< (왼쪽부터) 강창원 생명과학과 명예교수, 홍성철 서울대 교수, 송은호 박사, 한선 박사과정 >
바이러스는 특정 세포 안에 침투했을 때만 증식의 생명력을 띠고 그 외에는 무생물 같으며, 사람 세포를 감염시키는 코로나19 바이러스, 세균을 잡아먹으며 증식하는 세균바이러스 등이 있다. 국내 연구진이 세균바이러스가 RNA 합성을 마무리 짓는 방식에 해체종결(1)만 있고 재생종결(2)은 없다는 사실을 밝히고 RNA 의약품 개발에 응용될 가능성을 높였다.
(1)해체종결: 합성 복합체가 중합효소, DNA, RNA로 해체
(2)재생종결: RNA만 분리되고 중합효소는 DNA에 남아 재생
우리 대학 생명과학과 강창원 명예교수(줄기세포연구센터 고문)와 서울대학교 물리천문학부 홍성철 교수의 공동연구팀이 세균의 리보핵산(RNA) 합성방식 두 가지 중 하나가 바이러스에는 없다는 것을 발견해, 세균이 바이러스로부터 진화하면서 획득한 방식을 처음 밝힌 연구 논문을 핵산 분야 최상급 국제학술지에 게재했다고 19일 밝혔다.
유전자 DNA의 유전정보에 따라 RNA를 합성하는 효소가 RNA 중합효소다. 이는 유전정보가 DNA에서 RNA로 옮겨 적히기에 전사(轉寫)라고 부르는 유전자 발현 첫 단계를 수행하며, RNA 백신 등 첨단 RNA 의약품을 개발 생산하는 데에 쓰인다. 연구팀은 세균바이러스의 RNA 중합효소를 연구해서 생물로 진화하기 이전 태초의 RNA 합성(전사) 방식을 밝힌 것이다.
유전자에 따라 다른 게 아니라 어느 유전자든 전사 마무리 방식에 두 가지가 있다는 것을 수년 전 세균에서 발견했었다. 그리고 세균보다 진화한 진핵생물 효모의 유전자 전사에서도 두 방식이 모두 쓰인다는 것이 지난달에 보고됐다. 사람도 진핵생물이어서, 세균과 효모뿐 아니라 사람까지 온갖 생물의 유전자 전사에 두 방식 모두 쓰일 개연성이 커졌다.
그런데 이번 연구에서 세균바이러스의 방식은 세균이나 효모와 사뭇 다르다는 것이 밝혀졌다. 바이러스의 경우 재생종결 없이 해체종결만 일어나는 것이다. 이를 토대로, 연구팀은 RNA 중합효소가 세균에서 바이러스와 달리 적응하면서 해체종결에 재생종결이 추가돼 두 방식이 공존하게 되었고, 최소한 효모로의 진화에서 그대로 보존됐다는 해석을 내놓았다.
< 바이러스와 세균에서 전사 종결방식의 차이. 유전자 DNA(검정 직선)의 유전정보에 따라 전사물 RNA(회색 곡선)를 합성하는 RNA 중합효소(노랑 모형)가 전사 반응을 마무리하는 방식이 바이러스와 세균에서 서로 다르다는 사실이 밝혀졌다. 세균은 전사 복합체 구성물 셋 다 흩어지는 해체종결과 중합효소가 DNA에 남는 재생종결 둘 다 하지만, 바이러스는 해체종결만 하는 것이 발견됐다. >
이번 연구에서 거푸집 DNA와 전사물 RNA에 각기 다른 형광물질을 부착해 전사 복합체 하나하나의 형광을 실시간으로 측정하는 단일분자 형광기술 연구기법이 사용됐다. 전사 종결로 RNA가 방출될 때 DNA가 효소에 붙어있는지 떨어지는지를 낱낱이 구별할 수 있게 설계한 것이 특장점이다. 특히 형광물질이 전사 반응에 지장을 주지 않도록 하는 게 관건이었다.
송은호 박사후연구원과 한선 박사과정 대학원생이 공동 제1 저자로 참여한 논문(제목: Single-mode termination of phage transcriptions, disclosing bacterial adaptation for facilitated reinitiations)이 학술지 핵산연구(Nucleic Acids Research)에 7월 16일 게재됐다. 이로써 강창원 교수와 홍성철 교수는 2017년부터 총 8편의 논문을 공동으로 발표했다.
강창원 교수는 "이번 연구를 통해 수 초 동안의 분자 반응에서 유구한 진화과정을 밝혀냈고, 앞으로 더 광범위한 진화를 연구할 계획이다”라고 했다. 홍성철 교수는 "분자 하나하나를 관찰하여 복잡한 생물체의 진화를 파악했고, 이런 단일분자 연구기법을 차세대 RNA 의약품과 진단 시약의 개발에 응용하는 연구로 이어가고자 한다”라고 했다.
