-
이흥규 교수, 수지상세포 자식작용의 역할 규명
〈 이흥규 교수 〉
세포 항상성을 유지해주는 ‘자식작용’의 또 다른 기능이 보고됐다. 우리 대학 의과학대학원 이흥규 교수 연구팀이 T세포의 항암 활성이 유도되는 과정에서 수지상세포 자식작용이 기여함을 규명했다.
이번 연구결과는 국제학술지 ‘오토파지(Autophagy)’ 3월 22일 자에 게재됐다.
자식작용은 세포 내 노폐물 및 손상된 세포 소기관을 제거해 세포의 항상성을 유지하는 과정이다.
수지상세포는 병원균이나 암 항원을 인지해 T세포의 면역반응을 유도하는 세포이다. 방사선이나 항암제에 의해 암세포가 사멸하면 수지상세포가 이를 흡수‧제거하고, 자신의 표면에 항원을 제시해 T세포에 전달해주는 기능을 한다.
연구팀은 수지상세포의 자식작용이 T세포 활성화에서 핵심 역할을 한다는 것을 밝히고 항암 효과를 높일 수 있는 원리를 제시했다.
실험결과 자식작용을 일으키는 Atg5 유전자가 결손될 때 수지상세포의 T세포 활성화 기능이 떨어지고 항암 면역반응이 감소했다.
Atg5가 결손되면 수지상세포 표면의 CD36 수용체가 월등히 증가하는데, 이로 인해 식세포작용(암 항원의 흡수)만 과활성되고 항원 제시를 통한 T세포 활성화가 정상적으로 이뤄지지 않는다.
이때 항체를 도입해 CD36 수용체를 다시 억제하면 T세포 면역반응이 많이 증가하고 암의 성장이 억제됐다.
이흥규 교수는 “이번 연구를 통해 자식작용이 T세포의 항암 면역반응에 관여하는 기능을 새롭게 규명했다”라 “향후 CD36 수용체를 활용한 표적 항암치료제 개발의 단초가 되길 기대한다”라고 밝혔다.
이 연구성과는 과학기술정보통신부·한국연구재단 바이오‧의료기술개발사업의 지원으로 수행됐다.
□ 그림 설명
그림1. 수지상세포 자식작용의 기전
그림2. 항원제시에서 수지상세포 자식작용의 기능
2019.04.02
조회수 13840
-
김필한 교수, 패혈증 환자의 폐 손상 원인 밝혀
〈 김필한 교수 〉
우리 대학 의과학대학원/나노과학기술대학원 김필한 교수 연구팀이 3차원 생체현미경 기술을 통해 패혈증 폐에서 모세혈관과 혈액 내 순환 세포를 고해상도 촬영하는 데 성공했다.
연구팀은 패혈증 폐의 모세혈관 내부에서 백혈구의 일종인 호중구(好中球, neutrophil)들이 서로 응집하며 혈액 미세순환의 저해를 유발하고, 나아가 피가 통하지 않는 사강(死腔, dead space)을 형성함을 규명했다.
연구팀은 이 현상이 패혈증 모델의 폐손상으로 이어지는 조직 저산소증 유발의 원인이 되며, 호중구 응집을 해소하면 미세순환이 개선되며 저산소증도 함께 호전됨을 증명했다.
박인원 박사(현 분당서울대학교병원 응급의학과)가 주도한 이번 연구결과는 의학 분야 국제 학술지 ‘유럽호흡기학회지(European Respiratory Journal)’에 3월 28일 자에 게재됐다.
폐는 호흡을 통해 생명 유지의 필수 작용인 산소와 이산화탄소 간 가스 교환을 하는 기관으로 이는 적혈구들이 순환하는 수많은 모세혈관으로 둘러싸인 폐포(肺胞)에서 이뤄진다.
폐포의 미세순환 관찰을 위해 연구자들이 지속적인 노력을 하고 있으나 호흡을 위해 항상 움직이는 폐 안의 모세혈관과 적혈구의 미세순환을 고해상도로 촬영하는 것은 매우 어려웠다.
연구팀은 자체 개발한 초고속 레이저 스캐닝 공초점 현미경과 폐의 호흡 상태를 보존하면서 움직임을 최소화할 수 있는 영상 챔버를 새롭게 제작했다. 이를 통해 패혈증 동물모델의 폐에서 모세혈관 내부의 적혈구 순환 촬영에 성공했다.
이 과정에서 패혈증 모델의 폐에서 적혈구들이 순환하지 않는 공간인 사강이 증가하며 이곳에서 저산소증이 유발되는 것을 발견했다. 이는 혈액 내부의 호중구들이 모세혈관과 세동맥 내부에서 서로 응집하며 갇히는 현상으로 인해 발생함을 밝혔다. 갇힌 호중구들은 미세순환 저해, 활성산소의 다량 생산 등 패혈증 모델의 폐 조직 손상을 유발하는 것도 확인했다.
연구팀은 추가 연구를 통해 폐혈관 내부의 응집한 호중구가 전신을 순환하는 호중구에 비해 세포 간 부착에 관여하는 Mac-1 수용체(CD11b/CD18)가 높게 발현함을 증명했다. 이어 Mac-1 저해제를 패혈증 모델에 사용하여 호중구 응집으로 저해된 미세순환을 개선하고 저산소증의 호전과 폐부종 감소를 증명했다.
연구팀이 독자 개발한 최첨단 고해상도 3차원 생체현미경 기술은 살아있는 폐 안 세포들의 실시간 영상촬영이 가능해 패혈증을 포함한 여러 폐 질환의 연구에 다양하게 활용될 것으로 기대된다.
연구팀의 폐 미세순환 영상촬영 및 정밀 분석 기법은 향후 미세순환과 연관된 다양한 질환들의 연구뿐 아니라 새로운 진단기술 개발 및 치료제의 평가를 위한 원천기술로 활용될 것으로 보인다.
