이 확인됐다. 후보 약물에는 암 및 특발성 폐섬유증(idiopathic pulmonary fibrosis)으로 임상이 진행 중인 오미팔리십(omipalisib), 암 및 조로증(progeria)으로 임상이 진행 중인 티피파닙(tipifarnib), 식물 추출물로써 항암제로 임상이 진행 중인 에모딘(emodin)이 있다. 특히 오미팔리십은 현재 코로나19 표준 치료제인 렘데시비르 대비 항바이러스 활성이 약 200배 이상 높은 것으로 확인됐고, 티피파닙은 렘데시비르와 유사한 수준으로 항바이러스 활성이 확인됐다.
세포 수준에서 항바이러스 효과가 확인된 약물은 바이러스 감염 동물모델을 이용한 전임상시험이 필요하다. 이에 연구팀은 과기정통부의 코로나 치료제 전임상 지원사업을 통해 후보 약물 중 하나의 약물에 대해 약효를 평가했다. 그러나 이 과정에서 동물에 대한 약물 독성이 나타났다. 약물의 독성을 최소화하면서 치료 유효 농도에 도달할 수 있는 최적의 약물 농도를 찾기 위해 추가적인 전임상시험을 진행할 예정이다. 또한, 나머지 후보 약물들에 대해서도 전임상시험을 계획 중이다.
연구팀 관계자는 이번 연구를 통해 예측 성능이 우수한 약물 가상 스크리닝 플랫폼을 구축했고, 이를 통해 코로나19 치료제로 유망한 후보물질을 단기간에 발견할 수 있었다고 설명했다.
이상엽 특훈교수는 “이번 연구를 통해 신종 바이러스 출현 시 신속하게 대응할 수 있는 기반 기술을 마련했다는 데에 의의가 있으며, 이를 통해 향후 코로나바이러스 계열의 유사한 바이러스나 신종 바이러스 출현 시에도 적용할 수 있는 기술을 개발하고자 한다”라고 밝혔다.
한편 이번 연구는 과기정통부가 지원하는 KAIST 코로나대응 과학기술 뉴딜사업과 바이오·의료기술개발사업의 지원을 받아 수행됐다.
2021.07.08
조회수 13248
-
코로나19 회복 후, 장기간 유지되는 기억 T세포 규명
우리 대학 의과학대학원 신의철 교수 연구팀이 고려대 안산병원 최원석 교수, 충북대병원 정혜원 교수와의 공동연구를 통해 코로나19 회복자들에서 기억 T세포가 10개월 동안 잘 유지되며, 특히 줄기세포 유사 기억세포가 효율적으로 잘 발생함을 규명했다고 7일 밝혔다. 이는 중증 코로나19에 대해 방어를 하는 기억 T세포가 장기간 유지될 것을 제시하는 연구 결과다.
코로나19에 한 번 걸렸다 회복되면 이에 대항하는 방어면역이 형성된다. 그리고 이러한 방어면역의 양대 축으로 중화항체와 기억 T세포가 존재함이 알려져 왔다. 하지만 코로나19 바이러스에 대한 중화항체는 시간이 지남에 따라 감소하는 것으로 알려져, 최근에는 기억 T세포에 관한 관심이 증대되고 있다.
기억 T세포는 코로나19 감염 자체를 예방하지는 못하지만, 중증 코로나19로의 진행을 막는 것으로 알려진 중요한 면역세포다. 하지만, 코로나19 회복자에서 기억 T세포가 얼마나 오래 유지될 수 있는지, 그리고 그 기능도 오랜 기간 잘 유지되는지는 명확히 알려진 바가 없었다.
이번 연구에서 KAIST-고려대안산병원-충북대병원 공동연구팀은 한국인 코로나19 회복자들을 대상으로 10개월 동안 추적 연구를 수행해, 코로나19 바이러스에 대항하는 기억 T세포가 어떤 특성을 보이는지, 그리고 얼마나 오랫동안 유지되는지 등 지금까지 명확히 알려지지 않았던 질문들에 대한 답을 구했다. 특히 이번 연구에서는 최첨단 면역학 연구기법을 활용해, 기억 T세포의 장기 유지에 중요한 줄기세포 유사 기억 T세포의 발생을 분석하고, 한 번에 여러 가지 기능을 나타내는 다기능성 기억 T세포의 존재를 분석했다.