우리 대학 생명과학과 강석조 교수 연구팀이 선천면역반응을 매개하는 중요 단백질인 STING의 활성을 조절하는 새로운 기전으로, 미토콘드리아 막 단백질이자 E3 유비퀴틴 리가아제인 MARCH5가 STING을 유비퀴틴시켜서 활성산소에 의해 STING이 비활성형 다량체로 응집되는 것을 억제함을 규명했다고 4일 밝혔다. STING(Stimulator of interferon genes)은 선천면역 신호경로의 필수적인 어댑터 단백질로서 외부로부터 들어온 세균 및 바이러스로부터 유래한 세포질 내 DNA를 감지하는 cGAS(cyclic GMP-AMP synthase)가 생성한 cGAMP(2'3'-cyclic GMP-AMP)에 결합하여 활성화되면 TBK1(TANK-binding kinase 1)과 IRF3(Interferon regulatory factor 3)를 활성화하여 제1형 인터페론을 유도한다. 이를 통해서 염증반응과 다양한 면역세포를 활성화하여 병원균으로부터 우리 몸을 방어하는 면역
2023-12-04전염성 높은 바이러스의 빠른 확산을 방지하기 위해서는 의료 현장에서 빠르고 정확하게 바이러스를 검출해 신속하게 진단하는 것이 매우 중요하다. 현재 현장 진단 검사는 신속 항원 검사에 국한되어 진단의 정확성이 낮은 문제점이 있다. 감염병 확진을 위해선 실시간 역전사 중합효소연쇄반응(Real-time reverse-transcription Polymerase Chain reaction, RT-qPCR) 검사가 필요하지만, 기술적인 한계로 인해 현장 진단 검사에는 매우 부적합한 실정이다. 우리 대학 바이오및뇌공학과 정기훈 교수 연구팀이 나노종합기술원과 (주)오상헬스케어와의 공동연구로 개발하여 코로나-19 바이러스 검출 95% 정확도를 가진 현장 진단에 적합한 초고속 초소형 플라즈모닉 핵산 분석 시스템을 개발했다고 11일(화) 밝혔다. 연구팀이 개발한 시스템은 광열 나노소재 기반 초고속 플라즈모닉 열 순환기, 미세 유체 랩온어칩 기반 금속 박막 카트리지, 초박형 마이크로렌즈 어레
2023-04-11우리 연구진이 항생제와 같은 동일한 외부 자극에도 개별 세포마다 반응하는 정도가 다른 근본적인 원인을 밝혔다. 우리 대학 수리과학과 김재경 교수(기초과학연구원(IBS) 의생명수학 그룹 겸임) 연구팀이 외부 자극에 대한 세포 간 이질성(cell-to-cell heterogeneity)의 크기가 세포 내 신호 전달 과정의 반응 속도 제한 단계(rate-limiting step)의 수에 비례한다는 사실을 규명했다고 21일 밝혔다. 똑같은 유전자를 가진 세포들이 동일한 외부 자극에 다르게 반응하는 이유는 오랫동안 미스터리였다. 특히, 외부 자극에 대한 반응의 이질성은 항암 치료 시 화학 요법을 적용할 때 암세포의 완전 사멸을 막는 원인이 되기도 한다. 따라서, 세포 간 이질성을 유발하는 요인으로서 속도 제한 단계를 제시한 이번 연구는 화학 요법 치료의 효과를 개선하는 데에 이용될 수 있을 것으로 기대된다. 우리 대학 수리과학과 김대욱 박사와 홍혁표 박사과정이 공동 제1 저자로
2022-03-21우리 대학 의과학대학원 신의철 교수, 수리과학과 김재경 교수 공동연구팀은 수학 모델 연구를 통해 ‘높은 바이러스 전파율은 궁극적으로 코로나19 위중증화 비율을 낮춘다’는 역설적인 연구결과를 발표했다. 2년 전부터 시작된 코로나19 팬데믹이 아직 종식되지 않은 가운데, 오미크론 변이주가 우세 종이 되면서 한국을 비롯한 세계 각국에서는 코로나19 환자 수가 급증하고 있다. 한편, 이러한 오미크론의 유행이 오히려 코로나19가 경증 호흡기 질환으로 토착화되는 것을 앞당기면서 코로나19 팬데믹의 종식을 가져올 수 있다는 조심스러운 전망들도 나오고 있다. 이와 동시에, 일부 유럽 국가들에서는 사회적 거리두기 등의 방역 대책을 완화하고 코로나19 이전의 일상생활로 돌아가는 정책을 취하기 시작하고 있다. 이렇게 코로나19 팬데믹의 미래가 아직 불분명하고 혼돈스러운 상황에서, 김재경 교수 및 홍혁표 석박사통합과정, 고려대 구로병원 감염내과 노지윤 교수, 신의철 교수
2022-02-14우리 대학 생명과학과 오병하 교수 연구팀이 계산적 항체 디자인을 개발하고 이를 적용해 오미크론을 포함해 현재 유행 중인 모든 코로나19 변종 바이러스에 뛰어난 효과를 나타내는 중화항체*를 개발했다고 밝혔다. *병원체가 신체에 침투했을 때 생화학적으로 미치는 영향을 중화하여 세포를 방어하는 치료용 항체. 코로나19 감염을 유발하는 바이러스로 알려진 SARS-CoV-2 바이러스*는 스파이크 당단백질 부위에 있는 수용체 결합 부위(이하 항원)를 인간 세포막에 붙어있는 hACE2(human Angiotensin Converting Enzyme2) 수용체에 결합시켜 세포 내로 침입하는 기전을 보인다. 이러한 기전에 착안해 세계 유수의 제약회사들의 연구진은 수용체 결합 부위에 붙는 중화항체 에테세비맙(Etesevimab), 밤라니비맙(Bamlanivimab) 등을 개발했다. *현재 중증급성호흡기 증후군 팬데믹을 일으키고 있는 코로나바이러스. RNA 바이러스이며 바이러스 표면 스파
2022-02-04