본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EA%B3%B5%EA%B3%BC%EB%8C%80%ED%95%99
최신순
조회순
세계 최대 컴퓨터학회에서 처음 5편 논문 발표
세계 최대 컴퓨터 학회에서 주간한 학술대회(PLDI)에서 2012년에 한국에서 처음 논문을 발표한 이래, KAIST 연구진이 처음으로 3편 이상의 논문을 발표하여 화제다. 우리 대학 전산학부 강지훈 교수, 류석영 교수 연구팀이 프로그래밍 언어 분야 최고 권위 학술대회인 PLDI에서 올해 발표될 89편의 논문 중 6.7%인 5편의 논문을 발표했다고 3일 밝혔다. PLDI(Programming Language Design and Implementation)는 세계 최대 컴퓨터 학회인 ACM(Association for Computing Machinery)이 주관하는 학술대회로, 지난 45년간 전산학 전체에 깊은 영향을 미치는 중요한 논문이 다수 발표된 유서 깊은 학술대회다. 프로그래밍 언어와 컴파일러 등 소프트웨어 전반의 기초가 되는 핵심 기술을 발표하고 있다. 이번 학회에 발표되는 5개의 논문은 아래와 같다. 1) 멀티코어 컴퓨팅 시스템에서 동작하는 고성능 병렬 자료구조가 사용을 마친 메모리를 수집하기 위해 다양한 기법을 제안 2) 멀티코어 컴퓨팅 시스템에서 성능을 높이기 위해 운영체제, 데이터베이스 등 고성능 시스템 소프트웨어의 안전성을 현실적으로 증명할 수 있는 토대 마련 3) 시스템 반도체의 논리적인 청사진이라 할 수 있는 RTL(register-transfer level) 설계 및 검증비용을 획기적으로 줄일 수 있는 프로그래밍 언어 개발 4) 빠르지만 안정성이 취약한 C 언어로 작성된 프로그램을 더 안전한 러스트(Rust) 언어로 작성된 프로그램으로 자동 변환하는 연구 5) 산업계에서 가장 널리 사용하는 자바스크립트 프로그래밍 언어의 공식 개발 과정에 적용한 기술(https://www.kaist.ac.kr/news/html/news/?mode=V&mng_no=36610)을 기반으로 웹어셈블리 언어에 특화한 연구 강지훈 교수는 “5편의 논문은 각각 학생들이 오랫동안 정성껏 연구한 결과를 담아 뛰어난 독창성과 실용성을 동시에 갖춘 우수한 논문들”이라면서 “이 논문들이 앞으로 지속적으로 프로그래밍 언어와 인접 전산학 분야, 그리고 더 나아가서 산업계에 깊은 영향을 미칠 수 있도록 후속 연구에 정진할 것”이라고 포부를 밝혔다. 류석영 교수는 “반도체, 운영체제, 클라우드 등 인프라부터 사용자에게 제공하는 서비스까지 모두를 아우르는 풀 스택 소프트웨어를 안전하고 올바르게 동작하도록 설계하고 개발하는 세계적인 기술을 선보인 결과”라며, “소프트웨어가 이끄는 세상에서 더 안전하고 올바르게 동작하는 소프트웨어를 사용할 수 있기를 기대한다”고 말했다. 5편의 논문은 한국 시각으로 6월 21일에 PACMPL(Proceedings of the ACM on Programming Languages) 저널에 게재됐고 6월 25일부터 27일 사이에 진행된 PLDI 2024 학술대회에서 발표됐다. (논문 제목: ① Concurrent Immediate Reference Counting, ② A Proof Recipe for Linearizability in Relaxed Memory Separation Logic, ③ Modular Hardware Design of Pipelined Circuits with Hazards, ④ Don't Write, but Return: Replacing Output Parameters with Algebraic Data Types in C-to-Rust Translation, ⑤ Bringing the WebAssembly Standard up to Speed with SpecTac) 한편 이번 연구는 한국연구재단 선도연구센터, 중견연구자지원사업 및 우수신진연구자지원사업, 정보통신기획평가원(IITP), 삼성전자 미래기술육성센터의 지원을 받아 수행됐다.
2024.07.03
조회수 2547
인공지능으로 배터리 원소, 충방전 상태 인식
국제공동연구진이 인공지능 학습을 통해 배터리의 표면 형상만 보고 각 원소의 함량 그리고 충·방전 횟수에 대한 정보를 높은 정확도로 알아내는 영상인식 기술을 개발하여 화제다. 우리 대학 신소재공학과 홍승범 교수가 한국전자통신연구원(ETRI), 미국 드렉셀대학과 공동연구를 통해 다양한 조성과 각기 다른 충·방전 사이클의 NCM 양극재 주사전자현미경 사진을 합성곱 신경망* 기반 인공지능에 학습시켜 주요 원소 함량과 충·방전 상태를 99.6%의 높은 정확도로 맞추는 방법론을 세계 최초로 개발했다고 2일 밝혔다. *합성곱 신경망(콘볼루션 신경망, Convolutional Neural Network, CNN): 시각적 영상을 분석하는 데 사용되는 다층의 피드-포워드적인 인공신경망의 한 종류이다. 연구팀은 반도체 공정에서는 웨이퍼의 불량 검수를 위해 주사전자현미경(SEM)을 사용하는 반면 배터리 공정에서는 그런 경우가 드물고 연구 현장에서만 입자의 크기 분석을 위해 SEM을 활용하고, 열화된 배터리 소재의 경우 입자가 깨지고 부서지는 형상으로부터 신뢰성을 예측하는 것에 착안했다. 연구팀은 반도체 공정에서와 같이 배터리 공정도 자동화된 SEM으로 양극재 표면을 검수해서 원하는 조성대로 합성이 되었는지 수명은 신뢰성 있게 나올 것인지를 확인해 불량률을 줄일 수 있다면 획기적일 것으로 판단했다. 연구진은 자율주행차에 적용가능한 합성곱 신경망 기반 인공지능에 배터리 소재의 표면 영상을 학습시켜서 양극재의 주 원소 함량과 충·방전 사이클 상태를 예측할 수 있게 했다. 이런 방법론이 첨가제가 들어간 양극재에도 적용가능한 지 확인한 결과 함량은 상당히 정확하게 예측하는 반면 충·방전 상태는 정확도가 낮다는 단점을 알게 됐다. 이에 연구팀은 향후 다양한 공정을 통해서 만든 배터리 소재의 형상을 학습시켜 차세대 배터리의 조성 균일성 검수 및 수명 예측에 활용할 계획이다. 