공동연구팀은 코로나19 회복 직후부터 나타나는 기억 T세포가 10개월의 추적관찰 동안 잘 유지됨을 밝혔다. 특히 이러한 기억 T세포 유지는 애초에 걸렸던 코로나19의 경증/중증 여부와는 상관없이 대부분의 회복자들에게서 잘 나타남을 확인했다. 그리고 10개월이 지난 후에도 다시 코로나19 바이러스 항원을 만나면 기억 T세포는 증식을 활발히 하며 한 번에 여러 가지 기능을 수행하는 다기능성을 잘 나타냄도 확인했다. 이러한 결과는 회복자가 코로나19 바이러스에 다시 노출됐을 때 기억 T세포들의 방어면역 기능이 잘 나타날 것임을 시사하는 결과다.
특히, 코로나19 회복자들에서 줄기세포 유사 기억 T세포가 잘 발생함을 규명했다. 줄기세포 유사 기억 T세포는 장기간에 걸쳐 기억 T세포들의 숫자를 유지해주는 재생기능을 가진 세포로서, 이번 연구 결과는 코로나19 회복자들의 기억 T세포가 상당히 오랜 기간 동안 잘 유지될 것임을 기대하게 하는 연구 결과다. 특히 이번 연구는 코로나19 회복 후 세계 처음으로 줄기세포 유사 기억 T세포의 발생을 보고한 것으로 세계 면역학계의 주목을 받고 있다.
삼성미래기술육성재단과 KAIST의 지원을 받아 수행한 공동연구팀의 이번 연구 결과는 국제 저명 학술지인 네이처 커뮤니케이션스(Nature Communications)誌 6월 30일 字에 게재됐다(논문명: SARS-CoV-2-specific T cell memory is sustained in COVID-19 convalescent patients for 10 months with successful development of stem cell-like memory T cells).
연구팀은 코로나19 회복자들의 장기 방어면역을 확인함과 동시에, 현재 사용되고 있는 상용화된 코로나19 백신들의 효능 평가와 추후 백신 개발의 핵심 목표 중 하나인 T세포 방어면역 장기 지속성에 대한 지표를 제시한 점에 관해 연구 의미를 부여했다.
공동연구팀은 현재 코로나19 백신을 접종받은 사람들의 기억 T세포 형성 및 기능 특성을 규명함과 동시에 코로나19 회복자들의 기억 T세포와의 비교를 통해 백신의 면역학적 효과를 파악하는 후속 연구를 진행하고 있다.
이번 연구의 제1 저자인 정재형 우리 대학 박사과정 연구원과 나민석 박사후 연구원(現 연세의대 임상강사)은 "코로나19로부터 회복 후 최대 10개월까지도 기억 T세포 면역반응이 유지됨을 확인했다ˮ며 "이러한 방어면역 지속성에 중요한 역할을 할 것으로 예측되는 줄기세포 유사 기억 T세포의 특성 및 기능 규명을 통해 재감염의 이해 및 코로나19 백신에 의한 기억 T세포 평가의 중요 지표를 마련했다ˮ고 설명했다.
신의철 교수는 "이번 연구는 코로나19 회복자의 기억 T세포 기능 및 특성을 세계에서 최장기간 연구한 결과로서 시간에 따른 방어면역 분석을 통해 향후 최적화된 차세대 백신 개발 전략을 설계할 수 있는 토대를 마련했다는 점에서 의미가 있는 연구ˮ라고 말했다.
2021.07.07
조회수 11338
-
원자 하나가 촉매가 되다
우리 대학 신소재공학과 김상욱 교수 연구팀은 지난 2010년 물리학과 김용현 교수의 이론연구팀과 공동연구를 통해 세계 최초로 단일 원자촉매(Single atom catalyst)를 개발하는 데 성공한 바 있다.
이러한 `최초연구'의 성과를 인정받아 김상욱 교수 연구팀은 최근 미국화학회(American Chemical Society)에서 발간하는 신소재 분야의 가장 중요한 연구 동향을 소개하는 학술지 `어카운츠 오브 매터리얼 리서치(Accounts of Material Research)'에 특별 초청 리뷰 논문을 표지 논문으로 게재했다고 1일 밝혔다. (논문명 : Discovery of Single-Atom Catalyst: Customized Heteroelement Dopants on Graphene)
촉매는 소량의 첨가만으로 다양한 화학반응의 효율을 높이는 소재를 의미하며, 최근 그 중요성이 급속하게 커지고 있는 에너지, 환경 및 바이오/헬스 분야에서 핵심적인 요소로서 큰 관심을 끌고 있다. 대표적인 예로서 수소연료전지의 에너지 변환반응이나 환경친화적인 수소연료 생성반응 등에서 백금이나 희토류등 값비싼 촉매를 대체하기 위한 연구가 전 세계 신소재 연구의 화두가 되고 있다.