김 교수 연구팀의 3차원 생체현미경 기술은 KAIST 교원창업기업인 아이빔테크놀로지(IVIM Technology, Inc)를 통해 상용화돼 올인원 생체현미경 모델 ‘IVM-CM’과 ‘IVM-C’로 출시됐으며 여러 인간 질환의 복잡한 발생 과정을 밝히기 위한 기초 의․생명 연구의 차세대 첨단 영상장비로서 미래 글로벌 바이오헬스 시장에 핵심 장비로 활용될 예정이다.
김 교수는 “패혈증으로 인한 급성 폐손상 모델에서 폐 미세순환의 저해가 호중구로 인하여 발생하며, 이를 제어하면 미세순환 개선을 통해 저산소증 및 폐부종을 해소할 수 있어 패혈증 환자를 치료하는 새로운 전략이 될 수 있음을 새롭게 밝혀냈다.”고 말했다.
이번 연구는 의과학대학원 졸업생 박인원 박사가 1저자로 참여했고 유한재단 보건장학회, 교육부 글로벌박사펠로우쉽사업, 과학기술정보통신부의 글로벌프론티어사업과 이공분야기초연구사업, 그리고 보건복지부의 질환극복기술개발사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 초고속 레이저주사 3차원 생체현미경 시스템
그림2. 생체 내 폐 이미징 기술 개념도 및 사진
2019.04.01
조회수 17655
-
박용근 교수, 안경 없이 3차원 홀로그래픽 디스플레이 재생기술 개발
〈 박용근 교수 〉
우리 대학 물리학과 박용근 교수 연구팀이 안경 없이도 3차원 홀로그래픽 디스플레이를 재생할 수 있는 기술을 개발했다. 특히, 연구팀의 기술은 초박형 구조로 기존 디스플레이 생산 공정과 호환 가능하며, 대면적 광시야각을 확보해 3차원 디스플레이 기술을 한 단계 진보시켰다.
박종찬 박사(前 KAIST 물리학과 연구원, 現 미국 일리노이 대학교 연구원)가 1저자로 참여한 이번 연구는 국제학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 3월 21일 자 온라인판에 게재됐다.
특별한 안경 없이 실감 나는 3차원 영상을 재생할 수 있는 홀로그래픽 디스플레이는 오랫동안 꿈의 기술로 여겨져 왔다. 그러나 현재 기술로는 구현할 수 있는 3차원 영상은 크기가 매우 작고 시야각 또한 크게 제한돼 현실적으로 구현이 어렵다.
3차원 홀로그램을 만들기 위해서는 빛의 세기와 빛이 진행하는 방향 모두 정밀하게 변조해야 한다. 빛 진행 방향의 정밀한 변조는 공간광파면 조절기에 의해 이뤄진다.
이때 빛이 진행하는 방향을 넓은 각도에서 정밀하게 제어하기 위해서는 공간광파면 조절기가 많은 픽셀로 이뤄져야 한다. 하지만 현재의 공간광파면 조절기의 픽셀 개수는 실감 나는 3차원 영상을 만들기에 턱없이 부족하다. 즉 빛을 매우 한정된 각도 내에서만 변조할 수 있는 것이다.
이런 조건에서 현재의 기술로 만들 수 있는 3차원 영상은 크기는 약 1센티미터(cm), 시청 가능한 시야각은 약 3도 이내로 제한돼 사실상 실용화가 불가능하다.
오랫동안 과학자들은 실용적인 홀로그램을 만들기 위해 여러 개의 공간광파면 조절기를 합쳐서 이용하거나, 사람이 인식할 수 있는 속도보다 훨씬 빠른 속도로 다량의 홀로그램 이미지들을 조합해 3차원 이미지를 만들었다. 하지만 이러한 방식은 복잡한 시스템을 뒷받침할 수 있는 연구실 환경에서만 구현됐다.
연구팀은 복잡한 광학계를 구성하는 대신 LCD패널과 비주기적으로 설계된 박막을 추가함으로써 기존 방식에 비해 성능이 크게 향상된 3차원 영상을 개발했다. 박막은 비주기적으로 배열된 수많은 구멍(핀홀)으로 구성되는데 핀홀은 빛을 넓은 각도로 퍼뜨리기 때문에 형성된 3차원 영상을 넓은 각도에서 볼 수 있다.
연구팀은 이론에 따라 설계된 박막을 기존 디스플레이의 LCD패널에 부착했고, 실험을 통해 약 3cm×3cm의 화면에서 약 30도의 시야각을 가지는 3차원 홀로그램 영상을 구현하는 데 성공했다.
이는 기존의 Full HD 홀로그래픽 디스플레이로 표현할 수 있는 공간대역폭 보다 약 400배 이상 향상된 결과이다. 또한 3가지 색(적색, 녹색, 청색)을 나타내며 60Hz로 작동하는 동적 홀로그램 역시 구현했다.
박용근 교수 연구팀이 지난 2016년 Nature Photonics지에 보고했던 기술은 산란을 이용해 홀로그래픽 디스플레이 품질을 향상시켰지만, 복잡한 계산과 큰 부피의 장비가 필요했었다. 이후 지속적인 기술 개발을 통해 본 연구에서는 일반 LCD 패널에 비주기적인 박막만 추가하면 제작할 수 있기 때문에, 기존 제조공정에 한 단계를 추가함으로써 상용화에 적합한 기술로 기대된다.
1 저자인 박종찬 박사는 “홀로그래픽 디스플레이의 상용화를 위해서는 넓은 시야각과 큰 영상 크기뿐 아니라 소형 폼팩터를 유지해야 한다. 이번 연구에서는 평면형 디스플레이에서 대면적 광시야각 홀로그래픽 디스플레이를 구현했다”라며 “스마트폰이나 태블릿 등 휴대용 기기에서 홀로그래픽 디스플레이를 구현하는 기반기술이 될 것으로 기대한다”라고 말했다.
□ 그림 설명
그림1. 실제 구현된 3차원 홀로그래픽 디스플레이와 전자현미경 이미지
그림2. 60 Hz로 동작하는 3차원 동적 컬러 홀로그램
2019.03.25
조회수 11773
-
최경철 교수, 자가발전으로 에너지 절약 및 세탁 가능한 입는 디스플레이 개발
〈 (오른쪽 위부터 시계방향으로) 정은교 연구원, 최경철 교수, 전남대 조석호 교수, 전용민 연구원 〉
우리 대학 전기및전자공학부 최경철 교수와 전남대학교 의류학과 조석호 교수 연구팀이 외부 전원 없이 자가발전 되고 세탁이 가능한 디스플레이 모듈 기술을 개발했다.