연구를 이끈 홍승범 교수는 “이번 연구는 세계 최초로 마이크론 스케일의 주사전자현미경 사진의 소재 구조 데이터를 통해 주 원소 함량과 충·방전 상태를 빠르고 정확하게 예측할 수 있는 인공지능 기반 방법론을 개발한 데 의의가 있고 이번 연구에서 개발된 현미경 영상 기반 배터리 소재의 함량 및 상태 감별 방법론은 향후 배터리 소재의 성능과 품질을 향상하는 데 중요한 역할을 하게 될 것으로 기대된다”고 전망했다. 한편, 이번 연구는 공동 제1 저자인 신소재공학과 졸업생 오지민 박사와 염지원 박사와 공동저자인 ETRI 김광만 박사와 미국 드렉셀 대학교 아가르(Agar) 교수가 참여하였고, 한국연구재단(2020M3H4A3081880, RS-2023-00247245), KAIST 글로벌특이점 사업의 지원 및 미국 연구진과의 국제공동연구를 통해 수행됐으며, 국제 학술지 ‘엔피제이 컴퓨테이셔날 머티리얼즈(npj computational materials)’에 지난 5월 4일 자 출판됐다. (논문 제목: Composition and state prediction of lithium-ion cathode via convolutional neural network trained on scanning electron microscopy images)
2024.07.02
조회수 2398
맞춤형 종양 모델 구축 스페로이드 플랫폼 개발
세포들이 뭉쳐 생성된 구형 집합체인 스페로이드(spheroid)의 제작 기술은 현재 단일 조건의 스페로이드를 대규모로 생성하는 것까지는 가능하나, 체내 조직의 기능을 모사할 수 있는 최적의 크기 및 세포 조성 범위의 탐색이 어렵고, 다중 약물 스크리닝에 적합하지 않다는 문제가 있었다. 우리 연구진이 단 3번의 세포 주입으로 10가지 세포 조성을 갖는 100개의 스페로이드를 제작하고, 25가지 약물 조합을 동시에 처리할 수 있는 플랫폼을 구축하는 데 성공했다. 우리 대학 바이오및뇌공학과 박제균 교수 연구팀이 다양한 스페로이드 어레이(배열)를 맞춤형으로 손쉽게 제작하고 이를 구획화해 다중 시약 처리를 수행할 수 있는 조립형 마이크로어레이 플랫폼을 개발했다고 27일 밝혔다. 기존 단일 조건의 스페로이드를 대규모로 제작하는 방법은 다중 약물 스크리닝이 어렵고, 다중 약물 스크리닝이 가능한 방법은 대규모 제작이 어려워, 두 가지 장점을 동시에 만족하는 플랫폼이 개발되지 않은 실정이었다. * 다중 약물 스크리닝: 암 치료의 식별 및 약물 안전성 평가를 위해 약물의 종류, 농도 등 다양한 실험 조건 변화에 따른 세포 및 조직의 반응을 평가하는 방법 연구팀은 조립식 플랫폼의 핵심기술인 행잉드롭 마이크로어레이*, 그래디언트(gradient) 블록**, 오목 기둥 마이크로어레이***를 개발하고, 이들의 조립 방식에 따라 달라지는 여러 가지 스페로이드 어레이 기반 종양 모델의 제작 방법과 분석 방법을 발표했다. * 행잉드롭 마이크로어레이: 고드름과 같이 표면에 매달린 형태의 물방울을 의미하는 행잉드롭 내에 세포가 존재하면 중력에 의해 세포들이 응집되어 스페로이드가 만들어짐. 행잉드롭 마이크로어레이는 바닥 면에 구멍이 2차원으로 배열되어, 단 한 번의 세포 혼합용액 주입으로 행잉드롭을 어레이 형태로 형성할 수 있어, 균일한 스페로이드 어레이를 제작할 수 있음 ** 그래디언트 블록: 경사면을 가지는 블록으로, 행잉드롭 마이크로어레이와 조립하게 되면 각각의 어레이 구멍에 가라앉는 세포의 수가 선형으로 변화하게 되어 이를 통해 크기가 규칙적으로 변화하는 스페로이드 어레이를 제작할 수 있음 ***오목 기둥 마이크로어레이: 행잉드롭과 접촉하여 스페로이드를 기둥 상부에 안착시켜 회수할 수 있는 구조를 갖고 있어, 스페로이드 어레이를 개별적으로 분리하고 이동시킬 수 있음 연구팀은 10가지의 다른 세포 조성을 가지며, 조성 별로 10개의 스페로이드가 존재하는, 총 100개의 삼중 배양 스페로이드로 구성된 어레이를 단 세 번의 세포 혼합용액 주입으로 생성시키는데 성공했다. 또한 연구팀은 행잉드롭 마이크로어레이와 오목 기둥 마이크로어레이의 조립을 통해 대규모로 생성된 스페로이드를 작은물방울 형태로 각각 분리하고, 구획화된 행잉드롭 마이크로어레이로 옮겨 스페로이드 어레이를 구획화시키는 방법을 새롭게 선보였다. 이를 통해 스페로이드 어레이의 순차적 다중 시약 처리 및 일괄적 형광 염색이 가능하게 되어 스페로이드 분석 및 실험 과정이 획기적으로 개선됐다. 연구를 주도한 박제균 교수는 “이번 연구는 다양한 크기와 조성을 갖는 스페로이드 어레이를 대규모로 제작하고, 원하는 대로 이동시켜 일괄 또는 다중 시약 처리가 가능한 고효율 스크리닝 플랫폼의 개발 성과”임을 강조하며, “간단하면서도 우수한 편의성을 갖춘 플랫폼이기에, 향후 다른 연구자들도 스페로이드 및 오가노이드의 크기와 조성에 따른 변화 연구와 다양한 세포 조성으로 이루어진 복잡한 스페로이드, 오가노이드 어레이를 이용한 고효율 약물 스크리닝 등에 활용할 수 있을 것”이라고 말했다. 우리 대학 바이오및뇌공학과 김휘수 박사가 제1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘어드밴스드 헬스케어 머티리얼즈(Advanced Healthcare Materials)’에 2024년 5월 30일 자로 온라인판에 게재됐다.(https://doi.org/10.1002/adhm.202400501. 논문명: Reconfigurable Hanging Drop Microarray Platform for On-demand Preparation and Analysis of Spheroid Array) 또한 상기 논문은 와일리-VCH(Wiley-VCH) 출판사의 “핫 토픽: 종양과 암(Hot Topic: Tumors and Cancer)” 세션에도 선정됐다. 한편 이번 연구는 한국연구재단 기초연구사업(중견연구)의 지원을 받아 수행됐다.