일반적인 촉매는 그 표면에서 화학반응을 일으키는데, 이상적으로는 단일 원자가 촉매가 된다면 같은 양의 촉매로 최대 효율을 낼 수 있으며 이를 세계 최초로 실현한 것이 김상욱, 김용현 교수팀이 개발한 단일 원자 촉매의 개념이다. 김상욱 교수 연구팀은 탄소나노튜브를 화학적으로 성장시키는 과정에서 철(Fe) 원자가 우리 혈액 속의 헤모글로빈 구조와 유사한 단원자 혼성구조를 생성함을 발견하고, 한 개의 원자에 기반한 새로운 연료 전지 촉매를 제시한 것이다. 해당 촉매는 입자 응집으로 인해서 수명이 짧은 기존의 백금 촉매의 한계를 극복할 수 있는 새로운 촉매의 형태로 주목을 받았다.
김 교수 팀의 연구 이후 최근에는 전 세계의 많은 연구 그룹들이 단일 원자촉매 연구에 뛰어들고 있으며, 새로운 고효율 촉매를 개발하기 위해 가장 전망이 밝은 분야로 각광받고 있다.
김상욱 교수는 "이번에 출판된 총설에는 그래핀과 같은 나노소재에 금속원소를 도핑하는 방식에서 시작된 단일 원자 촉매의 제조부터 구조와 물성, 그리고 응용까지 망라한 최신 연구 동향들이 잘 정리돼 있다ˮ며, "앞으로 해당 분야 연구에 심도 있는 통찰을 제시하길 희망하여, 향후 고효율 단일 원자 촉매 상용화의 시발점이 될 것이다ˮ라고 이번 논문의 의의를 설명했다.
이번 연구 성과는 과학기술정보통신부·한국연구재단 원천기술개발사업의 지원으로 수행됐다. 김상욱 교수는 국내에서 유일하게 이 권위 있는 학술지의 편집위원으로 활동하고 있다.
2021.07.01
조회수 12834
-
딥러닝 생성모델의 오류 수정 기술 개발
우리 대학 AI대학원 최재식 교수(설명가능 인공지능연구센터장) 연구팀이 심층 학습(이하 딥러닝) 생성모델의 오류 수정 기술을 개발했다고 25일 밝혔다.
최근 딥러닝 생성모델(Deep Generative Models)은 이미지, 음성뿐만 아니라 문장 등 새로운 콘텐츠를 생성하는 데 널리 활용되고 있다. 이런 생성모델의 발전에도 불구하고 최근 개발된 생성모델도 여전히 결함이 있는 결과를 만드는 경우가 많아, 국방, 의료, 제조 등 중요한 작업 및 학습에 생성모델을 활용하기는 어려운 점이 있었다.
최 교수 연구팀은 딥러닝 내부를 해석하는 설명가능 인공지능 기법을 활용해, 생성모델 내부에서 이미지 생성과정에서 문제를 일으키는 유닛(뉴런)을 찾아 제거하는 알고리즘을 고안해 생성모델의 오류를 수리했다. 이러한 생성 오류 수리 기술은 신경망 모델의 재학습을 요구하지 않으며 모델 구조에 대한 의존성이 적어, 다양한 적대적 생성 신경망에 폭넓게 응용 및 적용될 수 있을 것으로 기대된다. 또한, 고안된 기술은 딥러닝 생성모델의 신뢰도를 향상해 생성모델이 중요 작업에도 적용될 수 있을 것으로 기대된다.
AI대학원의 알리 투씨(Ali Tousi), 정해동 연구원이 공동 제1 저자로 참여한 이번 연구는 `국제 컴퓨터 비전 및 패턴인식 학술대회 (IEEE Conference on Computer Vision and Pattern Recognition, CVPR)'에서 6월 23일 발표됐다. (논문명: Automatic Correction of Internal Units in Generative Neural Networks, CVPR 2021).