이번 연구는 기존 플라스틱 기판 웨어러블 전자소자가 아닌 옷감을 직접 기판으로 사용하는 전자소자의 상용화를 앞당길 수 있다는 점, 일상생활에 입는 전자소자가 외부 전원 없이 자가 발전해 에너지를 절약할 수 있다는 점에서 큰 의미가 있다.
정은교 박사과정과 전용민 연구원이 주도한 이번 연구는 국제 학술지 ‘에너지&인바이런멘탈 사이언스(Energy and Environmental Science, IF : 30.067)’ 1월 18일 자 온라인판에 게재됐고, 우수성을 인정받아 뒤표지 논문으로 선정됐다.
기존의 섬유형 웨어러블 디스플레이는 주로 디스플레이의 소자 구현에 초점을 맞춰 연구가 이뤄졌다. 이로 인해 소자를 구동하기 위한 별도의 외부 전원이 필요할 뿐 아니라 내구성 또한 부족한 특성을 가져 웨어러블 디스플레이로 응용하기에는 한계가 있다.
고분자 태양전지와 유기 발광 디스플레이 소자는 수분, 산소 등 외부 요인에 매우 취약해 소자를 보호하기 위한 봉지막이 필요하다. 그러나 기존에 개발된 봉지막 기술은 상온에서는 역할을 충분히 수행하지만, 습기가 많은 환경에서는 그 특성을 잃게 된다. 따라서 비 오는 날이나 세탁 이후에도 동작할 수 있어야 하는 착용형 디스플레이에서는 사용이 제한된다.
연구팀은 문제해결을 위해 외부 전원 없이도 안정적으로 전력을 공급할 수 있는 고분자 태양전지(PSC)와 수 밀리와트(milliwatt)로도 동작할 수 있는 유기발광다이오드(OLED)를 옷감 위에 직접 형성하고 그 위에 세탁이 가능한 봉지기술을 적용했다. 이를 통해 전기를 절약하면서도 실제 입을 수 있는 디스플레이 모듈 기술을 개발했다.
연구팀은 원자층 증착법(ALD)과 스핀코팅(spin coating)을 통해 세탁 후에도 특성 변화 없이 소자를 보호할 수 있는 봉지막 기술을 자가발전이 가능한 입는 디스플레이 모듈에 적용했다. 이 봉지막 기술을 통해 세탁 이후나 3mm의 낮은 곡률반경에서도 웨어러블 전자소자들의 성능이 유지되는 것을 증명했다.
연구팀은 일주일마다 세탁 및 기계적인 스트레스를 주입한 뒤 결과를 관찰한 결과 30일 이후 PSC는 초기 대비 98%, OLED는 94%의 특성을 유지함을 확인했다.
최경철 교수는 “기존의 플라스틱 기판 기반의 웨어러블 전자소자 및 디스플레이 연구와 달리 일상생활에 입는 옷감을 기판으로 활용해 세탁이 가능하고 외부 전원 없이 고분자 태양전지로 디스플레이를 구동하는 전자소자 모듈을 구현했다”라며 “태양에너지를 이용해 자가 구동 및 세탁이 가능한, 전기 충전이 필요 없는 진정한 의미의 입을 수 있는 디스플레이 기술 시대를 열었다”라고 말했다.
이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 선도연구센터지원사업과 교육부 BK21 지원사업으로 수행됐으며, 이번 연구 성과로 1 저자인 정은교 연구원은 BK21 우수인력으로 사회부총리 겸 교육부장관 표창을 받는다.
□ 그림 설명
그림1. 표지논문 이미지
그림2. 세탁 가능한 입는 디스플레이 모듈 모식도 및 구동 사진
2019.03.21
조회수 18485
-
이도창, 김신현 교수, 반도체 나노막대로 초박막 편광필름 개발
우리 대학 생명화학공학과 이도창, 김신현 교수 연구팀이 반도체 나노막대가 일렬로 배열된 수 나노미터 두께의 편광필름을 개발했다.
이 교수 연구팀은 나노막대입자의 상호작용력을 미세하게 조절해 나노막대들이 스스로 공기-용액 계면에서 일렬종대로 조립되게 설계했다. 이러한 자기조립기술은 전기장이나 패터닝된 기판 등 외부의 도움이 필요하지 않기 때문에 다양한 분야에 폭넓게 응용 및 적용될 수 있을 것으로 기대된다.
김다흰 연구원이 1 저자로 참여한 이번 연구는 국제 학술지 ‘나노 레터스(Nano letters)’ 2월 19권 2호에 출판됐다. (논문명 : Depletion-mediated interfacial assembly of semiconductor nanorods).
반도체 나노막대는 막대의 긴 방향을 따라 편광 빛을 내는 독특한 광학 특성이 있어 디스플레이 분야에서 막대한 빛 손실을 가져왔던 기존 편광판을 대체할 수 있는 전도유망한 나노소재로 주목받고 있다.
단일 나노막대의 편광 특성을 소자 면적의 필름에서 구현하기 위해서는 구성하는 모든 나노막대가 한 방향으로 정렬된 뗏목 형태인 스멕틱(smectic) 자기조립 구조가 필요하다.
그러나 수십 나노미터의 길이와 수 나노미터 두께의 나노막대를 대면적에서 정렬하기 위해서는 전기장을 유도하는 전극 기판 혹은 한정된 공간에서 입자를 조립할 수 있는 패터닝된 기판을 필요로 해 실제 소자에 적용하기에는 한계가 있다.
이렇게 조립된 나노막대 필름은 두께가 불균일하고 두꺼워 균일한 초박막 층을 사용해야 하는 필름 소자에는 적합하지 않았다.
연구팀은 문제 해결을 위해 공기-용액 계면과 나노막대 간의 인력, 나노막대와 나노막대 간의 인력을 순차적으로 유도해 단일층 두께의 나노막대 스멕틱 필름을 제작했다.