2024.06.27
조회수 2303
챗MOF로 96.9% 금속 유기 골격체 물성 예측하다
우리 대학 연구진이 챗GPT를 활용해 큰 다공성, 높은 표면적, 그리고 뛰어난 조절 가능성으로 많은 화학 응용 분야에서 사용되는 금속 유기 골격체의 특성을 예측하고 새로운 재료를 자동으로 생성하는 챗봇 시스템(이하 챗MOF)을 개발했다. 챗MOF는 검색 및 예측 작업에서 각각 96.9% 및 95.7%의 높은 성공률을 보여 화제다. 생명화학공학과 김지한 교수 연구팀이 인공지능(AI)의 급격한 발전에 주목하며, 대규모 언어 모델(이하 LLMs) 활용을 통해 금속 유기 골격체(Metal-Organic Frameworks, MOFs)의 특성을 예측하고 새로운 재료를 자동으로 생성하는 챗봇 시스템(ChatMOF)을 개발했다고 26일 발표했다. 최근 인공지능(AI)의 발전에는 큰 도약이 있었지만 재료 과학에서의 LLM의 잠재력을 완전히 실현하기에는 여전히 물질의 복잡성과 재료별 특화된 훈련 데이터의 부족이라는 한계점이 존재했다. 김지한 교수 연구팀이 개발한 챗MOF는 재료 분야에서 전통적인 머신러닝 모델과 LLM을 결합한 혁신적인 접근 방식으로 계산 및 머신러닝 도구에 대한 초보자들과의 격차를 상당히 줄일 수 있는 잠재력을 가지고 있다. 또한 이 독특한 시스템은 인공지능의 변혁적인 능력과 재료 과학의 복잡한 측면들을 연결하며, 다양한 작업에서 뛰어난 성능을 보여준다. 챗MOF는 검색 및 예측 작업에서 각각 96.9% 및 95.7%의 높은 성공률을 보고한다. 한편, 더 복잡한 구조 생성 작업은 그 복잡함에도 불구하고 주목할 만한 87.5%의 정확도를 달성한다. 이러한 유망한 결과는 챗MOF가 가장 요구가 많은 작업을 관리하는 데도 효과적임을 강조한다. 김지한 교수는 “연구팀이 개발한 기술은 재료 과학 분야에서 인공지능의 더 높은 자율성을 달성하기 위한 중요한 진전을 나타낸다. 기술이 발전함에 따라, 모델 용량과 온라인 플랫폼에서의 데이터 공유에 대한 체계적인 개선을 통해 챗MOF의 성능을 더욱 최적화할 수 있으며, 이는 금속 유기 골격체 연구 분야에서 놀라운 진전을 촉진할 수 있다.”라고 말했다. 생명화학공학과 강영훈 박사과정이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `네이처 커뮤니케이션즈(Nature communications)'에 지난 6월 3일 게재됐다. (논문명: ChatMOF: An Artificial Intelligence System for Predicting and Generating Metal-Organic Frameworks Using Large Language Models) 한편 이번 연구는 과학기술정보통신부의 지원으로 국가 소재 연구 데이터 사업단, 그리고 한국연구재단 (NRF) 중견 연구자 지원 사업의 지원을 받아 수행됐다.
2024.06.26
조회수 3273
애물단지 열을 컴퓨팅에 활용한다
기존의 반도체 소자에서 열 발생은 피할 수 없는데, 이는 에너지 소모량을 증가시키고, 반도체의 정상적인 동작을 방해하기 때문에 문제가 되며, 이에 열 발생을 최소화하는 것이 기존 반도체 기술의 관건이었다. KAIST 연구진이 이렇게 애물단지로 여겨지던 열을 오히려 컴퓨팅에 활용하는 방법을 고안하여 화제다. 우리 대학 신소재공학과 김경민 교수 연구팀이 산화물 반도체의 열-전기 상호작용에 기반하는 열 컴퓨팅(Thermal computing) 기술 개발에 성공했다고 25일 밝혔다. 연구팀은 전기-열 상호작용이 강한 모트 전이 (Mott transition) 반도체*를 활용했으며, 이 반도체 소자에 열 저장 및 열전달 기능을 최적화해 열을 이용하는 컴퓨팅을 구현했다. 이렇게 개발된 열 컴퓨팅 기술은 기존의 CPU, GPU와 같은 디지털 프로세서보다 1,000,000(백만)분의 1 수준의 에너지만으로 경로 찾기 등과 같은 복잡한 최적화 문제를 풀 수 있었다. *모트 전이 반도체: 온도에 따라 전기적 특성이 부도체에서 도체로 변하는 전기-열 상호작용이 강한 반도체 소자 본 연구에서는 낮은 열전도도와 높은 비열을 가지고 있는 폴리이미드* 기판 상에 모트 전이 반도체 소자를 제작하여, 모트 전이 반도체 소자에서 발생한 열이 폴리이미드 기판에 저장이 될 수 있도록 하였다. 이렇게 저장된 열은 일정 시간 동안 유지되며 시간적 정보 역할을 하였다. 또한, 이 열은 공간적으로도 이웃 소자로 전파되게 되는데, 이는 공간적 정보 역할을 하였다. 이처럼 열 정보를 시공간적으로 활용할 수 있었으며, 이를 활용하여 컴퓨팅을 수행할 수 있었다. *폴리이미드: 우수한 기계적 강도, 유연성, 내열성을 가진 폴리머 소재. 디스플레이, 태양전지, 메모리 등에 다양하게 활용됨 김경민 교수는 “단순히 전기 신호만 사용하던 컴퓨팅 기술은 이제 한계에 이르렀으며, 열은 저장할 수 있고, 전달할 수 있는 특성이 있어 이를 잘 활용할 수만 있다면 컴퓨팅에서 매우 유용하게 쓰일 수 있다”며 “이번 연구의 의미는 기존에는 버려지던 열을 컴퓨팅에 활용할 수 있다는 개념을 최초로 제안한 데 있다”고 연구의 의미에 대해서 말했다. 또한 “열 컴퓨팅 기술을 활용하면 뉴런과 같은 신경계의 복잡한 신호도 매우 간단히 구현할 수 있으며, 또한 고차원의 최적화 문제를 기존의 반도체 기술을 바탕으로 효과적으로 해결할 수 있어 양자 컴퓨팅의 현실적인 대안이 될 수 있다”고 기술의 장점을 설명했다. 그리고“이번 연구는 미국의 샌디아 국립 연구소(Sandia National Laboratory)와의 공동 연구로 검증된 결과”라는 점을 강조했다. 이번 연구는 신소재공학과 김광민 박사과정, 인재현 박사, 이영현 박사과정 학생이 공동 제1 저자로 참여했으며 재료 분야 최고 권위의 국제 학술지 `네이처 머티리얼즈(Nature Materials, Impact factor: 41.2)'에 6월 18일 字에 게재됐다. (논문명 : Mott Neurons with Dual Thermal Dynamics for Spatiotemporal Computing). 한편 이번 연구는 한국연구재단, 나노종합기술원, KAIST의 지원을 받아 수행됐다.