적대적 생성 신경망은 생성기와 구분기의 적대적 관계를 이용한 모델로서, 생성 이미지의 품질이 높고 다양성이 높아, 이미지 생성뿐만 아니라 다양한 분야(예, 시계열 데이터 생성)에서 주목받고 있다.
딥러닝 생성모델의 성능을 향상하기 위해서 적대적 생성기법 및 생성기의 새로운 구조 설계 혹은 학습 전략의 세분화와 같은 연구가 활발히 진행되고 있다. 그러나 최신 적대적 생성 신경망 모델은 여전히 시각적 결함이 포함된 이미지를 생성하고 있으며, 재학습을 통해서 이를 해결하기에는 오류 수리를 보장할 수 없으며, 많은 학습 시간과 비용을 요구하게 된다. 이렇게 규모가 큰 최신 적대적 생성 신경망 모델의 일부 오류를 해결하기 위해 모델 전체를 재학습하는 것은 적합하지 않다.
연구팀은 문제 해결을 위해 생성 오류를 유도하는 딥러닝 내부의 유닛(뉴런)을 찾아 제거하는 알고리즘을 개발했다. 알고리즘은 딥러닝 모델의 시각적 결함의 위치를 파악하고, 딥러닝 모델 내 여러 계층에 존재하는 오류를 유발한 유닛을 찾아서 활성화하지 못하도록 하여 결함이 발생하지 않도록 했다.
연구팀은 설명가능 인공지능 기술을 활용해 시각적 결함이 생성된 이미지의 어느 부분에 분포하는지, 또 딥러닝 내부의 어떤 유닛이 결함의 생성에 관여하는지 찾을 수 있었다. 개발된 기술은 딥러닝 생성모델의 오류를 수리할 수 있고, 생성모델의 구조에 상관없이 적용할 수 있다.
연구팀은 전통적인 구조를 가지는 `진행형 생성모델(Progressive GAN, PGGAN)'에서 개발 기술이 효과적으로 생성 오류를 수리할 수 있음을 확인했다. 수리 성능은 매사추세츠 공과대학(MIT)이 보유한 수리 기술 대비 FID 점수가 10점 정도 감소했으며, 사용자 평가에서 시험 이미지 그룹의 약 50%가 결함이 제거됐고, 약 90%에서 품질이 개선됐다는 결과를 얻었다. 나아가 특이 구조를 가지는 `StyleGAN2'와 `U-net GAN'에서도 생성 오류 수리가 가능함을 보임으로써 개발 기술의 일반성과 확장 가능성을 보였다.
연구팀이 개발한 생성모델의 오류 제거 기술은 다양한 이미지 외에도 다양한 생성모델에 적용돼 모델의 결과물에 대한 신뢰성을 높일 것으로 기대된다.
공동 제1 저자인 알리 투씨와 정해동 연구원은 "딥러닝 생성모델이 생성한 결과물에 있는 시각적 오류를 찾고, 이에 상응하는 활성화를 보이는 생성모델 내부의 유닛을 순차적으로 제거함으로써 생성 오류를 수리할 수 있음을 보였다ˮ라며 이는 "충분히 학습된 모델 내부에 미학습 혹은 잘못 학습된 내부요소가 있음을 보여주는 결과다ˮ라고 말했다.
한편 이번 연구는 2021년도 과학기술정보통신부의 재원으로 정보통신기획평가원의 지원을 받은 혁신성장동력프로젝트 설명가능인공지능 및 한국과학기술원 인공지능 대학원 프로그램과제를 통해서 수행됐다.
2021.06.25
조회수 19013
-
하이드로젤 기반 유연성 뇌-기계 인터페이스 개발
우리 대학 바이오및뇌공학과 박성준 교수 연구팀이 메사추세츠 공과대학(MIT) 폴리나 아니키바(Polina Anikeeva) 교수, 쏸허 자오(Xuanhe Zhao) 교수, 육현우 박사 공동 연구팀과 함께 *하이드로젤 기반의 유연성 뇌-기계 인터페이스를 개발하는 데 성공했다고 21일 밝혔다.
☞ 하이드로젤: 물과 젤리가 합쳐진 합성어이며 주로 필러, 보톡스, 화장품에 쓰이는 반고체 상태의 물질이다. 인공적인 인체 조직을 만드는 원료로 적합해 의학적으로도 널리 쓰인다.