연구팀의 고배향 필름 제작 기술은 기판으로 사용된 공기-용액 계면을 용액 증발과 함께 제거할 수 있고 조립 면적에 제한이 없어 소자 종류에 상관없이 적용할 수 있다.
연구팀은 길이 30나노미터, 지름 5나노미터의 나노막대들이 수십 마이크로 제곱 면적에 걸쳐 88%의 정렬도로 초박막 필름을 형성함을 확인했다.
나아가 계면과 나노막대, 나노막대와 나노막대 간 상호작용력을 정량적으로 계산 및 비교함으로써 나노막대가 계면에서 조립되는 원리를 밝혔고, 계면에서 얻을 수 있는 다양한 형태의 자기조립구조를 증명했다.
연구팀이 개발한 반도체 나노막대의 스멕틱 필름은 편광 발광층으로 디스플레이 분야에 활발히 적용돼 소자 두께의 최소화, 비용 절감, 성능 강화 등에 이바지할 수 있을 것으로 기대된다.
1 저자인 김다흰 연구원은 “입자의 상호작용력 조절을 통해 단일층 두께에서 나노막대 스스로가 방향성을 통제하며 고배열로 정렬할 수 있다는 것을 보였다. 이는 외부 힘 없이도 더욱 정교한 자기조립구조가 가능하다는 것을 보여주는 결과이다”라며 “고배열, 고배향을 갖는 다양한 나노입자의 초박막 필름 제작 및 필름 소자에 활발히 사용될 것이다”라고 말했다.
이번 연구는 한국연구재단 나노․소재원천기술개발사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 공기-용액 계면에서 나노막대의 자기조립 과정을 보여주는 모식도
그림2. 나노막대 표면을 감싸고 있는 리간드 층 밀도에 따른 자기조립구조 모식도와 전자현미경 이미지
2019.03.20
조회수 12173
-
조용훈, 최형순 교수, 반도체 내 양자 소용돌이 제어 기술 개발
우리 대학 물리학과 조용훈, 최형순 교수 공동 연구팀이 반도체 공진기 구조에서 ‘엑시톤-폴라리톤 응축’이라는 양자물질 상태를 형성 후 새 광학적인 방식으로 양자 소용돌이를 생성하고 제어하는 데 성공했다.
권민식 연구원과 오병용 박사가 공동 1저자로 참여한 이번 연구 결과는 미국 물리학회가 발행하는 물리학 권위지인‘피지컬 리뷰 레터스 (Physical Review Letters)’ 2월호에 게재됐다.
태풍이 일거나 싱크대에서 물이 빠질 때 유체가 소용돌이를 일으키며 회전하는 것은 우리에게 익숙한 현상이다.
이와 마찬가지로 초유체, 초전도체 같은 양자 유체도 소용돌이를 일으키며 회전할 수 있는데, 이는 파동 함수의 위상(phase)이 소용돌이를 중심으로 원주율의 특정 배수가 되는 조건에서만 가능하다. 이렇게 소용돌이가 불연속적으로 양자화되는 현상을 양자 소용돌이라고 한다.
양자 소용돌이는 양자 유체역학을 연구하는 데 가장 핵심적인 요소 중 하나이다. 초유체의 에너지 손실 없이 회전할 수 있는 특성과 소용돌이의 회전 방향을 쉽게 뒤집을 수 없는 위상학(topology)적 안정성이 결합돼 있어 양자 소용돌이를 쉽게 생성하고 제어할 수 있다면 미래형 정보 소자로도 활용할 수 있다.
이런 면에서 반도체 내부에 존재하는 양자 유체인 엑시톤-플라리톤(이하 폴라리톤)은 특히 유리하다. 반도체에 밴드갭(전도체의 가장 아랫부분의 에너지 준위와 가전자대의 가장 윗부분의 에너지 준위 간의 에너지 차이)보다 높은 에너지를 갖는 빛을 쬐면 전자-전공 쌍이 형성되고 서로 강하게 이끌리며 엑시톤을 형성한다.
이러한 반도체에 높은 반사율을 갖는 거울 구조의 공진기를 결합하면 빛(광자)과 물질(엑시톤)이 강하게 상호작용하며 빛, 물질의 성질을 동시에 갖는 제3의 양자 물질을 만들 수 있는데 이를 폴라리톤이라 한다.
폴라리톤이 일정 밀도 이상 모이면 마치 하나의 입자처럼 행동하는 폴라리톤 응축 상태를 띌 수 있는데 이 때 폴라리톤은 초유체의 특성도 갖게 된다. 다른 초유체와 달리 잘 정립된 반도체 공정 기술과 광학적 제어 기술이 결합돼 있고, 초유체 생성 온도가 상대적으로 높아 그 응용 가능성이 기대되는 물질이다.
연구팀은 광-펌핑(원자나 이온이 빛을 흡수해 낮은 에너지의 상태에서 높은 에너지의 상태로 변화하는 현상)을 위해 사용한 레이저의 궤도 각운동량을 제어해 반도체 물질 내에 양자 소용돌이의 방향과 개수를 손쉽게 조절할 방법을 개발했다.
연구팀은 공진 파장이 아닌 빛으로 기존 양자 소용돌이 생성을 위한 까다로운 실험조건을 극복했다. 이 결과는 고체 상태에서 광학적 방법을 이용한 미래형 정보 소자와 복잡한 양자 현상을 이해할 수 있는 양자 시뮬레이터로의 활용 가능성을 높였다는 측면에서 큰 의의가 있다.
비공진 레이저의 궤도 각운동량이 폴라리톤의 기저 상태에까지 영향을 끼친다는 것을 밝힌 이번 연구 결과는 반도체 공진기 시스템에서 전자-정공 쌍의 에너지 완화 과정을 이해하는 데에 있어서도 중요한 결과이다.
KIST 송진동 박사 연구팀과의 협력으로 진행된 이번 연구는 한국연구재단의 중견연구자 및 신진연구자 지원사업을 받아 수행됐다.