2024.06.25
조회수 3050
차세대 뉴로모픽 컴퓨팅 신뢰성 문제를 풀다
최근 인간의 뇌를 모방해 하드웨어 기반으로 인공지능 연산을 구현하는 뉴로모픽 컴퓨팅 기술이 최근 주목받고 있다. 뉴로모픽 컴퓨팅의 단위 소자로 활용되는 멤리스터(전도성 변화 소자)는 저전력, 고집적, 고효율 등의 장점이 있지만 멤리스터로 대용량 뉴로모픽 컴퓨팅 시스템을 구현하는데 불규칙한 소자 특성으로 인한 신뢰성 문제가 발견되었다. 우리 연구진이 뉴로모픽 컴퓨팅의 상용화를 앞당길 신뢰성 향상 기술을 개발하여 화제다. 우리 대학 전기및전자공학부 최신현 교수 연구팀이 한양대학교 연구진과의 공동 연구를 통해 차세대 메모리 소자의 신뢰성과 성능을 높일 수 있는 이종원자가 이온* 도핑 방법을 개발했다고 21일 밝혔다. * 이종원자가 이온(Aliovalent ion): 원래 존재하던 원자와 다른 원자가(공유 결합의 척도, valance)를 갖는 이온을 말함 공동연구팀은 기존 차세대 메모리 소자의 가장 큰 문제인 불규칙한 소자 특성 변화 문제를 개선하기 위해, 이종원자가 이온을 도핑하는 방식으로 소자의 균일성과 성능을 향상할 수 있다는 사실을 실험과 원자 수준의 시뮬레이션을 통해 원리를 규명했다. 공동 연구팀은 이러한 불규칙한 소자 신뢰성 문제를 해결하기 위해 이종원자가 할라이드(halide) 이온을 산화물 층 내에 적절히 주입하는 방법이 소자의 신뢰성과 성능을 향상할 수 있음을 보고했다. 연구팀은 이러한 방법으로 소자 동작의 균일성, 동작 속도, 그리고 성능이 증대됨을 실험적으로 확인했다. 연구팀은 또한, 원자 단위 시뮬레이션 분석을 통해 결정질과 비결정질 환경에서 모두 실험적으로 확인한 결과와 일치하는 소자 성능 개선 효과가 나타남을 보고했다. 그 과정에서 도핑된 이종원자가 이온이 근처 산소 빈자리(oxygen vacancy)를 끌어당겨 안정적인 소자 동작을 가능하게 하고, 이온 근처 공간을 넓혀 빠른 소자 동작을 가능하게 하는 원리를 밝혀냈다. 최신현 교수는 "이번에 개발한 이종원자가 이온 도핑 방법은 뉴로모픽 소자의 신뢰성과 성능을 획기적으로 높이는 방법으로서, 차세대 멤리스터 기반 뉴로모픽 컴퓨팅의 상용화에 기여할 수 있고, 밝혀낸 성능 향상 원리를 다양한 반도체 소자들에 응용할 수 있을 것이다ˮ 고 밝혔다. 전기및전자공학부 배종민 석사과정, 한양대학교 권초아 박사후연구원이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 어드밴시스(Science Advances)' 6월호에 출판됐다. (논문명 : Tunable ion energy barrier modulation through aliovalent halide doping for reliable and dynamic memristive neuromorphic systems) 한편 이번 연구는 한국연구재단 신소자원천기술개발사업, 신재료PIM소자사업, 우수신진연구사업, 나노종합기술원 반도체공정기반 나노메디컬 디바이스개발 사업, 그리고 국가슈퍼컴퓨팅센터 혁신지원프로그램의 지원을 받아 수행됐다.
2024.06.21
조회수 3482
멀티모달 대형언어모델이 GPT-4V를 뛰어넘다
멀티모달 대형 언어모델이란 텍스트뿐만 아니라 이미지 데이터 유형까지 처리할 수 있는 초대형 언어모델을 말한다. 해외 대형 기업의 풍부한 컴퓨팅 자원의 지원으로부터 인간의 뇌에 있는 신경망의 개수와 유사한 수준초대형모델들이 만들어지고 있으나 학계에서는 이런 개발이 쉽지 않았다. KAIST 연구진이 오픈AI의 GPT-4V와 구글의 제미나이-프로(Gemini-Pro)를 뛰어넘는 멀티모달 대형언어모델을 개발하여 화제다. 우리 대학 전기및전자공학부 노용만 교수 연구팀이 오픈AI(OpenAI)의 GPT-4V 등 기업에서 비공개하고 있는 상업 모델인 초대형 언어모델의 시각 성능을 뛰어넘는 공개형 멀티모달 대형 언어모델을 개발해 출시했다고 20일 밝혔다. 노용만 교수 연구팀은 단순히 모델의 크기를 키우거나 고품질의 시각적 지시 조정 데이터셋을 만들지 않고 멀티모달 대형언어모델의 시각 성능을 획기적으로 높인 콜라보(CoLLaVO), 모아이(MoAI) 2가지 기술을 연속적으로 개발했다고 밝혔다. 연구팀이 개발한 첫번째 기술인 ‘콜라보(CoLLaVO)’는 현존하는 공개형 멀티모달 대형언어모델이 비공개형 모델의 성능에 비해 현저하게 낮은 이유를 일차적으로 물체 수준에 대한 이미지 이해 능력이 현저하게 떨어진다는 것을 먼저 검증해 보였다. 해당 능력을 효율적으로 증가시켜 시각-언어 태스크에 대한 성능을 향상 하기 위해 연구팀은 이미지 내의 정보를 배경과 물체 단위로 분할하고 각 배경 및 물체에 대한 정보를 멀티모달 대형언어모델에 입력으로 직접 넣어주는 새로운 방법‘크레용 프롬프트(Crayon Prompt)’라는 시각적 프롬프트를 새롭게 제안했다. 또한 시각적 지시 조정 단계에서 크레용 프롬프트로 학습한 정보를 잃어버리지 않기 위해 연구팀은 물체 수준 이미지 이해 능력과 시각-언어 태스크 처리 능력을 서로 다른 파라미터로 학습해 서로 간의 정보를 잃지 않게 만드는 획기적인 학습 전략인 ‘듀얼 큐로라(Dual QLoRA)’를 제안했다. 이를 통해, 콜라보(CoLLaVO) 멀티모달 대형언어모델은 이미지 내에서 배경 및 물체를 구분하는 능력이 뛰어나 일차원적인 시각 구분 능력이 크게 향상됐다고 밝혔다. 두 번째 대형언어모델인 ‘모아이(MoAI)’는 인간이 사물을 판단할 때 물체의 존재, 상태, 물체 간의 상호작용, 배경에 대한 이해, 텍스트에 대한 이해 등으로부터 상황을 판단하는 인지과학적인 요소에 영감을 받아서 만들어졌다고 밝혔다. 