이번 연구 결과는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)'에 2021년 6월 8일 字로 출판됐다. (논문명: Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity)
뇌 구조를 연구하거나 뇌 신경 질환의 메커니즘을 파악, 치료하기 위해서는, 실시간으로 뇌를 자극하고 신호를 측정할 수 있는 인터페이스의 개발이 필수적이다. 그러나 기존의 신경 인터페이스는 기계적, 화학적 특성이 뇌 조직과 너무 달라서 일어나는 이물 반응(foreign body response) 때문에, 주변에 절연세포층이 형성돼 그 수명이 매우 짧아진다는 문제점을 가지고 있었다.
연구팀은 해당 문제의 해결을 위해, 직접 제작한 다기능성 파이버 다발을 하이드로젤 몸체에 넣는 방법을 이용해 `뇌 모사형 신경 인터페이스'를 제작했다. 해당 장치는 빛으로 특정 신경세포종만을 자극할 수 있는 광유전학 기술을 적용하기 위한 광섬유뿐만 아니라, 뇌에서 신호를 읽을 수 있는 전극 다발, 약물을 뇌 속으로 전달할 수 있는 미세 유체 채널을 모두 보유하고 있다.
해당 인터페이스는 하이드로젤 몸체를 건조시킨 상태에서는 단단한 성질이 고분자와 유사해 몸체에 삽입하기가 쉽다. 하지만 몸에 들어가면 체내의 수분을 빠르게 흡수해. 부드럽고 수분이 풍부한 주변 조직과 유사한 상태가 되므로 이물 반응을 최소화할 수 있다.
연구팀은 이러한 특성을 가진 장치를 동물 모델에 직접 적용해, 기존의 기록을 훨씬 뛰어넘는 삽입 후 6개월까지도 뇌 신호를 측정할 수 있음을 보였다. 또한 자유롭게 움직이는 쥐를 대상으로 초장기간 광유전학 실험, 행동 실험 등이 가능하며, 이물 반응에 의한 아교세포 및 면역세포의 발현이 기존 장치보다 현저히 줄어듦을 증명했다.
박성준 교수는 "이번 연구는 최초로 하이드로젤을 다기능 신경 인터페이스의 구성물질로 사용해 그 수명을 대폭 상승시켰다는 데에 의의가 있으며, 해당 연구를 통해 향후 알츠하이머병, 파킨슨병 등 초장기간 관찰이 필요한 뇌 신경 질환 연구가 더욱 발전할 수 있을 것으로 기대된다ˮ 라고 말했다.
한편 이번 연구는 한국연구재단 신진연구사업, 범부처의료기기개발 사업, 나노소재원천기술개발사업, 차세대 지능형 반도체 개발사업, KK-JRC 스마트 프로젝트, 카이스트 글로벌 이니셔티브 프로그램, 포스트 인공지능(Post-AI) 프로젝트 사업의 지원을 받아 수행됐다.
2021.06.21
조회수 29768
-
동물의 과식을 억제하는 원리 규명
장면 하나, 영국의 전설적인 코미디 그룹인 몬티 파이선(Monthy Phython) 의 '삶의 의미(The meaning of life) (1983)'라는 영화에서는 영화사에 손꼽히는 충격적 장면이 등장한다. 배가 잔뜩 불러 레스토랑에 들어온 크레오소트 씨는 웨이터가 권하는 음식을 끊임없이 먹다가 결국 배가 터져버린다. 이로 인해 배 속에 있던 음식물이 레스토랑 전체로 흩뿌려지는 장면은 관객들에게 하여금 매우 불쾌한 감정을 느끼게 한다.
장면 둘, 오스트레일리아 빅토리아주 멜버른 대학교에서 모기를 연구하는 페란 로즈 박사가 공개한 영상이 화제가 되고 있다. 이 영상에서는 인간의 피를 탐욕스럽게 빨다가 결국 배가 터져버리는 모기의 충격적인 모습을 보여주고 있다. 본격적으로 시작되는 초여름 더위와 함께 찾아온 모기들 때문에 밤잠을 설친 사람이라면 약간의 통쾌함을 느낄 수도 있는 장면일 수도 있겠다.
앞서 제시한 두 가지의 충격적이고 약간은 괴기스러운 장면들은 실제 자연 상태에서는 발생하지 않는다는 공통점을 가지고 있다. 실제 자연 상태의 (인간을 포함한) 동물들에서는 특정 수준 이상으로 음식을 섭취하면 섭식 행동을 억제하는 신경전달체계가 작동해 과식으로 인한 내장 파열은 발생하지 않는다.