□ 그림 설명
그림1. 엑시톤-폴라리톤 초유체와 양자소용돌이 상태의 생성
그림2. 양자소용돌이 제어
2019.03.11
조회수 14279
-
정우철, 김상욱 교수, 수소 연료전지 성능 높일 수 있는 나노촉매기술 개발
〈 정우철, 김현유(충남대), 김상욱 교수 연구팀 〉
우리 대학 신소재공학과 정우철, 김상욱 교수와 충남대학교 김현유 교수 공동 연구팀이 금속 나노 소재를 이용해 수소에너지 기술의 핵심인 연료전지의 성능을 대폭 높일 수 있는 새 나노촉매기술을 개발했다.
이 기술을 통해 연료전지 외에도 물 분해 수소생산 등 다양한 환경친화적 에너지기술에 폭넓게 적용할 수 있을 것으로 기대된다.
최윤석, 차승근 박사, 그리고 충남대 하현우 박사과정 학생이 1 저자로 참여한 이번 연구는 국제 학술지 ‘네이처 나노테크놀로지 (Nature Nanotechnology)’ 2월 18일 자 온라인판에 게재됐고, 3월호 표지로 선정됐다. (논문명: Unravelling inherent electrocatalysis of mixed-conducting oxide activated by metal nanoparticle for fuel cell electrodes).
10나노미터 이하 크기의 금속 나노입자는 극도로 적은 양으로 높은 촉매 활성을 보일 수 있다는 가능성 때문에 최근 에너지 및 환경기술 분야에서 큰 관심을 받고 있다.
그러나 이러한 신소재들은 가격이 매우 비싸고 높은 온도에서 입자들끼리 뭉치면서 촉매 활성이 저하되는 고질적인 문제점이 남아 있었다. 600도 이상의 높은 온도를 활용해 초고효율 발전 방식으로 주목받는 고체산화물 연료전지도 활용성 측면은 회의적인 시각이 존재했다. 또한 각 금속 입자의 촉매 효율 향상 수치에 대한 정확한 연구결과가 없어 해당 분야 발전에 한계가 있었다.
연구팀은 문제 해결을 위해 세계적으로 인정받는 블록공중합체 자기조립을 이용한 금속 나노패턴기술을 통해 산화물 연료전지 전극 표면에 10나노미터 크기의 균일한 금속 나노입자들을 균일하게 합성하는 데 성공했고, 이를 통해 하나의 입자가 갖는 촉매 특성을 고온에서 정확히 분석해 연료전지의 성능을 극대화하는 기술을 개발했다.
연구팀은 대표적 귀금속 촉매인 백금의 경우 300나노그램(약 0.015원 가치)의 적은 양으로도 연료전지의 성능을 21배까지 높일 수 있음을 확인했다.
나아가 백금 외에 많이 활용되는 촉매인 팔라듐, 금, 코발트 등의 금속 촉매 특성을 정량적으로 파악 및 비교했고 이론적 규명을 통해 촉매 성능이 향상되는 정확한 원리를 밝혔다.
정우철 교수는 “단순히 값비싼 촉매의 양을 늘리는 비효율적인 방법을 사용하던 기존 틀을 깨고 매우 적은 양의 나노입자를 이용해 고성능 연료전지를 개발할 수 있다는 명확한 아이디어를 제시한 의미 있는 결과이다”고 말했다.
또한 “해당 기술은 금속촉매가 사용되는 다양한 산업 분야에 적용할 수 있는 높은 유연성을 가지고 있어 추후 연료전지, 물 분해 수소생산 장치 등 친환경 에너지기술 상용화에 크게 기여할 것으로 기대한다”라고 말했다.
이번 연구는 한국연구재단 나노소재원천기술사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 금속나노입자의 고온 전기화학적 촉매 특성 정밀 평가를 위한 전극 구조의 모식도
그림2. 10 nm 크기의 여러 금속나노입자 (백금, 팔라듐, 코발트, 금)의 고온 전기화학적 촉매 특성 정밀 비교 평가 결과
2019.02.25
조회수 15027
-
김용훈 교수, 페로브스카이트 나노선 기반 소자 구현방안 제시
〈 이주호 박사과정, 무하메드 칸 박사후 연구원, 김용훈 교수 〉
우리 대학 전기및전자공학부 김용훈 교수 연구팀이 저차원 페로브스카이트 나노소재의 새 물성을 밝히고 이를 이용한 새로운 비선형 소자 구현 방법을 제시했다.
연구팀은 최근 태양전지, 발광다이오드(LED) 등 광소자 응용의 핵심 요소로 주목받는 페로브스카이트 나노소재가 차세대 전자 소자 구현에도 유망함을 증명했다. 또한 초절전, 다진법 전자 소자 구현에 필요한 부성 미분 저항 소자를 구현하는 새로운 이론적 청사진을 제시했다.
무하메드 칸(Muhammad Ejaz Khan) 박사후연구원과 이주호 박사과정이 공동 1저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)’ 1월 7일자 온라인판에 게재됐고, 표지논문으로 선정돼 출간될 예정이다.(논문명 : Semimetallicity and negative differential resistance from hybrid halide perovskite nanowires, 하이브리드 할로겐화 페로브스카이트 나노선에서의 준금속성과 부성미분저항 발현)
유무기 하이브리드 할로겐화 페로브스카이트 물질은 우수한 광학적 성능뿐만 아니라 저비용의 간편한 공정으로 제작할 수 있어 최근 태양전지 및 LED 등 다양한 광소자 응용 분야에서 주목받고 있다. 그러나 할로겐화 페로브스카이트의 전자 소자 응용에 관한 연구는 세계적으로도 아직 부족한 상황이다.
김 교수 연구팀은 최근 새롭게 제조 기술이 개발되고 양자효과가 극대화되는 특성을 가진 저차원 유무기 할로겐화 페로브스카이트 물질에 주목했다.
연구팀은 슈퍼컴퓨터를 활용해 우선 1차원 페로브스카이트 나노선의 유기물을 벗겨내면 기존에 보고되지 않은 준 금속성 특성을 발현할 수 있다는 것을 발견했다.