이는 기존 멀티모달 대형언어모델이 텍스트에 의미적으로 정렬된 시각 인코더(vision encoder)만을 사용하기 때문에, 이미지 픽셀 수준에서의 상세하고 종합적인 실세계 장면 이해가 부족하다는 점을 지적하며 이런 컴퓨터 비전 모델들의 결과를 받으면 모두 인간이 이해할 수 있는 언어로 변환한 뒤에 멀티모달 대형언어모델에 입력으로 직접 사용했다. 노용만 교수는 “연구팀에서 개발한 공개형 멀티모달 대형언어모델이 허깅페이스 일간 화제의 논문(Huggingface Daily Papers)에 추천됐고, 각종 SNS를 통해 세계 연구자에게 알려지고 있으며, 모든 모델을 공개형 대형언어모델로 출시 했기 때문에 이 연구모델이 멀티모달 대형언어모델 발전에 기여할 것이다”이라고 언급했다. 연구팀이 개발한 멀티모달 대형언어모델인 콜라보(CoLLaVO)와 모아이(MoAI)는 KAIST 전기및전자공학부 이병관 박사과정이 제1 저자로 참여하고 박범찬 석박사통합과정, 김채원 박사과정이 공동 저자로 참여했다. 콜라보(CoLLaVO)는 자연어 처리(NLP) 분야 최고의 국제 학회인 ‘Findings of the Association for Computational Linguistics(ACL Findings) 2024’에 5월 16일 자로 학회에 승인받았고, 모아이(MoAI)는 컴퓨터 비전 최고의 국제 학회인 ‘European Conference on Computer Vision(ECCV) 2024’학회 승인 결과를 기다리고 있다고 밝혔다. 한편 이번 연구는 KAIST 미래국방 인공지능 특화연구센터 및 전기및전자공학부의 지원을 받아 수행됐다. [1] CoLLaVO 데모 GIF 영상 https://github.com/ByungKwanLee/CoLLaVO [2] MoAI 데모 GIF 영상 https://github.com/ByungKwanLee/MoAI
2024.06.20
조회수 3842
기업 의사결정을 거대언어모델로 최초 해결
기업 내외의 상황에 따라 끊임없이 새롭게 결정해야 하는 기업 의사결정 문제는 지난 수십 년간 기업들이 전문적인 데이터 분석팀과 고가의 상용 데이터베이스 솔루션들을 통해 해결해 왔는데, 우리 연구진이 최초로 거대언어모델을 이용하여 풀어내어 화제다. 우리 대학 전산학부 김민수 교수 연구팀이 의사결정 문제, 기업 데이터베이스, 비즈니스 규칙 집합 세 가지가 주어졌을 때 거대언어모델을 이용해 의사결정에 필요한 정보를 데이터베이스로부터 찾고, 비즈니스 규칙에 부합하는 최적의 의사결정을 도출할 수 있는 기술(일명 계획 RAG, PlanRAG)을 개발했다고 19일 밝혔다. 거대언어모델은 매우 방대한 데이터를 학습했기 때문에 학습에 사용된 바 없는 데이터를 바탕으로 답변할 때나 오래전 데이터를 바탕으로 답변하는 등 문제점들이 지적되었다. 이런 문제들을 해결하기 위해 거대언어모델이 학습된 내용만으로 답변하는 것 대신, 데이터베이스를 검색해 답변을 생성하는 검색 증강 생성(Retrieval-Augmented Generation; 이하 RAG) 기술이 최근 각광받고 있다. 그러나, 사용자의 질문이 복잡할 경우 다양한 검색 결과를 바탕으로 추가 정보를 다시 검색하여 적절한 답변을 생성할 때까지 반복하는 반복적 RAG(IterativeRAG)라는 기술이 개발됐으며, 이는 현재까지 개발된 가장 최신의 기술이다. 연구팀은 기업 의사결정 문제가 GPT-3.5 터보에서 반복적 RAG 기술을 사용하더라도 정답률이 10% 미만에 이르는 고난도 문제임을 보이고, 이를 해결하기 위해 반복적 RAG 기술을 한층 더 발전시킨 계획 RAG(PlanRAG)라는 기술을 개발했다. 계획 RAG(PlanRAG)는 기존의 RAG 기술들과 다르게 주어진 의사결정 문제, 데이터베이스, 비즈니스 규칙을 바탕으로 어떤 데이터 분석이 필요한지에 대한 거시적 차원의 계획(plan)을 먼저 생성한 후, 그 계획에 따라 반복적 RAG를 이용해 미시적 차원의 분석을 수행한다. 이는 마치 기업의 의사결정권자가 어떤 데이터 분석이 필요한지 계획을 세우면, 그 계획에 따라 데이터 분석팀이 데이터베이스 솔루션들을 이용해 분석하는 형태와 유사하며, 다만 이러한 과정을 모두 사람이 아닌 거대언어모델이 수행하는 것이 커다란 차이점이다. 계획 RAG 기술은 계획에 따른 데이터 분석 결과로 적절한 답변을 도출하지 못하면, 다시 계획을 수립하고 데이터 분석을 수행하는 과정을 반복한다. 김민수 교수는 “지금까지 거대언어모델 기반으로 의사결정 문제를 푼 연구가 없었던 관계로, 기업 의사결정 성능을 평가할 수 있는 의사결정 질의응답(DQA) 벤치마크를 새롭게 만들었다. 그리고 해당 벤치마크에서 GPT-4.0을 사용할 때 종래의 반복적 RAG에 비해 계획 RAG가 의사결정 정답률을 최대 32.5% 개선함을 보였다. 이를 통해 기업들이 복잡한 비즈니스 상황에서 최적의 의사결정을 사람이 아닌 거대언어모델을 이용하여 내리는데 적용되기를 기대한다”고 말했다. 이번 연구에는 김 교수의 제자인 이명화 박사과정과 안선호 석사과정이 공동 제1 저자로, 김 교수가 교신 저자로 참여했으며, 연구 결과는 자연어처리 분야 최고 학회(top conference)인 ‘NAACL’ 에 지난 6월 17일 발표됐다. (논문 제목: PlanRAG: A Plan-then-Retrieval Augmented Generation for Generative Large Language Models as Decision Makers) 한편, 이번 연구는 과기정통부 IITP SW스타랩 및 ITRC 사업, 한국연구재단 선도연구센터인 암흑데이터 극한 활용 연구센터의 지원을 받아 수행됐다.