인간은 자연적인 상황에서 내장기관이 손상될 정도로 음식을 과도하게 먹지 않으며, 모기의 경우 과도한 섭식 행동을 억제하는 복부 신경중추가 물리적으로 파손됐기 때문에 배가 터지도록 피를 빨았던 것이다. 이렇듯 동물들은 과도한 섭식 행동을 억제하는 다양하고 체계적인 시스템을 가지고 있다. 이러한 과식 억제 신호에 대한 구체적 이해는 인간의 식이장애 및 비만 발생 과정을 이해하는 데 필수적이지만, 이에 관한 연구는 아직 충분히 이루어지지 않은 상태다. 이런 가운데 최근 국내외 연구진의 과식 방지를 위한 새로운 억제 신경망에 대한 연구결과가 밝혀져 화제가 되고 있다.
우리 대학 생명과학과 서성배 교수 연구팀이 뉴욕대학교 (NYU) 오양균 박사 연구팀과 공동연구를 통해 충분한 음식을 섭취한 초파리에서 특이적으로 발견되는 두 개의 독립적인 과식 억제 시스템을 최초로 발견했다고 15일 밝혔다. 뉴욕대학교 (NYU) 오양균 박사가 제1 저자로, KAIST 생명과학과 서성배 교수가 교신저자로 참여한 이번 연구 결과는 국제 신경과학 전문 최고 권위 학술지 `뉴런 (Neuron)'의 5월 19일 字 온라인판에 게재됐다. (논문명: Periphery signals generated by Piezo-mediated stomach stretch and Neuromedin-mediated glucose load regulate the Drosophila brain nutrient sensor)
동물의 뇌 속에는 미각 신경이 생기기 이전부터 있어온 영양분 감지 신경세포들이 존재한다. 서성배 교수가 뉴욕대(NYU) 재직 당시 박사후 연구원 모니카 더스(Monica Dus) 박사와 함께 발표한 2015년 논문에서 초파리가 영양분을 필요로 하는 상황에서 다우레틱 호르몬(Diuretic Hormone 44, DH44) 펩타이드를 특이적으로 분비하는 신경세포(DH44+ 신경세포)가 체내 당분의 농도를 감지함으로써 영양가 있는 음식을 선택하도록 행동 변화를 일으키는 현상을 발견했다. 이전까지 포유동물의 뇌 속에서 영양분을 감지해 자신의 활성을 조절하는 신경세포들은 보고된 적이 있으나, 이들 영양분 감지 신경세포의 생물학적 기능은 위 연구를 통해서 최초로 보고됐다.
DH44 신경세포의 생물학적 기능에 대한 발표를 한 연구팀은 후속 연구를 통해 초파리 체내에 영양분이 많은 상황에서는 DH44 신경세포를 특이적으로 억제하는 상위 조절 신호를 발견했으며 오양균 박사를 중심으로 이들 억제 신호에 관한 본격적인 연구가 시작됐다.
먼저 연구팀은 DH44 신경세포의 생물학적 기능이 단지 초파리의 음식 선택 행동을 조절하는 데 그치지 않고 영양분이 필요한 상황에서 적극적으로 영양적 가치가 있는 탄수화물류에 대한 섭식 행동을 증가시킴을 자동화된 초파리 섭식 행동 측정 장치를 이용해 증명했다. 즉 DH44 신경세포의 활성화는 초파리가 식사량을 증가시키며, 배가 부른 상태에서 특이적으로 활성화되는 억제 신호를 통해 DH44 활성화에 의한 과잉 섭식 행동이 방지되는 것이다.
이어서 연구팀은 DH44 신경세포에 대한 억제 신호가 초파리 뇌 밖의 주변 장기들로부터 전해져 오는 것을 실험으로 확인했다. 연구팀은 구체적으로 어떠한 말단 장기에서 DH44 억제 신호를 보내는지 확인하기 위해 초파리의 뇌와 연결된 다양한 말단 장기들을 하나씩 제거해 나가는 방식으로 억제 신호의 유래를 추적했으며, 그 결과 초파리의 위에 해당하는 내장 부위와(Crop), 척수에 해당하는 복부 신경중추(ventral nerve cord, VNC) 에서 DH44 억제 신호가 발생함을 확인했다.