이 1차원 무기 틀을 전극으로 활용해 단일 페로브스카이트 나노선 기반의 터널링 접합 소자를 제작하면 매우 우수한 비선형 부성미분저항(negative differential resistance, NDR) 소자를 구현할 수 있음을 확인했다.
부성미분저항은 일반적인 특성과는 반대로 특정 구간에서 전압이 증가할 때 전류는 오히려 감소해 전류-전압 특성 곡성이 마치 알파벳 ‘N’모양처럼 비선형적으로 나타나는 현상을 말한다. 차세대 소자 개발의 원천기술 이 되는 매우 중요한 특성이다.
연구팀은 나아가 이 부성미분저항 특성은 기존에 보고된 바 없는 양자 역학적 혼성화(quantum-mechanical hybridization)에 기반을 둔 새로운 부성미분저항 원리에 기반함을 밝혀냈다.
연구팀은 저차원 할로겐화 페로브스카이트의 새로운 구조적, 전기적 특성을 규명했을 뿐 아니라 페로브스카이트 기반의 터널링 소자를 이용하면 획기적으로 향상된 부성미분저항 소자 특성을 유도할 수 있음을 증명했다.
김 교수는 “양자역학에 기반한 전산모사가 첨단 나노소재 및 나노소자의 개발을 선도할 수 있음을 보여준 연구이다”라며 “특히 1973년 일본의 에사키(Esaki) 박사의 노벨상 수상 주제였던 양자역학적 터널링 소자 개발의 새로운 방향을 제시한 연구이다”라고 말했다.
이번 연구는 미래창조과학부 중견연구자지원사업, 나노소재원천기술개발사업, 기초연구실지원사업, 글로벌프론티어사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 어드밴스드 펑셔널 머티리얼즈 표지
그림2. 연구개요
2019.02.21
조회수 18724
-
이현주 교수, 국건 박사과정, 실크 피브로인 박막의 대면적 소자공정 개발
우리 대학 전기및전자공학부 이현주 교수 연구팀과 KIST 최낙원 박사팀이 생분해성 실크피브로인 박막의 대면적 소자 공정을 개발하고 이를 통해 실크피브로인이 미세 공정된 마이크로소자의 제작기술을 개발했다.
이번에 개발된 실크피브로인 박막의 대면적 소자 공정은 포토리소그래피로 제작하는 폴리머나 금속 등의 구조와 동시에 미세공정이 가능해 실크피브로인을 기판으로 하는 생분해성 전자소자나 실크피브로인 패턴을 통한 국소부위 약물전달을 구현하는 데에 중요한 기술이 될 것으로 기대된다.
국건 박사과정과 KIST 정소현 박사과정이 주도한 이번 연구는 국제학술지 ‘에이씨에스 에이엠아이(ACS AMI : ACS Applied Materials & Interfaces)’ 1월 16일자 표지논문에 게재됐다. (논문명 : Wafer-Scale Multilayer Fabrication for Silk Fibroin-Based Microelectronics)
실크피브로인 박막은 투명하고 유연하며 생체에서 분해되기 때문에 생분해성 소자와 약물전달의 기판으로 쓰여왔다. 연구팀은 지난 2년간의 연구로 현재까지 실크피브로인에 적용되지 못했던 미세공정을 적용할 수 있도록 새로운 공정기술을 개발했다.
기존의 미세공정은 실크피브로인과 같은 생고분자의 구조를 변형시키는 강한 식각액과 용매가 동반됐다. 연구팀은 실크피브로인에 영향을 주지 않는 물질을 추려내고 이를 이용해 실크피브로인이 공정 중에 훼손되지 않도록 개선된 미세공정기술을 확보했다.
개발한 공정은 알루미늄 금속 박막을 사용해 실크피브로인을 보호하기 때문에 기존 미세공정의 핵심 기술인 포토리소그래피(Photolithography)로 실크피브로인 박막을 다른 소자 위에 패터닝하거나 실크피브로인 박막 위에 다른 물질을 패터닝하는 것이 모두 가능하다.
연구진은 뇌세포(Primary Neuron)를 공정을 거친 실크피브로인의 미세패턴 위에 성공적으로 배양해 실크피브로인이 공정 전후로 높은 생체적합성을 지녀 생체 임플란트 소자에 적용될 수 있음을 확인했다.
연구진은 개발한 기술을 통해 실크피브로인 기판 위에 여러 층의 금속 박막과 실크피브로인 박막의 미세패턴을 구현해 저항 및 실크피브로인을 유전체로 하는 축전기로 이루어진 생분해성 미세전자회로를 실리콘웨이퍼에서 대면적으로 제작했다.
또한 연구진이 독립적으로 개발한 유연 폴리머 기반 뇌전극 위에 해당 기술을 이용해 실크피브로인 박막의 미세패턴을 전극의 가까이에 위치시켰고 색소분자를 실크피브로인 박막에 탑재해 미세패턴으로부터의 분자전달을 확인했다.
실크피브로인 박막이 미세패턴된 뇌전극을 이용하면 뇌세포의 행동을 촉진하거나 제한하는 분자 약물을 탑재해 뇌회로의 연구에 활용되는 등 다양한 활용이 가능할 것으로 기대된다.
이 교수는 “대면적 공정이 불가능하다고 여겨졌던 민감한 바이오물질도 실리콘처럼 대면적의 미세공정이 가능해졌다”며 “향후 바이오메디컬 소자 분야에 광범위하게 적용될 것으로 기대한다”고 말했다.
이번 연구는 과학기술정보통신부 한국연구재단의 선도연구센터 사업 지원을 받아 수행됐다.
□ 그림 설명
그림1. ACS AMI 표지
그림2. 연구진이 개발한 실크피브로인 박막의 대면적 미세소자공정
그림3. 공정 이후의 실크피브로인 패턴에 배양된 Primary Neuron의 모습
2019.02.21
조회수 15980
-
김학성 교수, 세포 내 단백질 전달 효율 높이는 DNA 기반 나노구조체 개발
우리 대학 생명과학과 김학성 교수, 류이슬 박사 연구팀이 강원대 이중재 교수, 한국원자력연구원 강정애 박사와의 공동 연구를 통해 DNA를 기반으로 나노 구조체를 개발해 세포 속으로의 단백질 전달 효율을 높이는 기술을 개발했다.