2024.06.19
조회수 2530
땀의 포도당 수치 진단 웨어러블 기술 개발
최근까지도 다양한 웨어러블 시스템을 위한 섬유의 기능화를 위한 시도가 이뤄지고 있다. 그중에서, 나노구조체의 전사 기술은 섬유의 굴곡진 형상과 낮은 표면 접착력으로 인해 웨어러블 시스템을 위한 기능성 섬유 제조에 있어서는 한계를 마주했다. 공동연구팀은 신축성이 우수한 마이크로 스케일의 전기방사 섬유를 개발하여 웨어러블 헬스케어 응용에 접목돼, 땀의 미세한 포도당 수치 진단이 가능하고 다양한 기능성 의복의 고안 및 웨어러블 시스템 영역을 확장하게 할 기술을 개발했다. 우리 대학 기계공학과 박인규 교수와 한국기계연구원(KIMM) 정준호 박사 공동연구팀이 `전기방사 섬유 상 금속 및 금속산화물 기반 나노구조체 전사 기술'을 개발했다고 13일 밝혔다. 연구팀은 일상 속 웨어러블 헬스케어 응용을 위해 기반 고분자의 열적 거동 특성(열 변형 특성) 및 산소 플라즈마 처리를 통한 표면 특성을 고려해, 신축성이 우수한 마이크로 스케일의 전기방사 섬유 위 금속/금속산화물 나노구조체의 안정적인 전사를 처음으로 선보였다. 연구팀은 금속/금속산화물 기반의 정교한 나노구조체를 수 마이크로 스케일의 곡면 형태인 전기방사 섬유 위에 전사하는 안정적인 공정을 개발했다. 나노 원형, 마이크로 원형, 나노 사각형, 나노 그물, 나노 라인, 나노 십자가와 같은 다양한 구조체의 전기방사 섬유 상 전사가 가능할 뿐 아니라, 금, 은, 알루미늄, 니켈과 같은 금속 재료부터 이산화티타늄, 이산화규소와 같은 금속산화물까지 다양한 재료의 나노구조체 전사가 가능해졌다. 연구팀은 열 성형이 가능한 열가소성 고분자를 선정해 안정적으로 섬유화했으며, 산소 플라즈마 처리를 통한 나노구조체 지지 고분자의 식각과 표면 개질로 인한 화학적 결합 증진을 유도한 바 있다. 이는 착용할 수 있는 전기방사 섬유 위에 나노구조체가 결합돼 다양한 기능성 의복의 고안 및 웨어러블 시스템 영역을 확장할 것이라는데 의미가 크다. 연구를 지도한 박인규 교수는 "개발된 차세대 전기방사 섬유상 나노구조체의 전사 공정은 본질적인 문제인 섬유 상 나노구조체의 적용 한계, 낮은 범용성, 대량 생산의 어려움을 해결할 수 있을 것으로 기대되고, 추후 웨어러블 헬스케어 응용을 포함한 다양한 웨어러블 시스템으로 확장될 수 있을 것이다ˮ라며 "이는 웨어러블 나노기술의 압도적 선도 국가가 되기 위한 발판이 될 것이다ˮ고 연구의 의의를 설명했다. 기계공학과 하지환 박사과정이 제1 저자로 참여한 이번 연구는 저명 국제 학술지 `어드밴스드 펑셔널 머터리얼스(Advanced Functional Materials)' 2024년 4월 온라인판에 출판됐다. (논문명: Nanotransfer Printing of Functional Nanomaterials on Electrospun Fibers for Wearable Healthcare Applications) 한편 이번 연구는 과학기술정보통신부 및 산업통상자원부의 재원으로 한국연구재단 중견연구자지원사업, 산업기술알키미스트프로젝트의 지원을 받아 수행됐다.