계속해서 연구팀은 DH44 신경세포가 초파리의 위에 해당하는 내장기관에 신경 가지를 뻗어서 음식물 섭취에 의한 해당 기관의 물리적 팽창 신호를 `피에조(Piezo)' 채널을 통해 인지할 수 있음을 확인했다. 피에조 채널은 특정 세포나 조직에 가해지는 물리적 팽창을 감지할 수 있는 센서로 포유동물의 호흡, 혈압 조절 등에 중요한 역할을 하고 있으며 초파리에게서는 소화기관의 물리적 팽창 감지를 통한 식욕 억제를 유발한다. 이번 연구에서는 피에조 채널이 음식물 섭취에 의한 초파리 위의 물리적 팽창을 감지한 후 DH44 신경세포의 기능을 특이적으로 억제해 추가적인 탄수화물 섭취 행위를 방지함으로써 과도한 물리적 팽창으로부터 내장기관을 보호하는 기능을 가짐을 밝혔다.
또한, 초파리의 척수에 해당하는 복부 신경중추에 있는 `후긴(Hugin)' 신경세포는 채 내에 순환되고 있는 영양분의 농도가 높을 때 이를 감지해 후긴 수용체를 발현하고 있는 DH44 세포들의 신경 활성을 억제한다. 이러한 작용을 통해 이미 체내 에너지가 높은 상태일 때 소화기관에 부담을 줄 수 있는 추가적 섭식 행동을 효과적으로 차단할 수 있음을 실험적으로 확인했다.
위 실험들을 통해 연구팀은 초파리 내장기관에 가해지는 물리적 압력을 인지해 활성화되는 피에조 채널과 체내에 순환되는 영양분이 많을 때 활성화되는 후긴 신경세포들이 각기 다른 물리적, 화학적 신호를 인지해 서로 독립적이면서도 상호보완적으로 DH44 세포 활성화를 통해 야기될 수 있는 과식을 억제함을 확인했다.
서성배 교수는 "이번 연구 결과는 동물의 뇌 속에 존재하는 영양분 감지 신경세포의 섭식 유도기능이 상위 신호전달 체계에 의해서 특이적으로 억제될 수 있음을 보여주는 첫 번째 사례ˮ라며 "과식에 대한 억제는 독립적으로 인지되는 물리, 화학적 척도를 다각적으로 종합해 체계적으로 이뤄져야 할 만큼 동물 생존에 매우 중요함을 다시 한번 보여주는 결과이며 인간의 식이장애 및 비만 예방에 도움이 되기 위한 밑거름이 될 연구 결과ˮ라고 말했다.
즉, 처음에 제시한 두 가지 끔찍한 장면들은 동물에 존재하는 유기적인 과식 억제 시스템으로 인해 자연 상태에서는 일어날 가능성이 희박함을 이번 연구 결과를 통해 다시금 확인할 수 있다.
2021.06.15
조회수 49149
-
3차원 적층형 화합물 반도체 소자 제작 성공
우리 대학 전기및전자공학부 김상현 교수 연구팀이 *모놀리식 3차원 집적의 장점을 극대화해 기존의 통신 소자의 단점을 극복하는 화합물 반도체 소자 집적 기술을 개발했다고 14일 밝혔다.
☞ 모놀리식 3차원 집적: 하부 소자 공정 후, 상부의 박막층을 형성하고 상부 소자 공정을 순차적으로 진행함으로써 상하부 소자 간의 정렬도를 극대화할 수 있는 기술로 궁극적 3차원 집적 기술로 불린다.
우리 대학 전기및전자공학부 정재용 박사과정이 제1 저자로 주도하고 한국나노기술원 김종민 박사, 광주과학기술원 장재형 교수 연구팀과의 협업으로 진행한 이번 연구는 반도체 올림픽이라 불리는 ‘VLSI 기술 심포지엄(Symposium on VLSI Technology)’에서 발표됐다. (논문명 : High-performance InGaAs-On-Insulator HEMTs on Si CMOS for Substrate Coupling Noise-free Monolithic 3D Mixed-Signal IC).
VLSI 기술 심포지엄은 국제전자소자학회(International Electron Device Meetings, IEDM)와 더불어 대학 논문의 채택비율이 25%가 되지 않는 저명한 반도체 소자 분야 최고 권위 학회다.
반도체 소자는 4차 산업 혁명의 특징인 초연결성 구현을 위한 핵심 통신 소재 및 부품으로서 주목받고 있다.