이번 연구 결과는 국제 학술지 ‘스몰(Small)’에 2018년 12월 28일일자 표지논문으로 게재됐다.
단백질 치료제는 저분자 화합물에 비해 반응 부위를 구별해내는 특이성이 우수해 차세대 의약품으로 활발히 개발되고 있다. 단백질 치료제가 탁월한 효과를 내기 위해서는 치료용 단백질이 세포 내로 효율적으로 전달되는 기술이 선행돼야 한다.
지금까지는 화학적 합성법 등으로 단백질 전달체를 제작해 왔지만 생체 독성, 낮은 전달 효율, 복잡한 제조공정과 효과가 일관적이지 않은 재현성 등이 해결돼야 할 과제로 남아있다.
연구팀은 생체 분자인 DNA를 기반으로 나노 구조체를 제작해 생체 친화적이면서 특정 세포로의 높은 전달 효율을 보였다. 특히 다양한 단백질을 전달할 수 있는 범용적인 기술로서 폐암 동물 모델에서도 항암 물질을 전달해 높은 항암 효과를 입증했다.
제조공정도 복잡하지 않다. 먼저 금 나노입자 표면에 DNA를 부착한다. 다음으로 징크 핑거를 이용해 각 DNA 가닥에 암세포를 표적하는 생체 분자와 항암 단백질을 결합해 제작했다.
DNA와 징크 핑거 간의 상호작용을 이용하므로 DNA 서열과 길이를 조절해 나노 구조체에 탑재되는 단백질의 양을 손쉽게 조절할 수 있다.
김학성 교수는 “생체 적합한 소재인 DNA와 단백질의 상호작용을 이용해 세포 내로 단백질을 효율적으로 전달하는 새로운 나노 구조체를 개발한 것이다”라며, “세포 내 단백질 치료제의 전달뿐 아니라 동반 진단용으로 광범위하게 활용될 것으로 기대된다”라고 말했다.
이번 연구 성과는 과학기술정보통신부‧한국연구재단 기초연구사업(글로벌연구실, 중견연구, 생애첫연구) 지원으로 수행됐다.
□ 그림 설명
그림1. small 표지
그림2. 나노 구조체 제조 과정 모식도
그림3. 나노 구조체의 세포 내 단백질 전달 효과
그림4. 나노 구조체의 현미경 관찰 사진
2019.01.21
조회수 11862
-
허원도 교수, 빛만 비춰도 유전자 발현 조절하는 효소 개발
〈 허 원 도 교수 〉
우리 대학 생명과학과 허원도 교수 연구팀(기초과학연구원 인지 및 사회성 연구단)이 살아있는 생쥐의 머리에 빛만 비춰도 생쥐 뇌 유전자 발현을 제어할 수 있는 시스템을 개발했다.
매우 약한 빛에도 반응하도록 유전자 재조합 효소를 설계해 원하는 위치와 타이밍에 효소를 활성화할 수 있다. 많은 시간과 재원이 소요되는 유전자 변형 실험 모델을 만들지 않아도 특정 유전자 발현을 유도할 수 있어 활용이 매우 클 것으로 기대된다.
이번 연구결과는 국제 학술지인 ‘네이처 커뮤니케이션즈(Nature Communications)’ 1월 19일자 온라인 판에 게재됐다.
연구팀이 개발한 Flp 유전자 재조합 효소는 빛에 민감하게 반응해 활성화된다. 수술이 아닌 LED 빛을 쏘는 비침습성(non-invasive) 방식만으로도 유전자의 발현을 유도할 수 있어 물리적․화학적 손상에 의한 부작용도 최소화할 수 있다.
Flp 유전자 재조합 효소는 말 그대로 유전자를 자르고 재조합하는 기능을 지녀 유전자 형질 전환 실험모델을 만드는 등 다방면으로 활용됐다. 광유전학 기술에 응용하려는 시도가 있었으나 빛 없이도 스스로 조립(auto-assembly)돼버려 제어가 어려웠다. 뇌 속으로 빛을 직접 전달하려면 광섬유를 집어넣는 수술 과정도 필요했다.
연구팀이 개발한 광활성 Flp 유전자 재조합 효소(이하 PA-Flp 단백질)는 비활성화 상태에서도 빛을 받으면 결합되면서 활성화된다. 연구진은 단백질 공학을 통해 기존에는 잘 알려지지 않았던 Flp 재조합 효소를 활성화하는 위치를 찾는 힌트를 얻어 PA-Flp 단백질을 설계했다. PA-Flp 단백질의 발현 정도는 적색 형광단백질을 붙여 쉽게 알아볼 수 있도록 만들었다.
PA-Flp 단백질은 매우 적은 양으로도 반응하는 민감도를 지녔다. 연구진은 기억을 관장하는 쥐의 뇌 해마 부위에 PA-Flp 단백질을 넣은 뒤 약 30초 동안 LED를 머리 부분에 비추는 실험을 진행했다. 그 결과 생쥐 뇌의 깊은 조직 영역에 도달하는 매우 적은 양의 빛으로도 PA-Flp 단백질이 활성화된 것을 확인했다.
생쥐에게 쏜 빛은 1-2mW/mm2로 실생활에서 사용하는 휴대폰의 손전등 혹은 발표 시 이용하는 레이저 포인터 정도의 세기다. 연구진은 물리적 손상을 전혀 일으키지 않는 비침습성 방식으로도 유전자 발현을 조절하는데 성공한 것이다.
또한 연구진은 행동을 재현하고 검증하는 실험에 나섰다. 해마보다 더 깊숙한 곳에 있는 내측 중격(~3.5mm) 뇌 내측 중격(medial septum): 기억의 중추 역할을 담당하는 해마와 연결된 부위에는 칼슘 채널이 존재하는데 이 칼슘 채널의 발현이 억제되면 물체를 탐색하는 능력이 증가한다는 기존의 연구에 착안하여 실험을 설계했다.