2024.06.13
조회수 3096
잡아당겨도 고화질 유지하는 디스플레이 개발
평면에 국한됐던 디스플레이 기술이 곡면형 모니터나 폴더블 휴대폰 화면처럼 다양한 형태로 진화되고 있는데, 이보다 더 나아가 잡아당겨도 동작 가능한 신축형 디스플레이의 핵심 기술이 개발되어 화제다. 우리 대학 전기및전자공학부 유승협 교수 연구팀이 동아대 문한얼 교수, 한국전자통신연구원(ETRI) 실감소자 연구본부와의 협력을 통해 세계 최고 수준의 높은 발광면적비를 가지며 신축 시에도 해상도가 거의 줄지 않는 신축 유기발광다이오드(organic light-emitting diode, OLED) 디스플레이를 구현하는 데 성공했다고 11일 밝혔다. 공동연구팀은 유연성이 매우 뛰어난 초박막 OLED를 개발하여 이의 일부 발광 면적을 인접한 두 고립 영역 사이로 숨겨 넣는 방법으로, 신축성과 높은 발광 밀도를 동시에 확보하는 데 성공했다. 이렇게 숨겨진 발광 영역은 신축 시 그 모습을 점차 드러내며 발광 면적비의 감소를 보상하는 메커니즘을 가능케 했다. 기존의 신축형 디스플레이는 고정된 단단한 발광 부분을 이용하여 성능을 확보하면서, 굽혀진 모양의 연결부를 통해 신축성을 확보하는 경우가 일반적이다. 그런데 이 경우 빛을 내지 않는 굽힘 모양 연결부로 인해, 전체 면적에서 발광면적이 차지하는 비율이 낮은 한계점이 있다. 특히, 신축시에는 늘어난 굽힘 모양 연결부가 차지하는 면적이 더욱 커지면서 발광면적 비율이 한층 더 감소하는 문제가 있다. 공동연구팀은 제안된 구조체를 통해 신축 전 발광면적비가 100%에 근접하는 최고 수준을 달성했으며, 30%의 시스템 신축 후 발광면적비 또한 단지 10% 감소하는 플랫폼을 구현했다. 이는 같은 변형하에서 기존 플랫폼이 60% 수준의 높은 발광면적비 감소를 보이는 것과 대조적인 결과다. 또한 본 플랫폼은 반복 동작 및 다양한 외력 하에서도, 강건하게 동작하는 기계적 안정성을 보였다. 공동연구팀은 구형 물체, 실린더, 인체 부위와 같은 곡면에서 안정적으로 동작해, 풍선의 팽창이나 관절의 움직임 등을 수용할 수 있는 웨어러블 및 자유곡면에 부착할 수 있는 광원에 대한 응용성을 확인했으며, 숨겨진 발광영역의 독립적 구동을 통해 신축 시 저감되는 해상도 보상이 가능한 미래 디스플레이의 가능성을 확인하였다. 유승협 교수는 “이미 우리는 폴더블 휴대폰이나 곡면형 모니터 같이 더 이상 평면이 아닌 디스플레이를 쉽게 볼 수 있는 시대에 살고 있는데, 미래에는 디스플레이의 형태가 더욱 다양해지면서 궁극적으로 늘려도 동작하는 신축형 디스플레이 기술로 확장될 것으로 기대된다”면서 “이번에 개발된 기술은, 우수한 성능과 안정성이 확보된 OLED 기술을 그대로 활용하면서도 기존 신축형 디스플레이의 난제를 극복하는 방법을 제시한 것으로서, 신축형 디스플레이의 제품화를 더욱 가속화하는 계기가 되기를 희망한다”고 말했다. 유승협 교수 연구실의 이동균 박사(現 서울대학교 연수연구원)가 제1 저자로 수행한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈 (Nature Communications)’ 2024년 6월 5일자 게재됐으며 (논문명: Stretchable OLEDs based on a hidden active area for high fill factor and resolution compensation, DOI:: 10.1038/s41467-024-48396-w), 미국의 전기전자기술자협회 (Institute of Electrical and Electronics Engineers, IEEE)의 매거진인 ‘IEEE Spectrum’에 의해 온라인 뉴스로 소개되기도 하였다. 이번 연구는 한국연구재단 선도연구센터 사업(인체부착형 빛 치료 공학연구센터) 및 한국전자통신연구원 연구운영비지원사업(ICT 소재·부품·장비 자립 및 도전 기술 개발)의 지원을 받아 수행됐다.
2024.06.11
조회수 3454
실내 조명 활용해 최고 수준 이산화질소 감지 가능
우리 연구진이 기존까지 전무했던 녹색빛을 가스 센서에 조사하여 상온에서 최고 수준의 이산화질소 감지 성능을 보이는 것을 확인했다. 이를 통해 녹색광이 50% 이상 포함된 실내조명을 통해서도 작동이 가능한 초고감도 상온 가스 센서를 개발했다. 우리 대학 신소재공학과 김일두 교수 연구팀이 가시광을 활용해 상온에서도 초고감도로 이산화질소(NO2)를 감지할 수 있는 가스 센서를 개발했다고 10일 밝혔다. 금속산화물 반도체 기반 저항 변화식 가스 센서는 가스 반응을 위해 300 oC 이상 가열이 필요해 상온 측정에 한계가 있었다. 이를 극복하기 위한 대안으로 최근 금속산화물 기반 광활성 방식 가스 센서가 크게 주목받고 있으나, 기존 연구는 인체에 유해한 자외선 내지는 근자외선 영역의 빛을 활용하는 데에 그쳤다. 김일두 교수 연구팀은 이를 녹색 빛을 포함한 가시광 영역으로 확대해 범용성을 크게 높였으며, 녹색광을 조사했을 때 이산화질소 감지 반응성이 기존 대비 52배로 증가하였다. 특히 실내조명에 사용되는 백색광을 조사해 최고 수준의 이산화질소 가스 감지 반응성(0.8 ppm NO2, 감도 = 75.7)을 달성하는 데에 성공했다. 연구진은 가시광선의 흡수가 어려운 인듐 산화물(In2O3) 나노섬유*에 비스무스(Bi) 원소**를 첨가하여 청색광을 흡수할 수 있도록 중간 밴드 갭***을 형성시켰고, 금(Au) 나노입자를 추가적으로 결착하여 국소 표면 플라즈몬 공명** 현상을 통해 가시광 중 가장 풍부한 녹색광 영역에서의 활성도를 극대화했다. 비스무스와 금 나노입자 첨가 효과와 나노섬유가 갖는 넓은 비표면적 특성을 통해 상온에서 이산화질소 반응성을 기존 센서 대비 52배(0.4 ppm NO2 감도 기준) 증가시켰다. *인듐 산화물 나노섬유: 인듐 산화물은 전기 전도 특성을 지닌 금속 산화물로, 이를 전기방사 공정을 통해 나노섬유 형상으로 제작함 **비스무스(Bi) 원소: 원자번호 83번의 원소로, 주기율표에서는 질소(N), 인(P), 비소(As), 안티모니(Sb)와 함께 15족(질소 족)에 속하는 원소 ***밴드 갭(Band gap): 전자(electron)가 속박 상태에서 자유롭게 벗어나는 데 필요한 에너지 차를 의미하며 물질의 전기적, 광학적 성질을 결정하는 중요 요인 중 하나 ***국소 표면 플라즈몬 공명(LSPR): 빛에 의해 나노입자 표면의 전하 수송체를 들뜬 상태로 만들고 금속산화물로 이동시켜 가스와의 산화-환원 반응을 촉진하는 원리 이번 연구의 연구책임자인 신소재공학과 김일두 교수는 “자동차 배기가스 및 공장 매연 등에서 배출되는 대표적인 대기 환경 유해가스인 이산화질소 가스를 우리 주변에서 일반적으로 접근할 수 있는 녹·청색광(430~570 nm) 영역의 가시광을 활용해 상온에서 초고감도로 감지가 가능한 신소재를 개발했다”라며 “가스 센서의 소비전력 및 집적화 문제를 해결할 수 있어, 향후 실내조명 및 기기와의 결합을 통한 가스 센서의 상용화에 큰 역할을 할 것으로 기대한다”라고 밝혔다. 신소재공학과 졸업생 박세연 박사(現 펜실베니아 대학교 박사 후 연구원), 신소재공학과 김민현 박사과정이 공동 제1 저자로 주도한 이번 연구는 재료 분야 국제권위 학술지인 ‘어드밴스드 머티리얼즈(Advanced Materials)’에 3월 4일 온라인 공개됐으며 6월 13일 24호 전면 속표지(Inside Front Cover) 논문으로 발표 예정이다. (논문명 : Dual-Photosensitizer Synergy Empowers Ambient Light Photoactivation of Indium Oxide for High-Performance NO2 Sensing) 한편 이번 연구는 한국연구재단 중견연구자지원 사업, 중소벤처기업부와 중소기업기술정보진흥원(TIPA)의 소재부품장비 전략협력기술개발사업의 지원을 받아 수행됐다.