특히 통신 신호, 양자 신호는 아날로그 형태의 신호이고 신호전달 과정에서 신호의 크기가 약해지거나 잡음이 생겨 신호의 왜곡이 생기기도 한다. 따라서 이러한 신호를 주고받을 때 고속으로 신호의 증폭이 필요한데 이러한 증폭 소자에서는 초고속, 고출력, 저전력, 저잡음 등의 특성이 매우 중요하다. 또한 통신 기술이 발전함에 따라 이를 구성하는 시스템은 점점 더 복잡해져 고집적 소자 제작기술이 매우 중요하다.
통신 소자는 통상적으로 두 가지 방식으로 구현된다. 실리콘(Si)을 사용해 집적도 높은 Si CMOS를 이용해 증폭 소자를 구현하는 방법과 *III-V 화합물 반도체를 증폭 소자로 제작하고 기타 소자들을 Si CMOS로 제작해 패키징 하는 방식이 있다. 그러나 각각의 방식은 단점이 존재한다. 기존의 실리콘(Si) 기술은 물성적 한계로 인해 차단주파수 특성 등 통신 소자에 중요한 소자 성능 향상이 어려우며 기판 커플링 잡음 등 복잡한 신호 간섭에 의한 잡음 증가 문제가 존재한다. 반면, III-V 화합물 반도체 기술은 소자 자체의 잡음 특성은 우수하지만 다른 부품과의 집적/패키징 공정이 복잡하고 이러한 패키징 공정으로 인해 신호의 손실이 발생하는 문제가 존재한다.
☞ III-V 화합물 반도체: 주기율표 III족 원소와 V족 원소가 화합물을 이루고 있는 반도체로 전하 수송 특성 및 광 특성이 매우 우수한 소재
연구팀은 이러한 문제 해결을 위해 증폭 소자 이외의 소자 및 디지털 회로에서 좋은 성능을 낼 수 있는 Si CMOS 기판 위에 아날로그 신호 증폭 성능이 매우 우수한 III-V 화합물 반도체 *HEMT를 3차원 집적해 Si CMOS와 III-V HEMT의 장점을 극대화하는 공정 및 소자 구조를 제시했다. 3층으로 소자를 쌓아나감으로써 같은 기판 위에 집적할 수 있는 방식이다. 이와 동시에 기판 신호 간섭에 의한 잡음을 제거할 수 있음을 증명했다.
☞ HEMT: High-Electron Mobility Transistor
연구팀은 하부 Si CMOS의 성능 저하 방지를 위해 300oC 이하에서 상부 III-V 소자를 집적하는 웨이퍼 본딩 등의 초저온 공정을 활용해 상부 소자 집적 후에도 하부 Si CMOS의 성능을 그대로 유지할 수 있었다.
또한 고성능 상부 III-V 소자 제작을 위해서 InGaAs/InAs/InGaAs의 양자우물 구조를 도입해 높은 전자 수송 특성을 실현했으며 100 나노미터(nm) 노드 공정 수준으로도 세계 최고 수준의 차단 주파수 특성을 달성했다. 이는 10 나노미터(nm) 이하 급의 최첨단 공정을 사용하지 않고도 그 이상의 우수한 성능을 낼 수 있는 융합 기술로 향후 기존과 다른 형태의 파운드리 비즈니스 방식의 도입 가능성을 증명했다고 할 수 있다.
더불어 연구진은 이러한 3차원 집적 형태로 소자를 제작함으로써 기존에 SI CMOS에서 존재하는 기판 간섭에 의한 잡음을 해결할 수 있음을 실험을 통해 최초로 증명했다.
김상현 교수는 “디지털 회로 및 다양한 수동소자 제작에 최적화된 Si CMOS 기판 위에 증폭기 등의 능동소자 특성이 현존하는 어떤 물질보다 우수한 III-V 화합물 반도체 소자를 동시 집적할 가능성을 최초로 입증한 연구로, 향후 통신 소자 등에 응용이 가능할 것으로 생각한다”라며 “이번 기술은 향후 양자 큐빗의 해독 회로에도 응용할 수 있어 그 확장성이 매우 큰 기술이다. 다양한 분야에서 활용할 수 있도록 후속 연구에 힘쓰겠다”라고 말했다.
한편 이번 연구는 한국연구재단 지능형반도체기술개발사업, 경기도 시스템반도체 국산화 연구지원 사업 등의 지원을 받아 수행됐다.
2021.06.14
조회수 52151