연구진은 내측 중격에 PA-Flp 단백질을 도입하고 LED 빛을 쏘자 칼슘 채널의 발현이 억제됨을 확인했다. 실제 PA-Flp 단백질이 활성화된 실험군은 물체를 탐색하는 능력이 대조군에 비해 훨씬 커져 물체 주변으로 더 많은 움직임을 기록했다.
이번 연구는 빛으로 원하는 타이밍에 유전자를 자르고 재조합하는 효소를 개발해 향후 광유전학에 응용가치가 클 것으로 기대된다. 특정 유전자가 변형된 실험모델을 제작하는데 오랜 시일과 연구비가 투입되는데 반해 이 기술을 활용하면 빛만 쏘는 방식으로도 원하는 유전자를 쉽고 빠르게 조절할 수 있기 때문이다. 또한 광섬유를 심는 별도의 수술 없이도 연구자가 사용하기 간편하고 비용도 저렴하다.
허원도 교수는 “실험쥐의 생리학적 현상에 영향을 줄 수 있는 물리적, 화학적 자극이 거의 없이 LED로 원하는 특정 유전자 발현을 조절할 수 있는 것이 큰 장점이다”라며 “향후 다양한 뇌 영역을 탐구하는데 널리 활용될 것으로 기대한다”고 밝혔다.
□ 그림 설명
그림1. PA-Flp 단백질 작동원리 및 발현
그림2. 물체 탐색 능력이 증가함을 실험으로 확인
2019.01.21
조회수 8683
-
신인식 교수, 스마트폰 기반 터치사운드 위치파악 기술 개발
〈 왼쪽부터 아니쉬 뱐잔카 석사과정, 김효수 연구교수, 신인식 교수 〉
1분 1초가 소중한 아침 출근 준비 시간, 거울을 보며 양치질을 하는 시간은 유일하게 멍하니 다른 생각을 할 수 있는 순간일 것이다. 만약 양치질 중 거울을 바라보는 것만으로 오늘의 중요한 뉴스, 궁금했던 유튜브 영상, 날씨 등을 미리 확인할 수 있다면 하루를 계획하는 데 큰 도움이 될 것이다.
우리 대학 전산학부 신인식 교수, 김효수 연구교수 연구팀이 가구, 거울 등의 주변 사물들을 터치 입력 도구로 사용할 수 있는 스마트폰 기반의 터치 사운드 위치파악 기술을 개발했다.
이 기술은 사람들이 항상 휴대하는 스마트폰, 태블릿 PC 등을 사용한 기술로, 언제 어디서나 책상 등의 주변 사물들을 가상 키보드로 활용해 장문의 문자, 메일 등을 손쉽게 작성할 수 있고 체스와 같은 보드게임도 즐길 수 있다.
또한 단순 디스플레이 기능만 제공하던 스마트 TV나 거울과 같은 스마트기기에 터치 입력 기능을 삽입해 좀 더 편리하고 효율적인 기기 활용을 할 수 있다.
연구팀이 개발한 시스템은 지난 11월 4~7일 중국 선전에서 열린 모바일 및 센싱 분야의 최고 권위 국제학회 ACM SenSys에서 발표돼 호평을 받았으며, 우수성을 인정받아 ‘베스트 페이퍼 러너-업 어워드(best paper runner-up award)’를 수상했다.
터치 사운드 기반 입력 기술은 다양한 사용 환경에서도 1cm 이내의 오차를 갖는 정확한 터치 입력을 일관성 있게 제공하는 것이 가장 중요하다. 사용자들은 책상, 벽, 거울 등 매번 다른 재질의 사물을 터치 입력 도구로 활용할 수 있어야 하고, 사용 중에도 책이나 가방과 같은 주변 물체의 위치 및 소음 수준이 바뀔 수 있기 때문이다.
연구팀은 사용자가 손톱 등으로 사물을 터치했을 때 발생하는 터치 충돌 소리가 고체 표면을 통해 전달되는 과정을 분석했다.
소리가 공기를 통해 전달될 때와는 달리 고체 표면에 전달될 때에는 주파수에 따라 다른 속도로 전달되는 분산(dispersion) 현상을 겪는다. 분산 현상으로 인해 주파수별로 소리 도달 시간 차이는 소리 전달 거리에 비례해 증가하며, 주변 소음이 변화해도 비례 관계는 변하지 않는다.
김효수 연구교수는 이러한 관찰에 기반해 고체 표면을 통해 전달된 터치 소리를 스마트폰에 녹음하고 간단한 조정 과정을 통해 주파수별 소리 도달 시간 차이와 소리 전달 거리의 관계를 파악했다. 이후 이 값을 이용해 사용자의 터치 입력 위치를 정확하게 계산하는 기술을 개발했다.
개발한 시스템은 약 17인치의 터치스크린에서 평균 0.4cm 이내의 측정 오차를 보였다. 특히 나무 책상, 유리 거울, 아크릴 보드 등 다양한 종류의 사물에서 주변 물체의 위치나 소음이 변하는 상황에서도 항상 1cm 이내의 측정 오차를 기록하는 정확성을 보였다.
특히 기존 기술이 터치 입력 위치파악에만 수백 초 소요되는 것과 달리 정확성과 편리한 사용을 위해 약 10초 이내의 간단한 조정을 통해 기술을 적용하는 데 성공했다. 연구팀은 실제 사용자를 대상으로 한 실험에서도 사용자 경험 및 정확성 등 모든 지표에서 긍정적인 반응을 얻었다고 밝혔다.
신 교수는 “우리가 주위에서 흔히 볼 수 있는 거울, 책상, 벽 등의 표면을 마치 터치스크린처럼 사용할 수 있다면 재미있고 유용한 앱들이 많이 활성화될 것이다”라며 “이 기술은 마이크로폰 3~4개 설치만으로도 터치 입력을 가능하게 하는 새로운 터치 인터페이스 기술이다”라고 말했다.
이번 연구는 Microsoft Research Asia(마이크로소프트연구소 아시아)의 지원을 받아 수행됐다.
※ 데모 비디오 링크
http://cps.kaist.ac.kr/research/ubitap/ubitap_demo.mp4
□ 사진 설명
사진1. 터치 입력 기술 사용 예제
2018.12.13
조회수 11819