2024.06.10
조회수 3164
지질 뗏목의 원리 밝혀 질병 치료에 희소식
지질 뗏목은 세포막 간 융합, 신호 전달, 바이러스 침투 등 세포 기능과 질병 발병의 핵심 과정에 중요한 역할을 한다. 한국 연구진이 지금까지 알려지지 않았던 지질 뗏목의 정렬 원인과 그 조절 메커니즘을 밝혀내어 세포막 간 상호작용을 조절하여 질병 치료에 새로운 접근법을 제공할 수 있을 것으로 기대된다. 우리 대학 바이오및뇌공학과 최명철 교수팀이 고등과학원(원장 최재경) 현창봉 교수팀, 포항가속기연구소(소장 강흥식) 이현휘 박사와 공동으로 세포막 간의 상호작용을 매개하는 지질 뗏목(Lipid Raft)의 정렬 현상의 원리를 최초로 규명했다고 5일 밝혔다. 세포 융합, 바이러스 침투, 세포 간 신호 전달 등 다양한 세포막 간의 상호작용을 조절할 수 있는 핵심 기전을 밝힌 것이다. 세포막(Cell membrane)은 세포의 내부와 외부를 구분하는 얇고 유연한 막으로, 지질 이중층(lipid bilayer)으로 구성돼 있다. 세포막에는 수많은 막단백질(membrane proteins)이 존재하는데, 이들은 세포가 외부 환경과 소통할 수 있는 창구 기능을 한다. 지질 뗏목은 세포막의 특정 영역으로서, 높은 유동성을 가지는 세포막의 다른 부분들과는 달리 매우 낮은 유동성을 가지며, 기능적으로 연관된 막단백질들을 안정된 뗏목 안으로 모아 효율적인 상호작용을 가능하게 한다. 세포막을 바다로, 막단백질을 사람으로 비유하자면, 망망대해에서 멀리 떨어져 헤엄치는 사람들끼리는 서로 의사소통하기 어렵지만, 이들을 한 뗏목 위에 모두 태워 놓으면 서로 쉽게 대화할 수 있는 것과 비슷하다. 연구팀은 지질 뗏목 위에 존재하는 막단백질 중 많은 수가 세포막 간의 상호작용, 즉 두 세포막이 서로 생체신호를 주고받거나, 단백질을 통해 결합하거나, 두 막이 하나로 합쳐지는 등의 작용에 관여한다는 점에 주목했다. 연구팀은 두 세포막 간의 거리가 지질 뗏목의 정렬을 조절하는 핵심 요인일 것이라는 가설을 세우고, 세포막을 여러 겹 쌓아 놓은 구조의 지질 다중막(lipid multilayer)을 재구성해 이 가설을 검증했다. 이때 지질 뗏목들은 단순히 정렬만 되는 것이 아니라, 각각의 지질 뗏목의 크기가 커지면서 보다 안정된 구조를 형성했다. 두 세포막 사이의 거리가 지질 뗏목의 정렬과 크기를 조절하는 핵심 스위치인 것을 밝혀낸 것이다. 연구팀은 분자동역학(molecular dynamics) 시뮬레이션*을 통해 물 분자층을 분석한 결과, 지질 뗏목들이 정렬된 상태가 정렬되지 않은 상태보다 불안정한 수소결합 층의 부피가 작기 때문에 전체 시스템의 에너지를 최소화하기 위해 지질 뗏목이 자연적으로 정렬되는 것을 밝혀냈다. *분자동역학 시뮬레이션: 분자 간 상호작용이 주어졌을 때 운동 방정식을 수치적으로 풀어 구조와 동적 과정을 해석하는 방법 최명철 교수는 “지질 뗏목이 세포막 간의 상호작용에 관여한다는 사실은 잘 알려져 있지만, 어떤 원리로 상호작용을 매개하는지는 아직 베일에 싸여 있었다”며, “이번 논문은 세포막 간의 거리가 지질 뗏목의 정렬, 나아가 세포막 사이의 상호작용을 조절하는 핵심 스위치임을 밝혀내어 생명 현상의 바탕이 되는 물리적 환경의 중요성을 재조명하는 이정표적 연구”라고 연구의 의의를 설명했다. 최 교수는 또한 “특히 물 분자의 수소결합이 지질 뗏목의 정렬을 매개하는 중요한 요소임을 보여주었는데, 이는 우리 몸의 약 70%를 차지하는 물이 생명 현상이 일어나는 무대에서 단순한 조연이 아닌 주연으로 활약할 수 있음을 보여준다”고 강조했다. 이어 최 교수는 “지질 뗏목을 모사하는 구조는 현재 생체 센서 등에 활발하게 활용되고 있으며, 이번에 발견한 세포막 사이의 거리라는 스위치를 통해 보다 다양한 기능을 가진 생체 센서들이 개발될 수 있는 공학적 토대도 제공할 것이다”라고 기대감을 내비쳤다. 우리 대학 이수호 박사와 고등과학원 박지현 박사가 공동 제1 저자로, 고등과학원 현창봉 교수와 KAIST 최명철 교수가 공동 교신저자로 참여한 이번 연구 결과는 국제학술지 ‘미국화학회지(Journal of American Chemical Society)’에 5월 22일 字 표지논문(supplementary journal cover)으로 게재됐다. (논문명: Water Hydrogen-Bond Mediated Layer by Layer Alignment of Lipid Rafts as a Precursor of Intermembrane Processes) 한편 이번 연구는 한국연구재단, 보건복지부, KAIST의 지원을 받아 수행됐다.
2024.06.05
조회수 3330
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 83